
Last Updated: 8/28/2014

Overview ... 1
How Radius Authentication and Accounting works ... 2

Radius configuration and radius packet processing rules ... 7
Radius Server State Machine Behavior .. 10
Radius Probe feature ... 15
Troubleshooting basic Radius connectivity issues ... 16

Data collection .. 18

Traps and Alarms .. 18
Radius counters and status .. 20

show radius counters { {all | server <server IP>} [instance <aaamgr #>] | summary} 20
show radius {accounting | authentication} servers detail ... 20

Call Setup and Teardown statistics ... 20
show session disconnect-reasons .. 20

show mipfa statistics (on FA chassis) ... 21
show mipha statistics (on HA chassis).. 21

show ppp statistics .. 22
Testing communication with a Radius Server .. 22

ping ... 22

radius test authentication server x.x.x.x port yyyy <user> <password>............................... 22
radius test accounting server x.x.x.x port yyyy <user> .. 22

radius test probe authentication server x.x.x.x port yyyy [username <user> password

<password>] .. 26
aaa test {authenticate <user> <password> | accounting username <user>} 26

Advanced commands .. 28

show task resources facility aaamgr all .. 28
show session subsystem facility aaamgr {all | instance <aaamgr #>} 28
show npu flow record min-flowid <aaa min flowid> max-flowid <aaa max flowid> 29

show radius info instance { <aaamgr #> | all } ... 30
Troubleshooting other types of Radius issues .. 32

Explanation of typical authentication and accounting attributes .. 33
Authentication (Access) Requests/Responses .. 33

Accounting Requests .. 35

Overview

This article addresses troubleshooting all issues that have to do with Radius authentication and

accounting. Sometimes when troubleshooting issues, it is not obvious that radius authentication

is the root cause. This article attempts to describe the various commands to determine where and

if there is an issue. It explains how radius authentication and accounting tie into the call flow,

what are the relevant radius configurables, the state machine behavior – how does it maintain the

state of the configured servers, the radius probe feature, overload issues, recovery methods, and

high-level descriptions of the types of issues you might expect to encounter, along with what

information (traces, logs, counters, etc.) you might need to collect. It is not designed as a list of

steps that should be followed in order, as there are so many things that could happen, and the

specific information you have access to outside of the SXxx realm could vary widely. Therefore

developing such a universal guide would be difficult. Rather, you should use this article for

background knowledge, reference, and ideas and guidelines that can be used throughout the

troubleshooting process that you are responsible for formulating.

How Radius Authentication and Accounting works

A look at a monitor subscriber trace will make it obvious how radius authentication works. It is

important to know when authentication and accounting take place so you know where to look for

them and what to expect in a trace.

Whether it be SIP or MIP, a call starts with A11 protocol message exchange followed by some

PPP negotiation.

For SIP, as soon as the username is received during PPP negotiation, radius authentication can

take place, followed by further PPP negotiation where compression is negotiated along with the

DNS and mobile IP address being given out.

For MIP, unlike for SIP, the username is not received during PPP negotiation. Rather, the DNS

information is given out, and header compression negotiation takes place. At this point PPP is

finished and MIP protocol takes over with MIP router advertisement and a MIP RRQ being

received with the username, at which time radius authentication takes place.

So the key for both SIP and MIP radius authentication is getting the username.

Finally Radius accounting takes place. Radius accounting also takes place at call teardown.

It is recommended to study some example MIP and SIP traces to understand the full call flow

and to see how authentication and accounting play a role. Grabbing a trace from your live

network using monitor subscriber is as easy as any way to get started.

Here is an example of an authentication (properly qualified by the term “access”) request for a

SIP call to give an idea of what's involved:

<<<<OUTBOUND 13:26:27:350 Eventid:23901(6)

RADIUS AUTHENTICATION Tx PDU, from 10.211.16.30:32798 to 60.170.78.10:1645

(302) PDU-dict=custom9

 Code: 1 (Access-Request)

 Id: 94

 Length: 302

 Authenticator: 53 3E A1 0B 53 C0 31 DA 19 8A E0 F3 73 61 F3 F5

 Calling-Station-Id = 111117742723726

 User-Name = 7746330615@test.com

 NAS-IP-Address = 10.211.16.30

 3GPP2-Correlation-Id = 2LxCl6hC

 3GPP2-MEID =

 CHAP-Challenge = F8 AE 5B 23 61 F5 F8 30 98 5A D0 C0 58 13 0F EF

 CHAP-Password = 01 1C 19 45 8B 40 E8 4A AF FD 05 F4 19 78 1B 85 <more>

 3GPP2-BSID = 001C000400D1

 3GPP2-RP-Session-ID = 1611188877

 3GPP2-Service-Option = HSPD

 3GPP2-User-Zone = 0

 Service-Type = Framed

 Framed-Protocol = PPP

 SN1-Service-Address = 10.211.16.30

 NAS-Port-Type = Wireless_Other

 3GPP2-Serving-PCF = 10.211.18.11

 Event-Timestamp = 1223645187

 SN1-Service-Type = PDSN

 3GPP2-IP-Technology = Simple-IP

 NAS-Port = 81484

 3GPP2-Session-Term-Capability =

Both_Dynamic_Auth_And_Reg_Revocation_in_MIP

 3GPP2-Service-Reference-ID = 01 04 00 01 02 04 00 01

 SR-ID = 1

 Main-SI-Indicator = Main-SI

 3GPP2-Pre-Paid-Acct-Capability = 01 06 00 00 00 03

 Available-In-Client = Supported_Volume_And_Duration

INBOUND>>>>> 13:26:27:385 Eventid:23900(6)

RADIUS AUTHENTICATION Rx PDU, from 60.170.78.10:1645 to 10.211.16.30:32798

(113) PDU-dict=custom9

 Code: 2 (Access-Accept)

 Id: 94

 Length: 113

 Authenticator: FA 6D CA 3D 1C 35 38 44 61 95 B6 22 CA 06 A9 B0

 Service-Type = Framed

 Framed-Protocol = PPP

 Framed-IP-Address = 255.255.255.254

 Framed-IP-Netmask = 255.255.255.255

 Framed-MTU = 1514

 Framed-Compression = None

 Class = 42 57 53 00 01 00 0E 2F 00 16 00 02 03 07 01 27 <more>

 Session-Timeout = 86100

 Idle-Timeout = 86340

 Acct-Interim-Interval = 44000

 Framed-Pool = RestrictAcc01

Here is an example of a radius accounting exchange for the same call above. This is an

accounting start. Note that the responses for accounting messages do not contain any real

information like authentication responses do.

<<<<OUTBOUND 13:26:28:037 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 10.211.16.30:32798 to 60.170.78.10:1646 (695)

PDU-dict=custom9

 Code: 4 (Accounting-Request)

 Id: 108

 Length: 695

 Authenticator: 2B 1C F7 30 66 69 56 1C 15 CC A9 DB 0E 5B 25 96

 User-Name = 7746330615@test.com

 Calling-Station-Id = 111117742723726

 NAS-IP-Address = 10.211.16.30

 Acct-Status-Type = Start
 Acct-Session-Id = 093C66E3

 3GPP2-Correlation-Id = 2LxCl6hC

 3GPP2-MEID =

 3GPP2-BSID = 001C000400D1

 3GPP2-RP-Session-ID = 1611188877

 3GPP2-Service-Option = HSPD

 3GPP2-User-Zone = 0

 Service-Type = Framed

 Framed-Protocol = PPP

 NAS-Port-Type = Wireless_Other

 3GPP2-Serving-PCF = 10.211.18.11

 Acct-Authentic = RADIUS

 SN1-Local-IP-Address = 60.170.120.30

 SN1-Primary-DNS-Server = 60.170.95.44

 SN1-Secondary-DNS-Server = 70.79.96.14

 SN1-Primary-NBNS-Server = 0.0.0.0

 SN1-Secondary-NBNS-Server = 0.0.0.0

 3GPP2-Always-On = Inactive

 Framed-MTU = 1500

 Framed-Compression = None

 SN1-PPP-Data-Compression = None

 SN1-PPP-Data-Compression-Mode = Normal

 SN1-VPN-Name = destination

 SN1-Rulebase = SIP

 SN1-Proxy-MIP = Disabled

 Class = 42 57 53 00 01 00 0E 2F 00 16 00 02 03 07 01 27 <more>

 SN1-Firewall-Policy =

 SN1-VPN-ID = 3

 3GPP2-IP-Technology = Simple-IP

 3GPP2-Comp-Tunnel-Indicator = No-Tunnel

 3GPP2-Forward-Mux-Option = 2337

 3GPP2-Reverse-Mux-Option = 2337

 3GPP2-Forward-Fundamental-Rate = 0

 3GPP2-Reverse-Fundamental-Rate = 0

 3GPP2-Forward-Traffic-Type = Primary

 3GPP2-Reverse-Traffic-Type = Primary

 3GPP2-Fundamental-Frame-Size = 20ms

 3GPP2-Forward-Fundamental-RC = 3

 3GPP2-Reverse-Fundamental-RC = 3

 3GPP2-Air-QOS = 12

 3GPP2-Airlink-Sequence-Number = 1

 3GPP2-Airlink-Record-Type = Active-Start

 3GPP2-Number-Active-Transitions = 0

 3GPP2-SDB-Input-Octets = 0

 3GPP2-SDB-Output-Octets = 0

 3GPP2-Num-SDB-Input = 0

 3GPP2-Num-SDB-Output = 0

 3GPP2-Num-Bytes-Received-Total = 0

 3GPP2-Beginning-Session = True

 Event-Timestamp = 1223645188

 3GPP2-Service-Reference-ID = 01 04 00 01 02 04 00 01

 SR-ID = 1

 Main-SI-Indicator = Main-SI

 Framed-IP-Address = 72.98.40.38

 Framed-IP-Netmask = 255.255.255.255

 SN1-Service-Type = PDSN

 NAS-Port = 81484

INBOUND>>>>> 13:26:28:042 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 60.170.78.10:1646 to 10.211.16.30:32798 (20)

PDU-dict=custom9

 Code: 5 (Accounting-Response)

 Id: 108

 Length: 20

 Authenticator: 6F 55 66 1F 6C 2B A8 38 1D 5D 23 B9 38 2C 56 E3

And here is the accounting exchange at call teardown. This is an accounting stop.

Note that Accounting starts and stops also occur during a call when intra-pdsn handoffs or ppp

renegotiations occur. There is also an accounting “Interim-Update” type for communicating

accounting information without marking a new accounting session.

<<<<OUTBOUND 13:31:33:152 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 10.211.16.30:32798 to 60.170.78.10:1646 (875)

PDU-dict=custom9

 Code: 4 (Accounting-Request)

 Id: 221

 Length: 875

 Authenticator: 68 92 88 5A 0C 03 64 28 19 96 68 41 88 D9 01 2D

 User-Name = 7746330615@vzw3g.com

 Calling-Station-Id = 111117742723726

 NAS-IP-Address = 10.211.16.30

 Acct-Status-Type = Stop
 Acct-Session-Id = 093C66E3

 3GPP2-Correlation-Id = 2LxCl6hC

 3GPP2-MEID =

 3GPP2-BSID = 001C000400D1

 3GPP2-RP-Session-ID = 1611188877

 3GPP2-Service-Option = HSPD

 3GPP2-User-Zone = 0

 Service-Type = Framed

 Framed-Protocol = PPP

 NAS-Port-Type = Wireless_Other

 3GPP2-Serving-PCF = 10.211.18.11

 Acct-Authentic = RADIUS

 SN1-Local-IP-Address = 60.170.120.30

 SN1-Primary-DNS-Server = 60.170.95.44

 SN1-Secondary-DNS-Server = 70.79.96.14

 SN1-Primary-NBNS-Server = 0.0.0.0

 SN1-Secondary-NBNS-Server = 0.0.0.0

 3GPP2-Always-On = Inactive

 Framed-MTU = 1500

 Framed-Compression = None

 SN1-PPP-Data-Compression = None

 SN1-PPP-Data-Compression-Mode = Normal

 SN1-VPN-Name = destination

 SN1-Rulebase = SIP

 SN1-Proxy-MIP = Disabled

 Class = 42 57 53 00 01 00 0E 2F 00 16 00 02 03 07 01 27 <more>

 SN1-Firewall-Policy =

 SN1-VPN-ID = 3

 3GPP2-IP-Technology = Simple-IP

 3GPP2-Comp-Tunnel-Indicator = No-Tunnel

 3GPP2-Release-Indicator-custom9 = PPP-Termination

 SN1-PPP-Progress-Code = Call-Simple-IP-Connected

 3GPP2-Forward-Mux-Option = 2337

 3GPP2-Reverse-Mux-Option = 2337

 3GPP2-Forward-Fundamental-Rate = 0

 3GPP2-Reverse-Fundamental-Rate = 0

 3GPP2-Forward-Traffic-Type = Primary

 3GPP2-Reverse-Traffic-Type = Primary

 3GPP2-Fundamental-Frame-Size = 20ms

 3GPP2-Forward-Fundamental-RC = 3

 3GPP2-Reverse-Fundamental-RC = 3

 3GPP2-Air-QOS = 12

 3GPP2-Airlink-Sequence-Number = 4

 3GPP2-Airlink-Record-Type = Active-Stop

 3GPP2-Bad-PPP-Frame-Count = 0

 3GPP2-Number-Active-Transitions = 1

 3GPP2-SDB-Input-Octets = 0

 3GPP2-SDB-Output-Octets = 0

 3GPP2-Num-SDB-Input = 0

 3GPP2-Num-SDB-Output = 0

 3GPP2-Num-Bytes-Received-Total = 1095

 Acct-Input-Octets = 1060

 Acct-Output-Octets = 1303

 3GPP2-Active-Time = 20

 Acct-Input-Packets = 7

 Acct-Output-Packets = 7

 3GPP2-Rsvp-Signal-In-Count = 0

 3GPP2-Rsvp-Signal-Out-Count = 0

 3GPP2-Rsvp-Signal-In-Packets = 0

 3GPP2-Rsvp-Signal-Out-Packets = 0

 SNA1-PPP-Unfr-data-In-Oct = 1060

 SNA1-PPP-Unfr-data-Out-Oct = 1303

 Acct-Session-Time = 305

 3GPP2-Session-Continue = False

 3GPP2-Last-Activity = 1223645493

 SN1-Disconnect-Reason = Remote-Disconnect

 Event-Timestamp = 1223645493

 3GPP2-Service-Reference-ID = 01 04 00 01 02 04 00 01

 SR-ID = 1

 Main-SI-Indicator = Main-SI

 Framed-IP-Address = 72.98.40.38

 Framed-IP-Netmask = 255.255.255.255

 SN1-Service-Type = PDSN

 Acct-Termination-Cause = User_Request

 NAS-Port = 81484

INBOUND>>>>> 13:31:33:157 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 60.170.78.10:1646 to 10.211.16.30:32798 (20)

PDU-dict=custom9

 Code: 5 (Accounting-Response)

 Id: 221

 Length: 20

 Authenticator: B7 F4 4B 4A A9 FA B3 91 FD D6 E6 1F 36 75 88 30

Radius configuration and radius packet processing rules

The above scenario is the simplest, and if all requests worked like this, then there would be little

to discuss. In reality, rejections take place, and these rejections may be legitimate based on the

data being sent. Network congestion, dropped packets, overloaded radius server resulting in slow

response, missing, extra, or wrong attributes or attribute values in the packets being exchanged,

etc., are all possibilities.

To manage and plan for various scenarios related to packet exchange and timing, there are

configurables to specify how many times to resend packets, the amount of time in between

resends, how long to mark a server down, which server(s) to try and in what order, etc. The

concepts apply the same for authentication as for accounting, but the configurables are slightly

different for both (for example: "radius timeout" vs. "radius accounting timeout"), as you may

want to have different behavior for both. In examples below, the default values are shown and

the accounting version has parentheses around the word “accounting”.

Most of the configuration for radius will be in a specifically named group, and all contexts will

have a default group which can be configured as follows. Many times configurations will have

just one group, the default group.

[local]CSE2# config

[local]CSE2(config)# context destination

[destination]CSE2(config-ctx)# aaa group default

[destination]CSE2(config-aaa-group)#

If specific named aaa groups are used, they are pointed to by the following statement configured

in a subscriber profile, which in turn is pointed to by a domain statement.

aaa group <group name>

Note: The system first checks the specific aaa group, and then checks the aaa group default for

additional configurables not defined in the specific group.

Before moving on further with the details of various configurables, it is important to point out

the command that summarizes all the values assigned to all the configurables in the various aaa

group configurations. This allows quick viewing of all the configurables including default values

without having to examine the configuration manually, and possibly help avoiding making

mistakes when assuming certain settings. These commands report across all contexts:

show aaa group all

show aaa group name <group name>

The most important configurable will be the radius access and accounting servers themselves.

Here is an example:

radius server 60.170.85.10 key testtesttesttest port 1645 priority 1

radius server 60.170.78.10 key testtesttesttest port 1645 priority 2

radius accounting server 60.170.85.10 key testtesttesttest port 1646 priority 1

radius accounting server 60.170.78.10 key testtesttesttest port 1646 priority 2

In addition, the NAS IP address is also required to be defined, which is the IP address on an

interface in the context FROM which radius requests are sent. If not defined, requests are not

sent and monitor subscriber traces may not post an obvious error (you just won’t see any radius

requests being sent without any indication why).

radius attribute nas-ip-address address 10.211.41.129

The following command can be used to determine if a NAS IP address exists. In this example, it

does not:

[source]CSE01# show radius client status

RADIUS client status: DOWN (no active interface)

Active nas-ip-address: NONE

Configured primary nas-ip-address: NONE DOWN

Configured backup nas-ip-address: NONE DOWN

Note that because both authentication and accounting are usually handled by the same server, a

different port number is used to differentiate authentication vs. accounting traffic on the radius

server. For the STxx/ASR5K side, the source port number is not specified and is chosen by the

chassis. The port number for any given

Normally multiple access and accounting servers will be specified for redundancy purposes.

Either a round robin or prioritized order can be configured:

radius (accounting) algorithm {first-server | round-robin}

The first-server option will result in ALL requests sent to the server with the lowest-numbered

priority. Only when retry failures occur, or worse, a server is marked down, will the server with

the next priority be tried. More on this below.

When a radius (accounting or access) request is sent, a reply is expected. When a reply is not

received within the timeout period (seconds):

radius (accounting) timeout 3

The request is resent up to the number of times specified:

radius (accounting) max-retries 5

This means that a request can be sent a total of max-retries + 1 times until it gives up on the

particular radius server being tried. At this point, it will try the same sequence to the next radius

server in order. If each of the servers have been tried max-retries + 1 times without response,

then the PDSN will reject the call, assuming there is no other reason for failure up to that point.

As a sidenote, there are configurables that allow for users to have access even if authentication

and accounting fail due to timeouts to all servers, though a commercial deployment would not

likely want to implement this.

radius allow (accounting-) authentication-down

Also, there are configurables that can limit the absolute total number of transmissions of a

particular request across all the configured servers, and these are disabled by default:

radius (accounting) max-transmissions 256

For example if this is set = 1, then even if there is a secondary server, it will never be attempted

because only one attempt for a specific subscriber setup will ever even be attempted.

The "show radius counters all" command is very valuable in tracking success and failures on a

server basis, and it is very important to understand the meaning of the various counters that

compose this command, as it may not be obvious. In the following output, note "Access-Request

Sent" = 1, while "Access-Request Retried" = 3. So, any given new request to a particular radius

server is only counted once, and all the retries are counted separately. In this case, that is a total

of 3 + 1 = 4 access requests sent. Note the counter "Access-Request Timeouts" = 1. A single

timeout occurs only when ALL the retries fail, so in this case, 3 retries without a response result

in 1 Timeout (not 4). This will happen across all of the configured servers until there is success,

or all attempts have failed. So pay attention to the counters that are tracked for each server

separately. Here is an example of this, where:

radius max-retries 3

radius server 192.168.50.200 encrypted key 01abd002c82b4a2c port 1812 priority 1

radius server 192.168.50.250 encrypted key 01abd002c82b4a2c port 1812 priority 2

[destination]CSE2# show radius counters all

 Server-specific Authentication Counters

 Authentication server address 192.168.50.200, port 1812:

 Access-Request Sent: 1

 Access-Request with DMU Attributes Sent: 0

 Access-Request Pending: 0

 Access-Request Retried: 3

 Access-Request with DMU Attributes Retried: 0

 Access-Challenge Received: 0

 Access-Accept Received: 0

 Access-Reject Received: 0

 Access-Reject Received with DMU Attributes: 0

 Access-Request Timeouts: 1

 Access-Request Current Consecutive Failures in a mgr: 1

 Access-Request Response Bad Authenticator Received: 0

 Access-Request Response Malformed Received: 0

 Access-Request Response Malformed Attribute Received: 0

 Access-Request Response Unknown Type Received: 0

 Access-Request Response Dropped: 0

 Access-Request Response Last Round Trip Time: 0.0 ms

…

 Authentication server address 192.168.50.250, port 1812:

 Access-Request Sent: 1

 Access-Request with DMU Attributes Sent: 0

 Access-Request Pending: 0

 Access-Request Retried: 3

 Access-Request with DMU Attributes Retried: 0

 Access-Challenge Received: 0

 Access-Accept Received: 0

 Access-Reject Received: 0

 Access-Reject Received with DMU Attributes: 0

 Access-Request Timeouts: 1

 Access-Request Current Consecutive Failures in a mgr: 1

 Access-Request Response Bad Authenticator Received: 0

 Access-Request Response Malformed Received: 0

 Access-Request Response Malformed Attribute Received: 0

 Access-Request Response Unknown Type Received: 0

 Access-Request Response Dropped: 0

 Access-Request Response Last Round Trip Time: 0.0 ms

Note also that timeouts are NOT counted as failures, the result being that the number of Access-

Accept received and Access-Reject received will not add up to Access-Request Sent if there are

any timeouts.

For MIP, it can be even more complicated than just described, because as the authentications are

failing, there is no MIP RRP being sent, and the mobile may continue to initiate new MIP RRQs

because it has not received a MIP RRP. Each new MIP RRQ causes the PDSN to send a new

Authentication request which itself can have its own series of retries. This can be seen in the Id

field at the top of a packet trace – it will be unique for each set of retries. The result is that the

counters for Sent, Retried, and Timeout can be much higher than expected for the number of

calls received. There is an option that can be enabled to minimize these extra re-tries, and it can

be set in the FA (but not on the HA) service: “authentication mn-aaa <6 choices here> optimize-

retries”

Note: Over an un-monitored time period, it is difficult to draw any conclusions from the counter

values or the relationships amongst counters. To make accurate conclusions, the best approach is

to reset the counters and monitor them over a period of time when the issue you are

troubleshooting is occurring.

Radius Server State Machine Behavior

There are actually two different models/algorithms/approaches to choose from to determine the

status of a radius server and when to try a different server if failures are occurring:

The original approach involves keeping track of the number of failures that have occurred in a

row for a particular aaamgr process. A aaamgr process is responsible for all radius message

processing and exchange with a radius server, and many aaamgr process will exist in a chassis,

each paired with sessmgr processes (which are main processes responsible for call control). (You

can view all the aaamgr processes with the "show task resources" command) A particular aaamgr

process will therefore be processing radius messages for many calls, not just a single call, and

this algorithm involves tracking how many times in a row a particular aaamgr process has failed

to get a response to the same request it has had to resend - an "Access-Request Timeout" as

described above. The respective counter "Access-Request Current Consecutive Failures in a

mgr" is incremented when this occurs, and the "show radius accounting (or authentication)

servers detail" command will indicate the timestamps of the radius state change from Active to

Not Responding (but no SNMP trap or logs will be generated). For example:

[source]txhoupdsn1> show radius accounting servers detail

Friday November 28 23:23:34 UTC 2008

+-----Type: (A) - Authentication (a) - Accounting

| (C) - Charging (c) - Charging Accounting

| (M) - Mediation (m) - Mediation Accounting

|

|+----Preference: (P) - Primary (S) - Secondary

||

||+---State: (A) - Active (N) - Not Responding

||| (D) - Down (W) - Waiting Accounting-On

||| (I) - Initializing (w) - Waiting Accounting-Off

||| (a) - Active Pending (U) - Unknown

|||

|||+--Admin (E) - Enabled (D) - Disabled

|||| Status:

||||

||||+-Admin

||||| status (O) - Overridden (.) - Not Overridden

||||| Overridden:

|||||

vvvvv IP PORT GROUP

----- --------------- ----- -----------------------

aPNE. 172.28.220.5 1813 default

Event History:

2008-Nov-28+23:18:36 Active

2008-Nov-28+23:18:57 Not Responding

2008-Nov-28+23:19:12 Active

2008-Nov-28+23:19:30 Not Responding

2008-Nov-28+23:19:36 Active

2008-Nov-28+23:20:57 Not Responding

2008-Nov-28+23:21:12 Active

2008-Nov-28+23:22:31 Not Responding

2008-Nov-28+23:22:36 Active

2008-Nov-28+23:23:30 Not Responding

If this counter reaches the value configured (Default = 4) without ever being reset:

radius (accounting) detect-dead-server consecutive-failures 4

Then this server will be marked "Down" for the period (minutes) configured:

radius (accounting) deadtime 10

An SNMP trap and logs will be triggered as well, for example, for authentication and accounting

respectively:

Fri Jan 30 06:17:19 2009 Internal trap notification 39

(AAAAuthSvrUnreachable) server 2 ip address 172.28.221.178

Fri Jan 30 06:22:19 2009 Internal trap notification 40 (AAAAuthSvrReachable)

server 2 ip address 172.28.221.178

Fri Nov 28 21:59:12 2008 Internal trap notification 42 (AAAAccSvrUnreachable)

server 6 ip address 172.28.221.178

Fri Nov 28 22:28:29 2008 Internal trap notification 43 (AAAAccSvrReachable)

server 6 ip address 172.28.221.178

2008-Nov-28+21:59:12.899 [radius-acct 24006 warning] [8/0/518 <aaamgr:231>

aaamgr_config.c:1060] [context: source, contextID: 2] [software internal

security config user critical-info] Server 172.28.221.178:1813 unreachable

2008-Nov-28+22:28:29.280 [radius-acct 24007 info] [8/0/518 <aaamgr:231>

aaamgr_config.c:1068] [context: source, contextID: 2] [software internal

security config user critical-info] Server 172.28.221.178:1813 reachable

Also, the "show radius accounting (or authentication) servers detail" command will indicate the

timestamps of the state changes:

vvvvv IP PORT GROUP

----- --------------- ----- -----------------------

aSDE. 172.28.221.178 1813 default

Event History:

2008-Nov-28+21:59:12 Down

2008-Nov-28+22:28:29 Active

2008-Nov-28+22:28:57 Not Responding

2008-Nov-28+22:32:12 Down

2008-Nov-28+23:01:57 Active

2008-Nov-28+23:02:12 Not Responding

2008-Nov-28+23:05:12 Down

2008-Nov-28+23:19:29 Active

2008-Nov-28+23:19:57 Not Responding

2008-Nov-28+23:22:12 Down

If there is only one server configured, then it will not be marked down, as that would be critical

for successful call setup.

Worth mentioning is that there is another parameter that can be configured on the detect-dead-

server config line called “response-timeout”. When specified, a server will be marked down only

when the consecutive failures and response-timeout conditions are both met. The response-

timeout specifies a period of time when NO responses are received to ALL the requests sent to a

particular server. (Note that this timer would be continually reset as responses are received.) This

condition would be expected when either a radius server or the network connection is completely

down, vs. partially compromised/degraded.

The use case for this would be a scenario where a burst in radius traffic causes the consecutive

failures to trigger, but marking a server down immediately as a result is not desired. Rather, the

server will only be marked down after a specific period of time passes where no responses are

received, effectively representing true server un-reachability.

This method just discussed of controlling radius state machine changes is dependent on looking

at all aaamgr processes and finding one that triggers the condition of failed retries. This method

is subject to some degree to some randomness of failures, and so may not be the ideal algorithm

to detecting failures.

Another method of detecting radius server reachability is using dummy keepalive test messages.

This involves the constant sending of fake radius messages instead of monitoring live traffic.

Another advantage of this method is that it is always active, vs. with the aaamgr approach, where

there could be periods where no radius traffic is sent, and so there is no way to know if a

problem exists during those times, resulting in delayed detection when attempts do start

occurring. Also when a server is marked down, these keepalives continue to be sent so that the

server can be marked up as soon as possible.

Here are the various configurables relevant to this approach:

radius (accounting) detect-dead-server keepalive

radius (accounting) keepalive interval 30

radius (accounting) keepalive retries 3

radius (accounting) keepalive timeout 3

radius (accounting) keepalive consecutive-response 1

radius (accounting) keepalive username Test-Username

radius keepalive encrypted password 2ec59b3188f07d9b49f5ea4cc44d9586

radius (accounting) keepalive calling-station-id 000000000000000

radius keepalive valid-response access-accept

The command “radius (accounting) detect-dead-server keepalive” turns on the keep-alive

approach instead of the consecutive failures in a aaamgr approach. In the example above, the

system will send a test message with username Test-Username and password Test-Username

every 30 seconds, and will retry every 3 seconds if no response is received, and will retry up to 3

times, after which it will mark the server down. Once it gets its first response, it will mark it back

up again.

Here is an example authentication request/response for the above settings:

<<<<OUTBOUND 17:50:12:657 Eventid:23901(6)

RADIUS AUTHENTICATION Tx PDU, from 192.168.50.151:32783 to

192.168.50.200:1812 (142) PDU-dict=starent-vsa1

 Code: 1 (Access-Request)

 Id: 16

 Length: 142

 Authenticator: 51 6D B2 7D 6A C6 9A 96 0C AB 44 19 66 2C 12 0A

 User-Name = Test-Username

 User-Password = B7 23 1F D1 86 46 4D 7F 8F E0 2A EF 17 A1 F3 BF

 Calling-Station-Id = 000000000000000

 Service-Type = Framed

 Framed-Protocol = PPP

 NAS-IP-Address = 192.168.50.151

 Acct-Session-Id = 00000000

 NAS-Port-Type = HRPD

 3GPP2-MIP-HA-Address = 255.255.255.255

 3GPP2-Correlation-Id = 00000000

 NAS-Port = 4294967295

 Called-Station-ID = 00

INBOUND>>>>> 17:50:12:676 Eventid:23900(6)

RADIUS AUTHENTICATION Rx PDU, from 192.168.50.200:1812 to

192.168.50.151:32783 (34) PDU-dict=starent-vsa1

 Code: 2 (Access-Accept)

 Id: 16

 Length: 34

 Authenticator: 21 99 F4 4C F8 5D F8 28 99 C6 B8 D9 F9 9F 42 70

 User-Password = testpassword

The same SNMP traps are used to signify the unreachable/down and reachable/up radius states as

with the original approach:

Fri Feb 27 17:54:55 2009 Internal trap notification 39

(AAAAuthSvrUnreachable) server 1 ip address 192.168.50.200

Fri Feb 27 17:57:04 2009 Internal trap notification 40 (AAAAuthSvrReachable)

server 1 ip address 192.168.50.200

The “show radius counters all” has a section for keeping track of the keepalive requests for

authentication and accounting as well – here are the authentication counters:

 Server-specific Keepalive Auth Counters

 Keepalive Access-Request Sent: 33

 Keepalive Access-Request Retried: 3

 Keepalive Access-Request Timeouts: 4

 Keepalive Access-Accept Received: 29

 Keepalive Access-Reject Received: 0

 Keepalive Access-Response Bad Authenticator Received: 0

 Keepalive Access-Response Malformed Received: 0

 Keepalive Access-Response Malformed Attribute Received: 0

 Keepalive Access-Response Unknown Type Received: 0

 Keepalive Access-Response Dropped: 0

Radius Probe feature

There is another keep-alive feature that also exists, but working in the opposite direction. It is

called authentication probe and is implemented only on Home Agent chassis. In the radius

authentication server configuration line, you enable this feature by specifying a username and

password for authentication test messages – similar messages as with the keep-alive feature:

radius server 60.170.78.10 key testkey port 1645 priority 1 probe probe-username

dave@wireless.com probe-password testpassword

There are configurables associated with this feature as well:

radius probe-interval 30

radius probe-timeout 3

radius probe-max-retries 5

The difference is that the STxx/ASR5K does not care if it does not receive replies to the

messages. More importantly, the radius server is expecting these requests with the specific

username and password, and uses this information to track whether or not this HA is available

(up and running) or not. If it stops getting requests, then it will mark the HA down, and will no

longer provide that particular HA’s ip address in Radius access accept messages to any PDSNs

where New calls are trying to authenticate and get an HA IP address with which to complete

MIP calls. Existing calls will continue to remain up though. This is the same as the keepalive

feature in that the STxx is initiating the request, but different in that the radius server is the one

that cares about the request.

There are also counters for the radius probe that are part of the radius counters command:

 Server-specific Probing Counters

 State: Active

 Number of transactions issued: 109

 Number of successful transactions: 109

 Number of failed transactions: 0

 Last successful transaction time: Fri Feb 06 15:52:41 2009

 Last failed transaction time: -

 Last roundtrip time: 75.1 ms

The radius probe feature is also used as part of another major product feature that provides for

HA chassis redundancy called Inter Chassis Session Recovery (ICSR), where there is a sister

chassis that is in standby mode and which is keeping track of all the sessions in the active chassis.

If the active chassis goes down, then the standby chassis takes over and becomes active

instantaneously with all the session intact as if nothing ever happened. One of the ways that an

active chassis is monitored for being in a good state is using the AAA probe feature. If the radius

probes are not responded to, then the chassis, which is monitoring for this, switches to standby

state and the chassis that was standby becomes active at the same time. The SNMP trap that gets

triggered is SRPAAAUnreachable, and the trap indicating change to standby state is

SRPStandby. The SRPAAAUnreachble will trigger when all the monitored AAA Probes are

marked down. Here is an example where one can follow the timeline dictated by the

configurables and match with the switchover time:

Tue Jan 31 09:17:30 2012 Internal trap notification 125

(SRPAAAUnreachable) vpn SRP ipaddr 60.170.78.10 port 1645

Tue Jan 31 09:17:30 2012 Internal trap notification 125

(SRPAAAUnreachable) vpn SRP ipaddr 60.170.85.10 port 1645

Tue Jan 31 09:17:30 2012 Internal trap notification 126

(SRPSwitchoverInitiated) vpn SRP ipaddr 10.222.151.212

Tue Jan 31 09:17:31 2012 Internal trap notification 121 (SRPStandby) vpn SRP

ipaddr 10.222.151.212 rtmod 4

 State: Down

 Number of transactions issued: 172858

 Number of successful transactions: 172856

 Number of failed transactions: 2

 Last successful transaction time: Tue Jan 31 09:16:42 2012

 Last failed transaction time: Tue Jan 31 09:17:30 2012

 Last roundtrip time: 19.7 ms

Every 30 seconds a probe is sent, and if there is no response it will try every 3 seconds for a total

of 5 retries (or 6 total attempts) which means 6 * 3 = 18 seconds, so 9:16:42 + 30s + 18s =

9:17:30 which exactly matches the failed transaction time AND the SNMP traps indicating AAA

unreachable and SRP switchover to standby.

Troubleshooting basic Radius connectivity issues

An earlier part of this article was devoted to explaining exactly how radius authentication and

accounting works with regards to ensuring that requests get responded to. It is important to

understand those explanations if you are going to be troubleshooting connectivity issues. Note

that a redundant design should help minimize impact if connectivity to a specific server is

compromised, but if connectivity to all servers is compromised, then you should be ready to act

quickly to take the necessary diagnosis and troubleshooting steps.

You may need to look at some of the STxx radius configurables and modify them to work better

with your network and radius servers. Certainly you don’t want to hide problems by increasing

timers, retries, etc., some of which have been described in detail earlier, but you should at least

consider if the values currently being used are too stringent.

Some ideas include increasing the timeout or number of retries or consecutive failures in a

aaamgr

If the radius server is getting overloaded, you could decrease the load by decreasing the value

(default 256) configured for “radius (accounting) max-outstanding”, which sets a limit on the

number of outstanding (unanswered) requests for any given aaamgr process. If the limit is

reached, logs may indicate this: “Failed to assign message id for radius authentication server

x.x.x.x:1812”. There is no way to specifically rate-limit authentication/accounting messages.

Sometimes it is not a problem of connectivity but of increased accounting traffic, which is not a

problem with radius at all, but pointing to another area, such as increased ppp renegotiations

which are causing more accounting starts and stops. So you may need to troubleshoot outside of

radius to find a cause for the symptoms being observed.

One feature for accounting that may be turned on is archiving, enabled with the command

“radius accounting archive”. This allows for accounting packets that have failed to be responded

to, to be re-queued and sent at a later time when the aaamgr processes have free cycles not busy

processing authentication requests. The idea is that timeliness of accounting packets is not as

important as authentication, though this may not be true in all situations. If the radius system is

overloaded, this might be a feature you could do without, and you could turn off the archiving.

Note though there is no way to flush out existing archived messages. The show radius counter

“Accounting-Request Pending” will show the number of archived accounting messages, which

could increase over time if the accounting server gets bogged down. On the other hand, the

“Access-Request Pending” counter for Access-Requests will decrement when it has given up

trying to authenticate for a given call, which will always be a limited period of time (vs.

accounting which could theoretically try forever).

If during the troubleshooting process it has been decided to remove a radius authentication or

accounting server from the list of live servers for whatever reason, there is a (non-config)

command that will take a server out of service indefinitely until it is desired to put it back in

service. This is a cleaner approach than having to remove it from the configuration manually:

{disable | enable} radius (accounting) server x.x.x.x

[source]CSE2# show radius authentication servers detail

+-----Type: (A) - Authentication (a) - Accounting

| (C) - Charging (c) - Charging Accounting

| (M) - Mediation (m) - Mediation Accounting

|

|+----Preference: (P) - Primary (S) - Secondary

||

||+---State: (A) - Active (N) - Not Responding

||| (D) - Down (W) - Waiting Accounting-On

||| (I) - Initializing (w) - Waiting Accounting-Off

||| (a) - Active Pending (U) - Unknown

|||

|||+--Admin (E) - Enabled (D) - Disabled
|||| Status:

||||

||||+-Admin

||||| status (O) - Overridden (.) - Not Overridden

||||| Overridden:

|||||

vvvvv IP PORT GROUP

----- --------------- ----- -----------------------

APNDO 192.168.50.200 1812 default

If you want to change the priority of the existing servers, you must first remove the server that

you want to change the priority for, and then add it back in. When removing a server, you don’t

need to specify the password/key, but you do need to specify the port, for example:

no radius server 192.168.50.200 port 1812

radius server 192.168.50.200 encrypted key 01abd002c82b4a2c port 1812 priority 3

Data collection

There may be circumstances where packet captures need to be done between the STxx NAS IP

address and the radius server(s) to confirm where delays or packet drops are occurring. This

information along with logs from the radius server and STxx counters could help paint the

picture of what is going on.

There may be circumstances also where logging for aaamgr, aaa-client, radius-auth, and radius-

acct facilities need to be turned up beyond the default error level. You should only do this upon

recommendation from Cisco Support, as increasing too high may put too much stress on the

system and impact subscribers. Certainly in a test lab environment you could do this, especially

when troubleshooting functional issues that don’t require any load to reproduce. The logging

configuration command in the local context:

logging filter runtime facility <aaamgr | aaa-client | radius-auth | radius-acct> level <warning |

unusual | info | trace | debug>

Logging monitor for a specific subscriber for which an issue is reproducible might also be useful

in order to see underlying messages that would not be displayed by monitor subscriber.

With regards to testing a specific behavior without having to set it up in your radius server, you

can do so by forcing local authentication by creating a subscriber template with the exact name

of the subscriber – radius authentication will not be attempted in that case. You can then confirm

successful authentications with the command: “show aaa local counters”.

Traps and Alarms

There are a number of ways that you may be alerted of radius related issues. The aforementioned

SNMP traps for servers being marked down is one of the most obvious, and should be

investigated immediately. There are also alarms and traps that can be triggered for failed

authentication rates. The values for the triggers should be planned carefully, as there will always

be failures, legitimate ones, and you don’t want the failures to constantly cause false alarms.

The same triggers are available for authentication and accounting. A poll interval rate is

specified as the period over which the entity being monitored is monitored. The difference

between aaa-auth-failure/aaa-acct-failure and aaa-auth-failure-rate/aaa-acct-failure-rate is that the

former measures an absolute number of failures within the specified time, while the latter

measures percentage failures out of the total attempts. Taking the percentage approach is often

the most logical for measuring rates because it does not depend on traffic load which varies

during the day, night, weekends and holidays,and also over time as the subscriber base grows.

Note that failures includes the sum of rejections (implies failure response received) and no

responses at all.

For a given metric, you need to specify a poll interval, threshold and clear values, and whether to

enable monitoring or not. For example:

threshold poll aaa-auth-failure interval 600

threshold poll aaa-auth-failure-rate interval 900

threshold poll aaa-acct-failure interval 300

threshold poll aaa-acct-failure-rate interval 300

threshold poll aaa-retry-rate interval 300

threshold aaa-auth-failure 1000 clear 500

threshold aaa-auth-failure-rate 25 clear 20

threshold aaa-acct-failure 1000 clear 500

threshold aaa-acct-failure-rate 25 clear 20

threshold aaa-retry-rate 25 clear 20

threshold monitoring aaa-auth-failure

threshold monitoring aaa-acct-failure

threshold monitoring aaa-retry-rate

Here are example snmp traps and logs for aaa-auth-failure for alarm trigger and clearing:

Fri Jun 27 01:00:02 2008 Internal trap notification 216 (ThreshAAAAuthFail) threshold

1000 measured value 2370

Fri Jun 27 01:10:02 2008 Internal trap notification 217 (ThreshClearAAAAuthFail)

threshold 500 measured value 25

2008-Jun-27+01:10:02.511 [alarmctrl 65200 info] [8/0/494 <evlogd:0>

alarmctrl.c:273] [software internal system critical-info] Alarm cleared: id

50020c643b920000: <23:aaa-auth-failure> has reached or exceeded the

configured threshold <1000>, the measured value is <2370>. It is detected at

<System>.

2008-Jun-27+01:00:02.549 [alarmctrl 65201 info] [8/0/494 <evlogd:0>

alarmctrl.c:180] [software internal system critical-info] Alarm condition: id

50020c643b920000 (Minor): <23:aaa-auth-failure> has reached or exceeded the

configured threshold <1000>, the measured value is <2370>. It is detected at

<System>.

The alarm would look something like this:

[source]DO-PDSN# show alarm outstanding

Sev Object Event

--- ---------- ---

MN Chassis <23:aaa-auth-failure> has reached or exceeded the configured

threshold <1000>, the measured value is <2370>. It is detected at <System>.

Radius counters and status

Whenever running radius commands, you need to be in the context where the aaa group that you

are troubleshooting is located.

show radius counters { {all | server <server IP>} [instance <aaamgr #>] |
summary}

show radius {accounting | authentication} servers detail

These have already been discussed in detail in earlier sections. A few things to note:

- instance # option (hidden mode) is valuable when troubleshooting a particular aaamgr instance

- show support details does not contain “show radius (accounting | authentication) servers detail”

- “show radius servers detail” only saves the last ten radius state changes – so you may want to

run the command multiple times to get a complete history of troubleshooting over an extended

period.

- clearing the radius counters is a good idea if monitoring the counters over a time period,

otherwise it takes more time to make the math calculations and do the comparisons each time it

is run.

- The summary version of show radius counters groups together all the counters of a specific

type (accounting, authentication, probe, etc.), and may or may not offer the level of granularity

or accuracy required for troubleshooting the issue

- Trying to look for exact correlations of various counters, even over a monitored period, can be

tricky. You are best looking at general patterns, as getting too specific may not be feasible.

Call Setup and Teardown statistics

show session disconnect-reasons

This is the general command to see reasons for call failures (setup and teardown). This command

will tell you why calls disconnected or failed to setup. In the list you could look for reasons that

could be related to authentication failures, but beware, it may not be obvious. For example, for

MIP, failed authentications result in the PDSN sending a MIP RRP with code x43 = Mobile

Node Failed Authentication, which should result in the mobile sending a PPP LCP Term-Req,

which gets counted as PPP-LCP-Remote-Disconnect in show session disconnect-reasons. For

SIP, this is via the PDSN sending a PPP CHAP failure and PPP LCP Term-Req, which gets

counted as PPP-Auth-failed in disconnect reasons. The point here is that the disconnect reasons

by themselves may not always point to failed radius authentication as the cause.

show mipfa statistics (on FA chassis)

show mipha statistics (on HA chassis)

For MIP calls, run these command(s) to get more detailed information on possible call setup/re-

registration/teardown failures. Make sure to be in the contexts where the respective FA and HA

services are located when running the commands.

Radius-related areas to look under for “show mipfa statistics” include:

MIP AAA Authentication:

Attempts – incremented for each set of authentication messages sent with specific id

Success – incremented for each success response

Total Failures – includes Failures due to failure response (rejection) or no response

Actual Auth Failures – incremented for each failure response from Radius

 Misc. Auth Failures – incremented ONCE for each set (each set of messages will have a

unique Id field) of requests that had no response. A set will include all the attempted retries to a

particular server for a particular call.

Registration Request Received:

 Auth Failed Reg

 * HA Denied Reg

 Init RRQ Auth Failed

 * Init RRQ Denied by HA

 Renew RRQ Auth Failed

 *Renew RRQ Denied by HA

 Dereg RRQ Auth Failed

 * Dereg RRQ Denied by HA

Denied by FA

 MN Auth Failure

 AAA Authenticator

 HA Auth Failure

Denied by HA

 MN Auth Failure

Similar though less detailed information is available with “show mipha statistics”:

MIP AAA Authentication – same as mipfa

Registration Request Received:

 Initial Reg Requests:

 * Denied

 Renew Reg Request:

 * Denied

 DeReg Requests:

 * Denied

Registration Reply Sent:

 MN Auth Failure

show ppp statistics

For SIP calls, additional information can be seen by running this command. Radius-related areas

include:

Session Failures

 Authentication failures

Session Authentication

 * CHAP auth failure

 * PAP auth failure

 * MSCHAP auth failure

Session Disconnect Reason

 PPP auth failures

* may or may not be Radius-related

Testing communication with a Radius Server

There are a few commands that can be run to test connectivity to a Radius server.

ping

An ICMP Ping will test basic connectivity to see if the AAA server can be reached or not. The

ping may need to be sourced with the src keyword depending on the network.

[source]CSE2# ping 192.168.50.200

PING 192.168.50.200 (192.168.50.200) 56(84) bytes of data.

64 bytes from 192.168.50.200: icmp_seq=1 ttl=64 time=0.411 ms

64 bytes from 192.168.50.200: icmp_seq=2 ttl=64 time=0.350 ms

64 bytes from 192.168.50.200: icmp_seq=3 ttl=64 time=0.353 ms

64 bytes from 192.168.50.200: icmp_seq=4 ttl=64 time=0.321 ms

64 bytes from 192.168.50.200: icmp_seq=5 ttl=64 time=0.354 ms

--- 192.168.50.200 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4000ms

rtt min/avg/max/mdev = 0.321/0.357/0.411/0.037 ms

radius test authentication server x.x.x.x port yyyy <user> <password>

radius test accounting server x.x.x.x port yyyy <user>

This command sends a basic authentication request or accounting start and stop requests and

waits for a response. For authentication, you can use any username and password, in which case

you will get a reject response, confirming that Radius is working as designed, or you could use a

known working username/password, in which case you should get an accept response.

Sidenote: This command uses the aaamgr process running on the SPC/SMC card to process the

messages. Normal subscriber radius traffic is handled by aaamgr processes running on the

PAC/PSC cards. This applies to the aaa test command discussed in the next section also.

Here is an example output from monitor protocol and running the authentication version of the

command on lab chassis:

[source]CSE2# radius test authentication server 192.168.50.200 port 1812 test

test

Authentication from authentication server 192.168.50.200, port 1812

Authentication Success: Access-Accept received

Round-trip time for response was 12.3 ms

<<<<OUTBOUND 14:53:49:202 Eventid:23901(6)

RADIUS AUTHENTICATION Tx PDU, from 192.168.50.151:32783 to

192.168.50.200:1812 (58) PDU-dict=starent-vsa1

 Code: 1 (Access-Request)

 Id: 5

 Length: 58

 Authenticator: 56 97 57 9C 51 EF A4 08 20 E1 14 89 40 DE 0B 62

 User-Name = test

 User-Password = 49 B0 92 4D DC 64 49 BA B0 0E 18 36 3F B6 1B 37

 NAS-IP-Address = 192.168.50.151

 NAS-Identifier = source

INBOUND>>>>> 14:53:49:214 Eventid:23900(6)

RADIUS AUTHENTICATION Rx PDU, from 192.168.50.200:1812 to

192.168.50.151:32783 (34) PDU-dict=starent-vsa1

 Code: 2 (Access-Accept)

 Id: 5

 Length: 34

 Authenticator: D7 94 1F 18 CA FE B4 27 17 75 5C 99 9F A8 61 78

 User-Password = testpassword

Live chassis example:

<<<<OUTBOUND 12:45:49:869 Eventid:23901(6)

RADIUS AUTHENTICATION Tx PDU, from 10.209.28.200:33156 to 65.175.85.10:1645

(72) PDU-dict=custom150

 Code: 1 (Access-Request)

 Id: 6

 Length: 72

 Authenticator: 67 C2 2B 3E 29 5E A5 28 2D FB 85 CA 0E 9F A4 17

 User-Name = test

 User-Password = 8D 95 3B 31 99 E2 6A 24 1F 81 13 00 3C 73 BC 53

 NAS-IP-Address = 10.209.28.200

 NAS-Identifier = source

 3GPP2-Session-Term-Capability =

Both_Dynamic_Auth_And_Reg_Revocation_in_MIP

INBOUND>>>>> 12:45:49:968 Eventid:23900(6)

RADIUS AUTHENTICATION Rx PDU, from 65.175.85.10:1645 to 10.209.28.200:33156

(50) PDU-dict=custom150

 Code: 3 (Access-Reject)

 Id: 6

 Length: 50

 Authenticator: 99 2E EC DA ED AD 18 A9 86 D4 93 52 57 4C 2F 84

 Reply-Message = Invalid username or password

As another example, here is a failure due to the wrong secret configured on the Radius server (or

PDSN):

[source]CSE2# radius test authentication server 192.168.50.200 port 1812 test

test

Response Failure: Bad Authenticator from RADIUS sever, probably mismatched

key

Round-trip time for response was 6.3 ms

Note that this would be counted as “Access-Request Response Bad Authenticator Received” in

the radius counters.

Here is an example output from running the accounting version of the command. A password is

not needed.

[source]CSE2# radius test accounting server 192.168.50.200 port 1813 test

RADIUS Start to accounting server 192.168.50.200, port 1813

Accounting Success: response received

Round-trip time for response was 7.9 ms

RADIUS Stop to accounting server 192.168.50.200, port 1813

Accounting Success: response received

Round-trip time for response was 15.4 ms

<<<<OUTBOUND 15:23:14:974 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 192.168.50.151:32783 to 192.168.50.200:1813

(62) PDU-dict=starent-vsa1

 Code: 4 (Accounting-Request)

 Id: 8

 Length: 62

 Authenticator: DA 0F A8 11 7B FE 4B 1A 56 EB 0D 49 8C 17 BD F6

 User-Name = test

 NAS-IP-Address = 192.168.50.151

 Acct-Status-Type = Start
 Acct-Session-Id = 00000000

 NAS-Identifier = source

 Acct-Session-Time = 0

INBOUND>>>>> 15:23:14:981 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 192.168.50.200:1813 to 192.168.50.151:32783

(20) PDU-dict=starent-vsa1

 Code: 5 (Accounting-Response)

 Id: 8

 Length: 20

 Authenticator: 05 E2 82 29 45 FC BC D6 6C 48 63 AA 14 9D 47 5B

<<<<OUTBOUND 15:23:14:983 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 192.168.50.151:32783 to 192.168.50.200:1813

(62) PDU-dict=starent-vsa1

 Code: 4 (Accounting-Request)

 Id: 9

 Length: 62

 Authenticator: 29 DB F1 0B EC CE 68 DB C7 4D 60 E4 7F A2 D0 3A

 User-Name = test

 NAS-IP-Address = 192.168.50.151

 Acct-Status-Type = Stop
 Acct-Session-Id = 00000000

 NAS-Identifier = source

 Acct-Session-Time = 0

INBOUND>>>>> 15:23:14:998 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 192.168.50.200:1813 to 192.168.50.151:32783

(20) PDU-dict=starent-vsa1

 Code: 5 (Accounting-Response)

 Id: 9

 Length: 20

 Authenticator: D8 3D EF 67 EA 75 E0 31 A5 31 7F E8 7E 69 73 DC

In all of the above example the radius test message was sent using the aaamgr located on the

SPC/SMC card. There is a more specific version of the command that can be run in hidden mode

that allows specifying a specific aaamgr instance that you suspect an issue with, for example in

the following example no response was received for instance 92 but was received for instance

93:

[source]CSE2# radius test instance 92 authentication server 65.175.95.10 port

1645 test test

Authentication from authentication server 65.175.95.10, port 1645

Communication Failure: No response received

[source]CSE2# radius test instance 93 authentication server 65.175.95.10 port

1645 test test

Authentication from authentication server 66.175.5.10, port 1645

Authentication Failure: Access-Reject received

Round-trip time for response was 38.0 ms

radius test probe authentication server x.x.x.x port yyyy [username <user>
password <password>]

This command sends the same type of authentication request as radius test authentication just

discussed, BUT, it ties into the configured probes such that, as long as a response is received

(accept or reject), the test is considered successful, it reports Access-Accept received, AND the

probe counter attempts (Number of transactions issued) and successes (Number of successful

transactions) are both incremented. If no username/password is specified, then the configured

probe’s username/password are used.

Note: even if a response is received for wrong credentials, and therefore considered successful

from a probe attempt perspective as just described, the Radius server did not receive the

credentials expected and so it is still considered a failure from the perspective of the radius server,

which will mark the ASR5K as down, which will result in new calls no longer being directed to

the ASR5K as described in the probe feature section earlier in this document.

aaa test {authenticate <user> <password> | accounting username <user>}

These are similar commands as radius test authentication/accounting commands, though a bit

more information is included in the requests, and the port number is fixed according to the

configuration.

[source]CSE2# aaa test authenticate test test

Authentication Successful

 User level: unknown(2)

 User Privs: CLI

<<<<OUTBOUND 15:02:59:055 Eventid:23901(6)

RADIUS AUTHENTICATION Tx PDU, from 192.168.50.151:32783 to

192.168.50.200:1812 (76) PDU-dict=starent-vsa1

 Code: 1 (Access-Request)

 Id: 8

 Length: 76

 Authenticator: 2E 2D 1F A9 19 FD 1A 6A 4E C0 AF 8A 04 C4 77 45

 User-Name = test

 NAS-IP-Address = 192.168.50.151

 NAS-Identifier = source

 Service-Type = Authenticate_Only

 Event-Timestamp = 1235851379

 NAS-Port = 4573834

 User-Password = D9 BF 75 9D BC 9B 45 00 F8 DB A1 6F A1 30 1D 3C

INBOUND>>>>> 15:02:59:059 Eventid:23900(6)

RADIUS AUTHENTICATION Rx PDU, from 192.168.50.200:1812 to

192.168.50.151:32783 (34) PDU-dict=starent-vsa1

 Code: 2 (Access-Accept)

 Id: 8

 Length: 34

 Authenticator: EF A4 11 21 9B 59 DF 50 77 BF 66 59 F9 D7 B7 73

 User-Password = testpassword

[source]CSE2# aaa test accounting username test

Accounting Successful

<<<<OUTBOUND 15:18:38:850 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 192.168.50.151:32783 to 192.168.50.200:1813

(74) PDU-dict=starent-vsa1

 Code: 4 (Accounting-Request)

 Id: 6

 Length: 74

 Authenticator: 90 87 2F 57 14 5E 08 29 74 6A 16 0C 82 C3 CF 01

 User-Name = test

 NAS-IP-Address = 192.168.50.151

 Acct-Status-Type = Start
 Acct-Session-Id = 00000000

 NAS-Identifier = source

 Service-Type = Authenticate_Only

 Event-Timestamp = 1235852318

 NAS-Port = 4573839

INBOUND>>>>> 15:18:38:857 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 192.168.50.200:1813 to 192.168.50.151:32783

(20) PDU-dict=starent-vsa1

 Code: 5 (Accounting-Response)

 Id: 6

 Length: 20

 Authenticator: BC 75 DF 03 E1 BB CE 10 7B 70 85 2B 17 32 B0 8B

<<<<OUTBOUND 15:18:38:862 Eventid:24901(6)

RADIUS ACCOUNTING Tx PDU, from 192.168.50.151:32783 to 192.168.50.200:1813

(80) PDU-dict=starent-vsa1

 Code: 4 (Accounting-Request)

 Id: 7

 Length: 80

 Authenticator: 76 D8 55 DC F4 16 25 D6 6C B1 5A F0 50 60 DF E1

 User-Name = test

 NAS-IP-Address = 192.168.50.151

 Acct-Status-Type = Stop
 Acct-Session-Id = 00000000

 NAS-Identifier = source

 Service-Type = Authenticate_Only

 Event-Timestamp = 1235852318

 Acct-Session-Time = 0

 NAS-Port = 4573839

INBOUND>>>>> 15:18:38:876 Eventid:24900(6)

RADIUS ACCOUNTING Rx PDU, from 192.168.50.200:1813 to 192.168.50.151:32783

(20) PDU-dict=starent-vsa1

 Code: 5 (Accounting-Response)

 Id: 7

 Length: 20

 Authenticator: 47 F2 35 A5 86 07 12 EB 48 BC 49 C4 39 79 25 43

Advanced commands

aaamgr processes handling authentication/accounting requests are running on all active

PAC/PSCs in the system, and their instance IDs as well as memory and cpu usage can be viewed

with:

show task resources facility aaamgr all

Each aaamgr will be paired with and work for an associated sessmgr process (responsible for

overall call handling) and located on a different PSC but using the same instance ID. Also in this

example output note the special aaamgr instance 231 running on the SPC which does NOT

process subscriber requests but it used for radius test commands (see below section for more

detail on that) AND for CLI login processing.

 task cputime memory files sessions

cpu facility inst used allc used alloc used allc used allc S status

----------------------- --------- ------------- --------- ------------- -----

1/0 sessmgr 107 1.6% 100% 119.6M 155.0M 26 500 83 6600 I good

13/1 aaamgr 107 0.3% 94% 30.8M 77.0M 18 500 -- -- - good

8/0 aaamgr 231 0.1% 30% 11.6M 25.0M 19 500 -- -- - good

These next commands are extremely valuable in advanced troubleshooting for looking at very

detailed data on every (or the specified) aaamgr process/instance. If a aaamgr process gets into a

bad state where it is no longer processing requests, you should be able to see this from the output

of this command.

show session subsystem facility aaamgr {all | instance <aaamgr #>}
show session subsystem facility sessmgr {all | instance <sessmgr #>}

While it is beyond the scope of this article to examine the superfluous output from this command,

you should take some time to go through the output to see what kind of valuable information can

be gleaned should you need it one day. Like any other troubleshooting, comparing the output

from what you believe to be good versus bad aaamgr instances will often reveal obvious

differences in the values reported. This could be reflected in the total number of requests,

failure/success rate, auth cancelled, etc. Be sure to clear the session subsystem (you can’t clear

just one instance stats) so as to eliminate any history which could potentially provide a clouded

picture of the current state.

Note that sometimes you may first make an observation with regards to some sessmgrs, for

example not taking as many calls (used sessions column in show task resources) as the rest of the

sessmgrs on the chassis, only to realize that it is the associated aaamgrs where the actual issue

lies as evidenced by the output of this command.

There are also some special commands that can only be run in hidden mode:

show npu flow record min-flowid <aaa min flowid> max-flowid <aaa max
flowid>

As already discussed, Radius requests are sent and received by individual aaamgrs. Each of these

aaamgrs has a flow associated with it in order for authentication RESPONSES being received by

the chassis to be routed to the respective aaamgr expecting a response. Each aaamgr will be

assigned a flow ID, so in a fully loaded (depends on what types of PSC/PAC cards of course)

chassis of 192 sessmgr/aaamgr pairs, this would mean 192 aaamgr flows, one for each aaamgr to

handle incoming traffic. Each flow would need to exist in the NPU flow database on each

PSC/PAC that has aaamgrs (all of them) and the range of flows for aaamgrs can be retrieved

from the flow space database which is a fixed table stored every PSC (slot) (so you could specify

any slot when running the command)

[local]HA# show npu flow space slot 16

Flow Range Table Information

fi-lkup-tab-sz=115400

 range-type|min-flowid|max-flowid| total-cnt| facility| max-inst|max-per-in

 session| 1| 20324352| 20324352| sessmgr| 384| 52928

 vpn| 20324609| 20326721| 2113| npumgr| 16| 0

 aaaproxy| 20326722| 20326785| 64| <UNKNOWN>| 0| 0

 ipsgmgr| 20326786| 20327809| 1024| <UNKNOWN>| 0| 0

 aaa| 20327810| 20636609| 308800| aaamgr| 386| 800

 port| 20636610| 20702273| 65664| npumgr| 16| 0

You could dump the data of all of these flows by dumping the entire range allocated (308,800)

for aaamgrs, but ony the IDs that have been assigned flows will be displayed. Specifying the

particular slot where the aaamgr is located is important if you are suspecting corruption of the

flow database for that aaamgr on the slot where it is located.

show npu flow record min-flowid 20327810 max-flowid 20636609 slot 4 verbose

Here is an example of one of the 192 flows that get outputted from the command, for aaamgr

instance 188, on slot 4. Note the following:

da: destination address of all Authentication Response packets for that aaamgr, which actually is

common to all aaamgrs, as it will be the NAS IP address from the aaa group

udp dst prt: UDP port used by the particular aaamgr instance

vpnid: refers to context where aaa is configured

dbia=0:3 : aaamgr is located on PSC 4 (3+1):

flow meta data for flowid 20477422:

 addr=0x26778d30, f/i=aaamgr(65000)/188, size=64, hash=0x0123079d,

hash-collision=no

 meta-flow-addr=0x48764cc0, npu-xref-flow-addr=0x48764cc0

 ipv4udp-flow binary record @ 0xc9764cc0 (virt):

 0xfffffff8 0x50010002 0x42aea9c0 0x00000000 0x00000000 0x00006970

0x00000000 0x00000000

 0x413875ee 0x00000000 0x10000002 0x00000000 0x000f4240 0x01040e00

0x03000000 0x0301c297

 Decoding ipv4udp-flow[1]: vpnid=2 keylen=5 type=fixed-sz-flow

 Key:

 da : 66.175.170.192

 udp dst prt: 26992 (0x6970)

 common-portion:

 valid=1, type=0, ifentry=0, pooldrop=0, sessbia=0, flowidx=20477422

 post-decrypt-data/csum-delta=0x00000000

 cp-qos=0, encode=0, proxy-arp=0, valid=1, prio=0, dpti=0

 decypt-data-type=0, ipsec-idx=0, skip-ipv4=0, proxy-flow=0, vpnid=2

 stat-id/out-sa/sa-index=0x00000000

 sess-id/out-da/policy-id=0x000f4240

 ppb:

 strip-data-link-ppb: header-len=14, rtp-info=0

 policy-fwd-ppb: dbia=0:3:1:49815

 task parent

cpu facility inst pid pri facility inst pid

---- ----------------------------- -------------------------

4/0 aaamgr 188 2528 0 sessctrl 0 2887

A faster way (compared to scrolling through the dump of all aaamgr flow ids as just described)

of determining the flow ID for a given aaamgr is via the command:

show radius info instance { <aaamgr #> | all }

 Also note the outstanding requests are tracked on a server basis with this command

[source]HA# show radius info instance 188

Context source:

 AAAMGR instance 188: cb-list-en: 1 AAA Group:

 socket number: 13

 socket state: ready

 local ip address: 66.175.95.184

 local udp port: 55956

 flow id: 20484584

 use med interface: yes

 VRF context ID: 2

 Authentication servers:

 Primary authentication server address x.x.x.x, port 1645

 state Active

 priority 1

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

 Secondary authentication server address x.x.x.y, port 1645

 state Active

 priority 2

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

 Secondary authentication server address x.x.x.z, port 1645

 state Active

 priority 3

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

 Accounting servers:

 Primary accounting server address x.x.x.x, port 1646

 state Active

 priority 1

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

 Secondary accounting server address x.x.x.y, port 1646

 state Not Responding

 priority 2

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

 Secondary accounting server address x.x.x.z, port 1646

 state Active

 priority 3

 requests outstanding 0

 max requests outstanding 3

 consecutive failures 0

And below is a bug where one aamgr instance (92) in the system has its flow missing from

ONLY ONE of the PSC’s (11) flow database, but existing in the rest.

[source]HA# show radius info instance 92

Context source:

 AAAMGR instance 92: cb-list-en: 1 AAA Group:

 socket number: 420419808

 socket state: ready

 local ip address: 66.175.170.192

 local udp port: 25456

 flow id: 20400611

 use med interface: yes

 VRF context ID: 2

[source]HA# show npu flow record min-flowid 20400611 max-flowid 20400611 slot

11 verbose

Dumping flowid range [20400611 - 20400611] flowtype: unspecified[-1]

Troubleshooting other types of Radius issues

Radius connectivity issues are probably the most urgent types of issues that need addressing, as

has been discussed earlier.

But there are many other types of issues that can occur.

Issues may involve a specific subscriber or groups of subscribers, and/or specific attributes being

passed back and forth in the requests and responses.

Sometimes the unexpected behavior occurs for a subscriber, and does not match the behavior

expected for the attribute being returned by an authentication accept. This could be a bug, or it

could be a lack of understanding of what the attribute value is supposed to mean.

Sometimes there are STxx configurables that need to be specified in order to send particular

attributes in authentication/accounting messages. For example, to send the mobile country code

and mobile network code in an accounting message, you would need to configure as follows in

the global space: “system carrier-id mcc 123 mnc 567”. Or the reverse may be true – particular

attributes are being sent when they should not be, or are not expected.

Sometimes unexpected values for attributes are passed in accounting requests, and in some cases

more than one value may be legitimately passed because the specification is not completely clear.

Another common point of confusion is that the radius attribute name returned in an Accept

Accept does not always match the name used in the STxx configuration. See the AAA Interface

Reference Guide for a list of all possible AAA attributes, their definitions, and in which

messages they could appear. But unfortunately there is no one document that maps STxx

configurables with Radius attributes.

Timing may be an issue as well – if accounting messages are not sent in a timely manner, it may

affect subscribers ability to run certain applications.

The aaa configuration has an option for specifying a dictionary to use, via the configurable

“radius dictionary <dictionary name>”. This dictionary contains a list of all the possible

attributes that may be sent and received in access and accounting messages. There is a standard

dictionary, as well as custom dictionaries that have been developed uniquely for each customer.

The code necessary to support all dictionaries is already included in the STxx build – no extra

files are required for loading.

Most of the issues that involve dictionaries have to do with the PDSN not including an attribute

in an access or accounting request when it should, including an attribute when it shouldn’t, or

including an unexpected or wrong value for an attribute.

The area of intra-pdsn and inter-pdsn handoffs and the accounting associated with that also is a

complex area with lots of possible things that can happen, and is worth studying carefully.

Whenever troubleshooting issues related to values of attributes being assigned to a subscriber

and the resultant behavior, you should capture a monitor subscriber verbosity 2, along with

“show subscriber aaa-configuration <username | ip-address | …> <id of user per previous

argument>”, which is the chassis’s understanding of the subscriber’s radius attributes.

As mentioned earlier, taking capture traces and turning on the appropriate logging may also be

needed depending on the issue being troubleshot.

Explanation of typical authentication and accounting
attributes

While it is beyond the scope of this article to discuss every attribute and combination of

attributes, it may be worthwhile to become familiar with some of the more common attributes

and the list of values that can be assigned to these attributes (some are not list-based but rather

could be any numerical value, such as number of bytes, timestamp, etc.). Understand that this

will for sure be different for each vendor, so it is impossible to give a definitive list, but many of

the ones listed below will be found in most requests, so it is a good starting point.

There are useful tables in the AAA Interface Reference Guide that explain which attributes can

be sent/expected in which kind of message. This includes entries for PDSN/FA and HA, requests

and responses (further distinguishing rejects vs. accepts), authentication vs. accounting (further

distinguishing start, stop, interim)

Authentication (Access) Requests/Responses

PDSN-based requests (SIP and MIP)

 Calling-Station-id – assigned to the mobile by the RAN during call setup.

 User-Name – programmed into the mobile device

 CHAP-Password (and CHAP-Challenge) – hashed items including user password

 NAS-IP-Address – ip address of interface used to send radius messages

 3GPP2-Service-Option – HSPD (High Speed Packet Data) (1X) = 33; HRPD (High Rate

Packet Data) (Rev A) = 59; Wireless-Other

 Service-Type – service attempting to be used: Framed = 2 is for normal subscriber sessions

 Framed-Protocol – protocol to be used: PPP = 1 is only one supported

 SN1-Service-Address – IP address of PDSN or HA service handling the call

 SN1-VPN-Name – destination context name

 NAS-Port-Type – speed/type of data connection: Wireless_Other = 18; HRPD = 24

 3GPP2-Serving-PCF – PCF IP address

 SN1-Service-Type – type of service being accessed: PDSN = 1, chassis management = 2,

HA = 3, LNS = 5

 3GPP2-IP-Technology – Simple-IP = 0; Mobile-IP = 1

 NAS-Port – assigned resource number for the session

Additional fields for PDSN-based requests for MIP:

Note: In order to minimize the amount of authentication requests on the FA, there is a

configurable in the FA service, “authentication mn-aaa renew-and-dereg-noauth” that allows for

disabling authentication for re-registrations and de-registrations.

 3GPP2-Correlation-Id – correlation id for this leg of the call

 Framed-IP-Address and -Netmask – either an existing address already assigned to the mobile,

or 0.0.0.0 to request an address

 3GPP2-FA-Address – FA service IP address

 3GPP2-MIP-HA-Address – requesting this IP address for HA service; usually =

255.255.255.255 for new calls

PDSN-based responses (SIP):

 Service-Type, Framed-Protocol

 Framed-IP-Address and Netmask – either ip address and netmask to be assigned for static

subscriber, or 255.255.255.254 for dynamic user who will be assigned address out of a public

pool

 Framed-MTU – Maximum transmission unit (size) for data packets

 Framed-Compression – the compression type to be attempted to be negotiated during

remaining ppp negotiation phase: none = 0; VJ = 1 (VJ_TCP_IP_header_compression); LZS

= 3

 Session-Timeout – total allowable life of session on PDSN

 Idle-Timeout

 Acct-Interim-Interval – frequency to send an interim accounting message (seconds)

 Framed-Pool – group pool name to get ip address from

PDSN-based responses (MIP):

 3GPP2-MIP-HA-Address – HA to send MIP request to

 Session-Timeout, Idle-Timeout, Acct-Interim-Interval – same as for SIP

 Note: no pool information returned as pools are on the HA

 Note: no Framed-Compression, as compression has already been negotiated unlike with SIP

HA-based requests (MIP only obviously):

The same configurable for the FA service for disabling unnecessary authentication as described

above exists in the HA service.

 NO Calling-Station-id – the HA is not dealing directly with the mobile device

 NO Framed-Protocol – PPP not done o006E the HA

 NO 3GPP2-FA-Address – No FA service on the HA

 NAS-Identifier – used to identify this HA from others for the purposes of the Radius server

initiating message exchange with an HA (as opposed to the HA/PDSN initiating which is the

norm)

 SN1-Service-Type – type of service being accessed: PDSN = 1, chassis management = 2,

HA = 3, LNS = 5

 3GPP2-MIP-Lifetime – timeout by which mobile needs to re-register MIP RRQ (could be

present on PDSN/FA also)

 3GPP2-MN-HA-SPI – SPI passed to radius to get secret returned – normally specified in the

configuration line “mn-ha-spi”

HA-based responses (MIP only obviously):

 3GPP2-MN-HA-Shared-Key – key must match with the authenticator received in the Mobile

Home Authentication Extension in the MIP RRQ

Accounting Requests

Accounting Requests (Acct-Status-Type = Start)

 The following have already been described above:

User-Name, Calling-Station-id, NAS-IP-Address, 3GPP2-Correlation-Id, 3GPP2-Service-

Option, Service-Type, Framed-Protocol, NAS-Port-Type, 3GPP2-Serving-PCF, Framed-

MTU, Framed-Compression, 3GPP2-IP-Technology, Framed-IP-Address/-Netmask, SN1-

Service-Type, SN1-VPN-Name; MIP only: 3GPP2-MIP-HA-Address, 3GPP2-FA-Address

 Acct-Status-Type – what type of accounting message: Start, Stop, Interim

 Acct-Session-Id – unique alphanumeric string identifying the accounting session

 SN1-Local-IP-Address – For SIP, the destination context IP address

 SN1-Primary-DNS-Server, SN1-Secondary-DNS-Server – primary and secondary DNS

servers set during PPP negotiation; may be 0.0.0.0

 3GPP1-Always-On – Active, Inactive

 3GPP2-Airlink-Record-Type: Active-Start, Active-Stop

 3GPP2-Beginning-Session: new accounting session or existing one: True, False

 SN1-IP-Header-Compression: None, …

Accounting Requests (Acct-Status-Type = Stop):

 Similar as Start, except:

 No 3GPP2-Beginning-Session

 3GPP2-Release-Indicator – reason for the stop (handoff, PPP-termination, etc.)

 SN1-PPP-Progress-Code – last state of call (Call-Simple-IP-Connected, Call-Mobile-IP-

Connected, etc.)

 3GPP2-Session-Continue – whether or not this session will be continued – True or False

 Acct-Session-Time – length of the accounting session (seconds)

 SN1-Disconnect-Reason – (Remote-Disconnect, etc.)

 Acct-Termination-Cause – User_Request

 Many other attributes related to throughput

Accounting Responses: as mentioned earlier, there is nothing significant returned in an

accounting response.

