

CyberSec TECH DAY

TÉCH DAY

LEARN\ CONNECT\ WIN

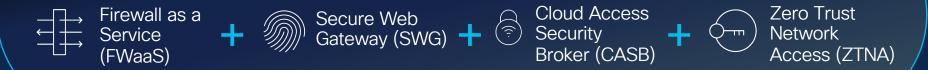
ıı|ıı|ıı cısco

Cisco Secure Access

Better for Users, Easier for IT, Safer for Everyone

Gustavo Medina, CCIE Security #51487
Technical Solutions Architect

Introducing Cisco Secure Access


Protect people and things as they seamlessly connect to anything from anywhere

Cisco Secure Access

A comprehensive Security Service Edge (SSE) solution to accelerate your SASE journey

Core SSE Capabilities

and so much more in one subscription...

Going beyond Core Security Service Edge

Cisco Secure Access

VPNaaS

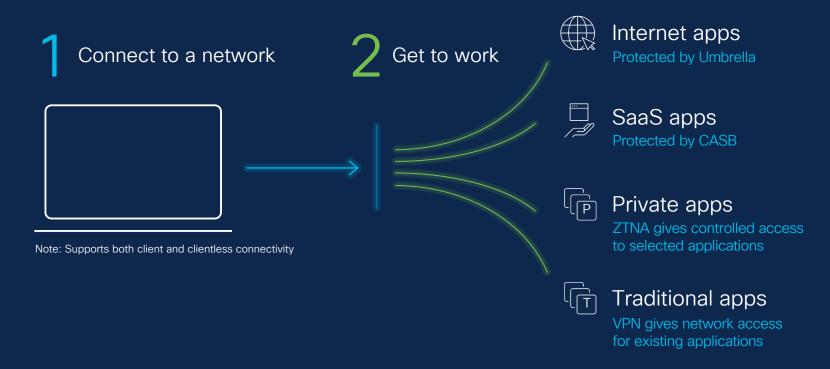
Digital Experience Monitoring

DNS Security

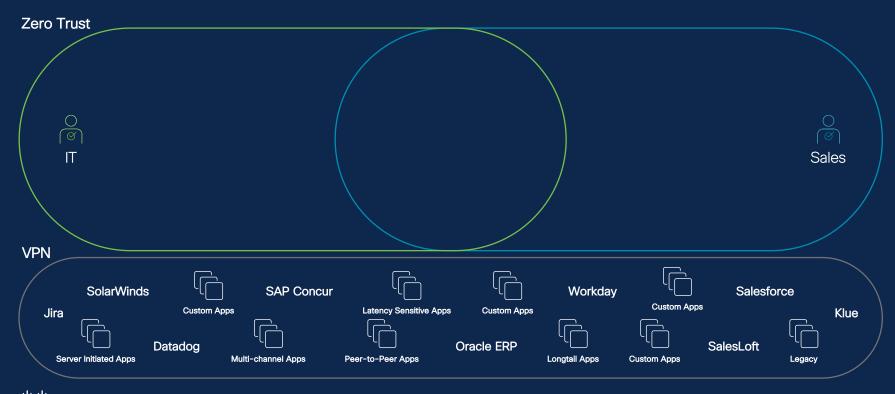
Remote Browser Isolation

Data Loss Prevention

Advanced Malware Protection

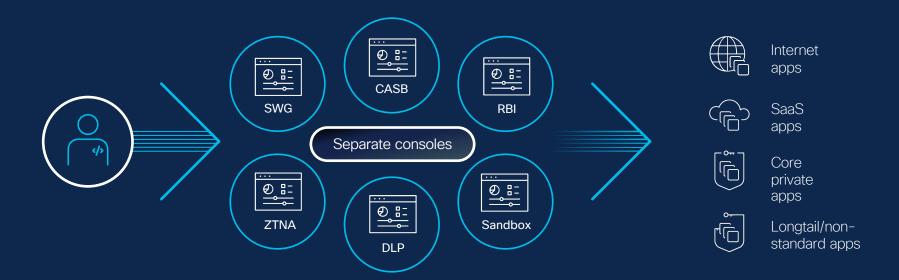

Sandbox

Talos Threat Intelligence

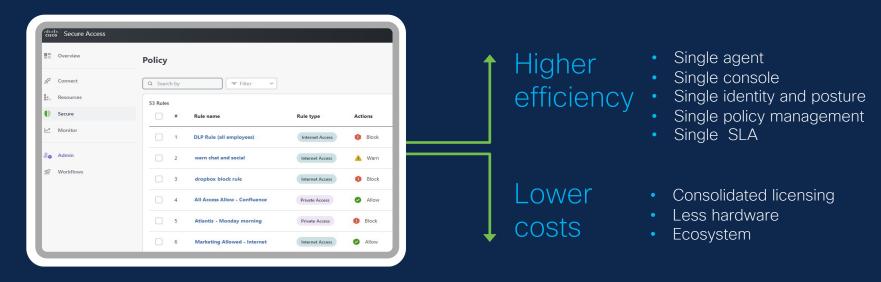

Al-powered Platform

consolidate security into one cloud solution with a single subscription

Reimagine the user experience: Cisco Secure Access makes the connections you need

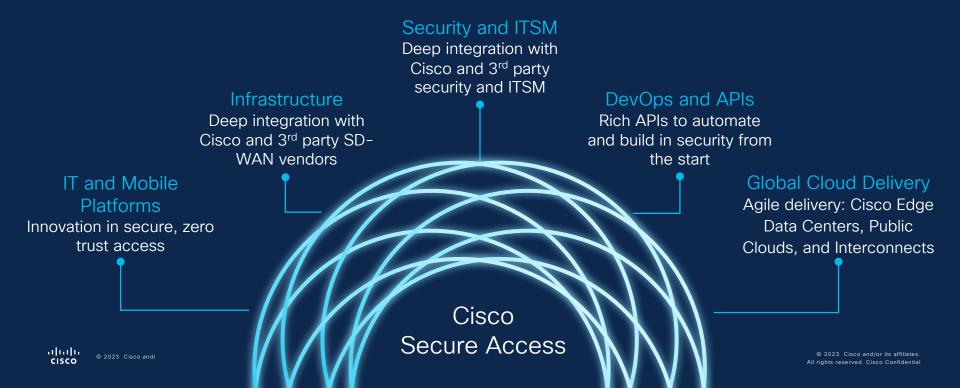

Reimagine the journey to Zero Trust

Easy migration to Zero Trust Access



The multi-vendor approach is problematic

Easier for IT


Converged cloud security for lower cost and improved efficiencies

One place to see traffic, set policies, and analyze risk Built as part of the Cisco Security Cloud, an Integrated Al-powered security platform

Programmability and global ecosystem

integrates and expands your value

A great user experience everywhere

Moving the security closer to the user, not backhauling the user to the security

Extensive coverage globally

Hybrid POP approach Cisco and public data centers

Speed. Everywhere

We target latency of ~40ms or less for 99% of business users

End-to-end security

Cutting-edge, comprehensive security where you need it

Why Cisco Secure Access?

Trust and expertise at scale

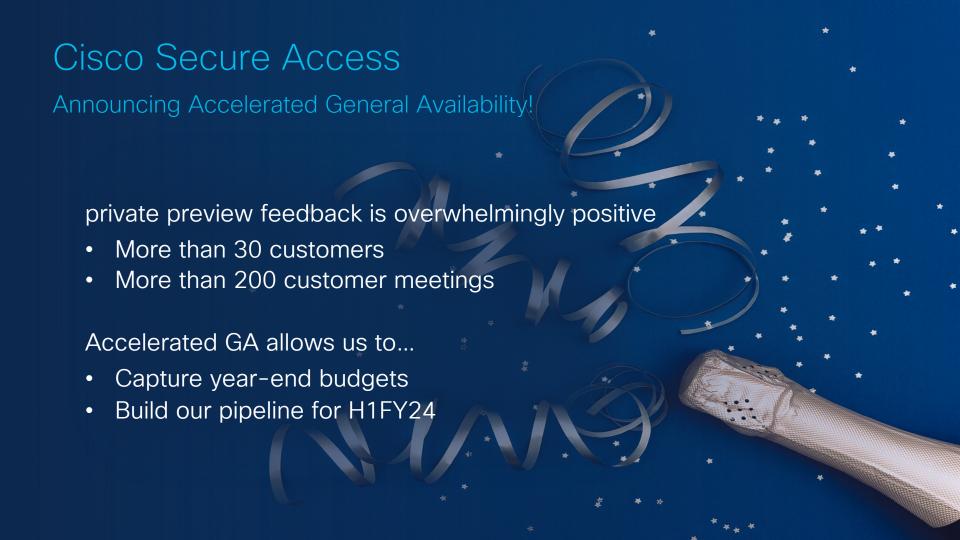
Proven Expertise

70k

Cloud security customers

Proven Scale

220M


Secure endpoints

Proven Protection

600B

Requests per day

Security Service Edge is Fundamental to

your Security Strategy

Converged set of cloud security

SSE

65% plan on adopting SSE in next 2 years

Why ZTNA?

ZTNA

Zero Trust Network Access

Zero Trust Principals

Why ZTNA?

Zero Trust

User Experience

SaaS Delivery

Evolution of ZTNA

Evolution of ZTNA: Organization Adoption

Hybrid Work

SDP

Software Defined Perimeter

ZTNA

Software Defined Perimeter (Rebranded)


ZT vs. ZTA vs. ZTNA vs. ZTAA

Zero Trust

 A comprehensive security framework that prioritizes least privilege, strict access controls, and continuous monitoring to mitigate risks and protect resources.

Zero Trust Access

 A specific aspect of Zero Trust that focuses on managing and enforcing access to resources

ZT vs. ZTA vs. ZTNA vs. ZTAA

- Zero Trust Network Access (ZTNA)
 - A subset of Zero Trust Access that focuses on secure access to networks.
- Zero Trust Application Access (ZTAA)
 - A subset of Zero Trust Access that focuses on secure access to individual applications.

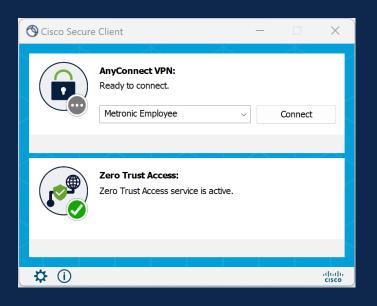
ZTNA vs. ZTAA

	Zero Trust Network Access (ZTNA)	Zero Trust Application Access (ZTAA)	
Allow Access To:	Corporate Network (10.0.0.0/8 or *.example.com)	Production Jira App (jira.example.com)	
When:	User Identity (Lee authenticated via MFA)		
	Device Posture (Fully patched device)		
	Location (United States)		
	Continuous Monitoring (TLS decrypt and IPS inspection)		

The primary difference between ZTNA and ZTAA is the granularity of access in the policy

Types of Zero Trust Access

	Clientless Zero Trust Access	Client-Based Zero Trust Access	
General Description	A lightweight method of securely accessing resources.	A more feature rich method of securely accessing resource.	
Application Support	Supports web applications (HTTP/HTTPS) without any software and other select protocols (SMB/RDP/SSH/etc.) via a portal or small helper application.	Broad application support via client software on the user's device.	
Partner/BYOD Use	Preferred method	Yes, if desired/needed	
Employee Use	Yes, if desired	Preferred method	



Cisco Secure Access

Cisco Secure Client Zero Trust Access Module

- Transparent user experience
- Forward proxied resource access with coarse-grained or fine-grained access control
- Service managed client certificates with TPM/hardware enclave key storage

- Support for most TCP and UDP applications
- Cisco and third-party VPN client interop
- Next-generation protocol (MASQUE + QUIC)

What is QUIC and MASQUE?

- QUIC (not an acronym):
 - UDP-based, stream-multiplexing, encrypted transport protocol.
 - First used in Google Chrome in 2012.
 - Used for HTTP/3, iCloud Private Relay, SMB over QUIC, DNS over QUIC, etc.
 - Optimized for the next generation of internet traffic with reduced latency compared to TLS over TCP.
- MASQUE (Multiplexed Application Substrate over QUIC Encryption):
 - IETF working group focused on next generation proxying technologies on top of the QUIC protocol.
 - Provides the mechanisms for multiple proxied stream and datagram-based flows inside HTTP/2 and HTTP/3.
 - Used by iCloud Private Relay since 2021.
 - HTTP/2 and HTTP/3 extensions allow for the signaling and encapsulation of UDP and IP traffic.

When combined, MASQUE + QUIC provides an efficient and secure transport mechanism for TCP, UDP and IP traffic for both web and non-web protocols.

Why QUIC?

Fast connection establishment (0-RTT)

Ability to change IPs without renegotiation (Connection migration)

No waiting for partially delivered packets (Individually encrypted packets)

Not vulnerable to TCP meltdown (UDP transport)

No head-of-line blocking (Stream multiplexing)

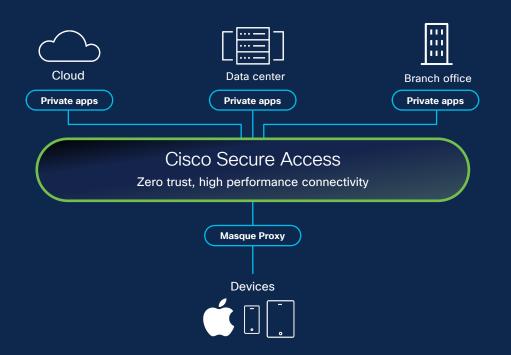
Can simultaneously use multiple interfaces (Multipath)

Why MASQUE?

No direct resource access (forward proxy architecture)

Broad application support (TCP, UDP and IP)

Fallback to TLS (TCP 443) if QUIC (UDP 443) is blocked


Flexibility to support per-connection, per-app or per-device tunnels

Native OS support (macOS, iOS, Samsung Knox)

Extend easy, zero trust access from Apple iOS

- · Enterprise Relay, not last generation ZTNA
- Per application and per domain proxying done directly within the application, not device-wide, continuous VPN
- Enterprise privacy with "direct to workload" connectivity, iCloud Private Relay compatible
- 100% Standards-based. Built on industry leading technologies: MASQUE and QUIC
- All Applications, Ports, and Protocols, not just web applications

Cisco Secure Access traffic optimization with Apple iCloud Private Relay

Enterprise Relay with Apple iCloud Private Relay On

Single layer of encryption for lightning-fast, secure access

Zero Trust Access Enrollment on Apple iOS

AnyConnect

Duo Mobile

Okta Verify

Billing

Dashboard

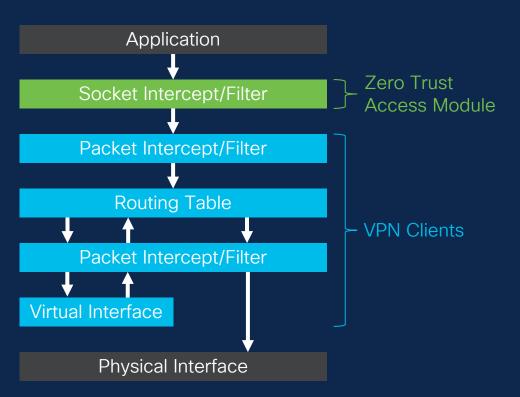
SEO

RD Client

Billing (PWL)

Dashboard (PWL)

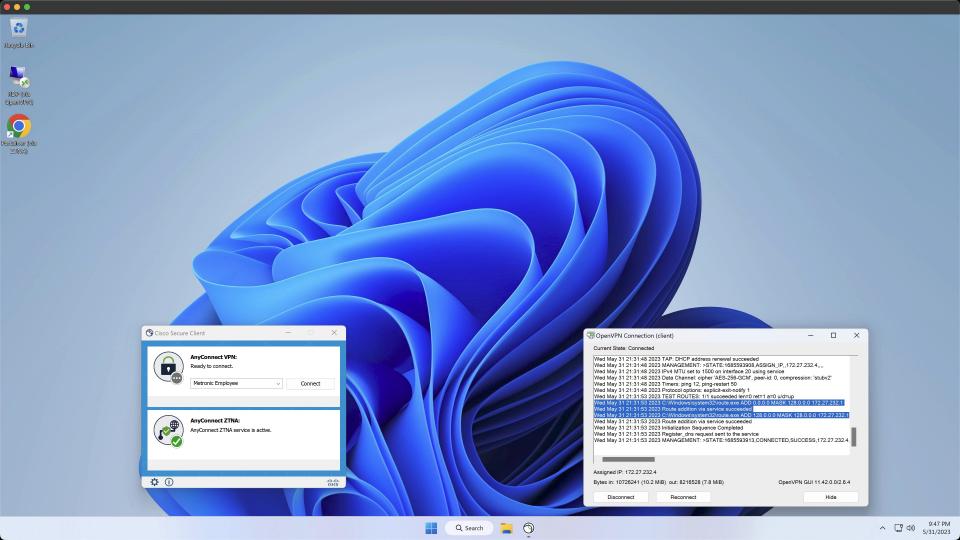
SEO (PWL)



Zero Trust Access Module - Socket Intercept

Why Socket Intercept?

- Control of DNS and application traffic before VPN clients
- No route table manipulation
- Ability to capture traffic by IP, IP subnet, FQDN and FQDN wildcard
- Interoperability with Cisco and non-Cisco VPNs


ZTNA Module: All your ZTNA traffic belongs to me

Cisco Secure Access

- + Client-Based ZTA
- + Third-Party VPN

Not Every App Works with Zero Trust Access

- Apps that don't work with via Zero Trust Access
 - Client-to-client traffic (e.g. peer-to-peer VoIP)
 - Server-to-client traffic (e.g. remote desktop, remote assistance)
 - Applications that require a unique client IP (e.g. SMBv1)
 - Applications that require SRV DNS records (e.g. Active Directory, Kerberos, SCCM)
 - Applications that require the server to send the first data payload after the TCP 3-way handshake (e.g. MySQL Studio)

We Have the Solution! → Cisco Secure Access VPN

Zero Trust Access Journey

Pragmatic migration to more control - direct to private apps

Unified Zero Trust Access + VPNaaS

> Granular controls at the application level. VPNaaS for non-standard apps

> > Success

Benefits

Reduced threat surface

Posture verification

App-specific access

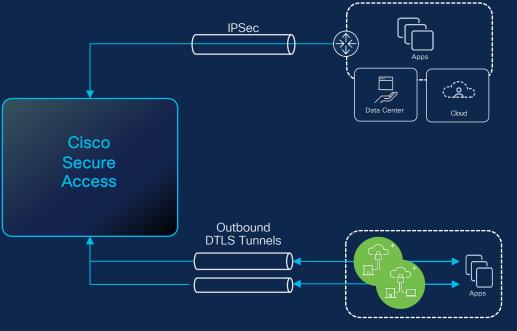
Least privileged access

Take control of all your private

VPN as-a-Service

Lift and shift your VPN to the cloud - more control and easier to manage

- Zero Trust Access does not work for VPN required apps
- Setting up Zero Trust Access for every app and user can be arduous
- Move apps to Zero Trust Access over time


Traditional VPN

Network level access - cannot control at app level - difficult to deploy and manage

apps with precision

Zero Trust Access App Connections (Deploy Both)

Network Tunnel

- → IPSec Backhaul
- → Static or BGP based routing
- → Auto Failover/ Redundancy

Application Connector (AC)

- → Software deployment (VM or Cloud Instance)
- → Deploy closest to application
- → Outbound connectivity (no holes in firewall)
- → Auto failover / load balancing

The bridge to possible