
Contents
Imported wild card pem file ... 1

External Firewall Ports .. 4

VIB and ESXi Host Configurations for Persistent Firewall Rule: .. 4

Alternative ESXi host firewall rule configuration (probably better because it would be supported by

VMware) ... 7

Configure ESXi for test VNC Firewall Rule (non-persistent) .. 8

VNC Troubleshooting .. 13

Imported wild card pem file
Reference: https://www.digicert.com/ssl-support/pem-ssl-creation.htm

1. There are a number of ways to obtain the certificate chain. Probably the best way is to get it

from the CA like GeoTrust or Verisign. For these instructions I already had the certificate chain

in a PFX file.

2. My PFX file had a password protected key and when I initially converted the PFX to PEM I added

a pass phrase. So I had a pass phrase for the key as well as the PEM file. I discovered that

UCSD’s VNC/websock didn’t like the pass phrases so the following procedures are what I needed

to do to resolve.

3. Launch MMC and add Certificate snap in.

4. Import exported3.pfx into (local computer)  personal/Certificates folder

5. Find your_domain_name and export it in base64 as primary.cer

6. Find the intermediate and root certificates and export in base64 as intermediate.cer and

root.cer

7. To strip the pass phrase from private key. Run the following command

a. Convert pfx file to pem  openssl pkcs12 -in filename.pfx -out site.pem

b. Strip pass phrase from key  openssl.exe rsa -in ucsd.pem -out
keynophrase.key

Enter pass phrase for ucsd.pem:

writing RSA key

8. Open keynophrase.key, primary.cer, intermediate.cer and root.cer in notepad and copy/paste

all content of each into a new ucsd2.pem file.

https://www.digicert.com/ssl-support/pem-ssl-creation.htm

(Screen shot is for reference from the digicert.com website)

9. Copied ucsd2.pem to http://webserver/share/exported3.pem, then SSH shelladmin into ucsd

primary, selected option 9 to import CA Cert (PEM) file for VNC

http://webserver/share/exported3.pem

10. Login as root and navigate to /opt/infra/web_cloudmgr/apache-

tomcat/webapps/cloupia/cloudmgr/vnc/utils

11. Restarted services: Run ./stopwebsock.sh to stop service and ./startwebsock.sh to start then

./statuswebsock.sh to see if service is running.

External Firewall Ports
You need 443 and 8787 open to UCSD

UCSD needs 5900 – 5964 open to the ESXi hosts.

VIB and ESXi Host Configurations for Persistent Firewall Rule:
Reference: http://www.yellow-bricks.com/2011/11/29/how-to-create-your-own-vib-files/

1. This is not supported by vmware but you will need to keep VNC ports open.

2. Created a RHEL 7 vm

3. Winscp copied E:\Cisco\Nexus1000v\Cisco_bootbank_cisco-vem-v172-esx_5.2.1.3.1.3.0-3.2.1.vib to the

VM

4. SSH’d into VM. Ran more Cisco_bootbank_cisco-vem-v172-esx_5.2.1.3.1.3.0-3.2.1.vib to confirm it was

full of binaries.

5. Ran ar tv Cisco_bootbank_cisco-vem-v172-esx_5.2.1.3.1.3.0-3.2.1.vib which output contents of file.

a. [root@localhost vibauth]# ar tv Cisco_bootbank_cisco-vem-v172-esx_5.2.1.3.1.3.0-3.2.1.vib

--------- 0/0 8171 Dec 31 19:00 1969 descriptor.xml

--------- 0/0 2090 Dec 31 19:00 1969 sig.pkcs7

--------- 0/0 7324508 Dec 31 19:00 1969 cisco-vem-v172-

6. Run tar –tzvf cisco-vem-v172- to show contents

7. Run tar –xzvf cisco-vem-v172- to extract the contents

8. Added firewall folder under /etc/vmware

9. Copied vnc.xml into the firewall folder

10. Then package the directories and file

a. [root@localhost vibauth]# tar -czvf vnc etc/

etc/

etc/vmware/

etc/vmware/firewall/

etc/vmware/firewall/vnc.xml

11. Edit descriptor.xml to the following

http://www.yellow-bricks.com/2011/11/29/how-to-create-your-own-vib-files/

12. Make the new VIB. Run ar -r vnc.vib descriptor.xml sig.pkcs7 vnc (note the order of the files,

this is the order esxi needs to correctly install)

13. SSH into ESXi host and set software acceptance level to CommunitySupported.

14. Copied the vnc.vib file up to my web server and ran the install command below from ESXi

esxcli software vib install –v http://10.101.48.59/share/vnc.vib

Refresh security profile  firewall and confirm VNC

15. Rebooted host to confirm persistence.

Alternative ESXi host firewall rule configuration (probably better because it

would be supported by VMware)
1. Go to your ESXi host select Configuration tab Security Profile  scroll down to Firewall and

select Properties

2. Scroll down to gdbserver and check the box to allow incoming ports

3. You should have a firewall between UCSD and your ESXi hosts so you can restrict ports to 5900 –

5964.

Configure ESXi for test VNC Firewall Rule (non-persistent)
1. Created vnc.xml and copied to /etc/vmware/firewall on ESXi host

2. Confirmed .vmx configuration on test vm for vnc settings.

3. SSH into esxi host and run esxcli network firewall ruleset list to list current firewall rules

4. Run esxcli network firewall refresh to update rules

5. From vsphere web client check new rule exists.

6. Downloaded VNC-Viewer to test connectivity (VNC-Viewer-5.2.3-Windows-64bit.exe) in E:

VNC Troubleshooting
noVNC troubleshooting - https://github.com/kanaka/noVNC/wiki/Troubleshooting

Downloaded noVNC (kanaka-noVNC-v0.5.1-81-g40b35fa.zip) and entered host, port and password info

and made connection

Used Firebug loaded in Firefox to get debug information.

https://github.com/kanaka/noVNC/wiki/Troubleshooting

VNC path in UCSD is /opt/infra/web_cloudmgr/apache-tomcat/webapps/cloupia/cloudmgr/vnc/utils

Vnc readme.md

noVNC: HTML5 VNC Client

Description

noVNC is a HTML5 VNC client that runs well in any modern browser

including mobile browsers (iPhone/iPad and Android).

More than 16 companies/projects have integrated noVNC into their

products including [Ganeti Web

Manager](http://code.osuosl.org/projects/ganeti-webmgr),

[OpenStack](http://www.openstack.org), and

[OpenNebula](http://opennebula.org/). See [the Projects and Companies

wiki page](https://github.com/kanaka/noVNC/wiki/ProjectsCompanies-using-noVNC)

for more complete list.

News/help/contact

Notable commits, announcements and news are posted to

@noVNC

If you are a noVNC developer/integrator/user (or want to be) please

join the noVNC

discussion group

Bugs and feature requests can be submitted via [github

issues](https://github.com/kanaka/noVNC/issues). If you are looking

for a place to start contributing to noVNC, a good place to start

would be the issues that I have marked as

["patchwelcome"](https://github.com/kanaka/noVNC/issues?labels=patchwelcome).

If you want to show appreciation for noVNC you could buy something off

my [Amazon

wishlist](http://www.amazon.com/registry/wishlist/XTXFXK39IA8C/?reveal=unpurchased&sort=priority&

layout=compact) or you could donate to a great non-profits such as: [Compassion

International](http://www.compassion.com/), [SIL](http://www.sil.org),

[Habitat for Humanity](http://www.habitat.org), [Electronic Frontier

Foundation](https://www.eff.org/), [Against Malaria

Foundation](http://www.againstmalaria.com/), [Nothing But

Nets](http://www.nothingbutnets.net/), etc.

Features

* Supports all modern browsers including mobile (iOS, Android)

* Supported VNC encodings: raw, copyrect, rre, hextile, tight, tightPNG

* WebSocket SSL/TLS encryption (i.e. "wss://") support

* 24-bit true color and 8 bit colour mapped

* Supports desktop resize notification/pseudo-encoding

* Local or remote cursor

* Clipboard copy/paste

* Clipping or scolling modes for large remote screens

* Easy site integration and theming (3 example themes included)

* Licensed under the [MPL 2.0](http://www.mozilla.org/MPL/2.0/)

Screenshots

Running in Chrome before and after connecting:

 <img

src="http://kanaka.github.com/noVNC/img/noVNC-7.jpg" width=400>

See more screenshots here.

Browser Requirements

* HTML5 Canvas (with createImageData): Chrome, Firefox 3.6+, iOS

 Safari, Opera 11+, Internet Explorer 9+, etc.

* HTML5 WebSockets: For browsers that do not have builtin

 WebSockets support, the project includes

 web-socket-js,

 a WebSockets emulator using Adobe Flash. iOS 4.2+ has built-in

 WebSocket support.

* Fast Javascript Engine: this is not strictly a requirement, but

 without a fast Javascript engine, noVNC might be painfully slow.

* I maintain a more detailed browser compatibility list here.

Server Requirements

Unless you are using a VNC server with support for WebSockets

connections (such as [x11vnc/libvncserver](http://libvncserver.sourceforge.net/) or

[PocketVNC](http://www.pocketvnc.com/blog/?page_id=866)),

you need to use a WebSockets to TCP socket proxy. There is

a python proxy included ('websockify').

Quick Start

* Use the launch script to start a mini-webserver and the WebSockets

 proxy (websockify). The `--vnc` option is used to specify the location of

 a running VNC server:

 `./utils/launch.sh --vnc localhost:5901`

* Point your browser to the cut-and-paste URL that is output by the

 launch script. Enter a password if the VNC server has one

 configured. Hit the Connect button and enjoy!

Other Pages

* [Encrypted Connections](https://github.com/kanaka/websockify/wiki/Encrypted-Connections). How

to setup websockify so that you can use encrypted connections from noVNC.

* [Advanced Usage](https://github.com/kanaka/noVNC/wiki/Advanced-usage). Starting a VNC server,

advanced websockify usage, etc.

* [Integrating noVNC](https://github.com/kanaka/noVNC/wiki/Integration) into existing projects.

* [Troubleshooting noVNC](https://github.com/kanaka/noVNC/wiki/Troubleshooting) problems.

Authors/Contributors

* noVNC : Joel Martin (github.com/kanaka)

 * UI and Icons : Chris Gordon

 * Original Logo : Michael Sersen

 * tight encoding : Michael Tinglof (Mercuri.ca)

* Included libraries:

 * web-socket-js : Hiroshi Ichikawa (github.com/gimite/web-socket-js)

 * as3crypto : Henri Torgemane (code.google.com/p/as3crypto)

 * base64 : Martijn Pieters (Digital Creations 2), Samuel Sieb (sieb.net)

 * jsunzip : Erik Moller (github.com/operasoftware/jsunzip),

 * tinflate : Joergen Ibsen (ibsensoftware.com)

 * DES : Dave Zimmerman (Widget Workshop), Jef Poskanzer (ACME Labs)

