
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
Tel: 800 553-NETS (6387)
Fax: 408 527-0883

NSO Tailf HCC

Copyright © 2014, 2015, 2016 Cisco Systems, Inc

ii

CONTENTS

CHAPTER 1 NSO Tailf HCC Guide 1

Introduction 1

CHAPTER 2 NSO Tailf HCC Usage 3

NSO HA 3

Tail-f High Availability Cluster Communications (tailf-hcc) 4

Configuration 4

Actions 7

How it works 9

Alarms 11

CHAPTER 3 NSO Tailf HCC Examples 13

Basic deployment 13

Node OS Configuration 13

Node NSO Configuration 13

Advanced 15

Node OS Configuration 16

Node NSO Configuration 16

Activate HA 18

HA Disaster Recovery 22

NSO Cluster HA 25

Node OS configuration 27

FAQ and known issues 38

FAQ 38

Issues 38

CHAPTER 4 The NSO Tailf HCC Models 41

NSO Tailf HCC model 41

NSO Tailf HCC
iii

Contents

NSO Tailf HCC typedefs model 47

NSO Tailf HCC Actions model 47

NSO Tailf HCC Alarms model 51

CHAPTER 5 Resources 53

References for further reading 53

NSO Tailf HCC
iv

CHAPTER 1
NSO Tailf HCC Guide

• Introduction, page 1

Introduction
The Tail-f HCC Function pack (HCC) is a High-availability framework that is used to manage the master
and slave relationship for the NSO CDB HA. In other words, HCC is used to tell NSO HA which node
should be master and which nodes should be slaves.

This document contains deployment information and procedures for Tail-f NSO HA (CDB replication) and
the Tail-f High Availability Cluster Communications (tailf-hcc) minimal HA framework application.

HAFW In this document, a HA group member is a node who shares a unique id, a token, and has a master-slave
relation with other group members.

A Cluster member is a node who is either a service node or a device node in an NSO Cluster.

NSO Tailf HCC
1

NSO Tailf HCC Guide
Introduction

NSO Tailf HCC
2

CHAPTER 2
NSO Tailf HCC Usage

• NSO HA, page 3

• Tail-f High Availability Cluster Communications (tailf-hcc), page 4

NSO HA
Before we can go into how the HCC function pack is deployed and used, we need to understand the NSO
CDB replication - NSO High Availability (HA). The NSO HA is shipped with NSO and HCC can be
added on top of that, if it is needed. HCC detects when nodes fail and instructs NSO to update the master
and slave relationship. If the master node fails, the HCC elects one of the remaining slaves to be the new
master. Any remaining slaves are not updated with information about the new master by HCC. Instead
an alarm is raised and an operator needs to investigate the cause of the failover and resolve the situation
manually.

NSO natively supports replication of the CDB configuration as well as operational data kept in CDB. The
replication architecture is that of one active master and at least one passive slave.

Figure 1. NCS HA

A group of NSO hosts consisting of a master, and one or more slaves, is referred to as an HA group.

NSO Tailf HCC
3

NSO Tailf HCC Usage
Tail-f High Availability Cluster Communications (tailf-hcc)

All configuration write operations must occur at the master and NSO will automatically distribute the
configuration updates to the set of live slaves. All write operations for replicated operational data must also
occur at the master, with the updates distributed to the live slaves, whereas non-replicated operational data
can also be written on the slaves.

The only thing NSO HA does is replicate the CDB data among the members in the HA group. It does not
determine which NSO nodes are members of the HA Group or which NSO node is designated as Master
and which are Slaves - this is the task of a High-Availability Framework (HAFW) which must be in place.
The HAFW must instruct NSO which nodes are up and down using methods from Ha class in the NSO
Java library.

HAFW tailf-hcc is a High-Availability Framework (HAFW)

For more information on NSO HA and CDB replication, see NSO Administration Guide - High
Availability.

Tail-f High Availability Cluster Communications (tailf-hcc)
As previously stated, the Tail-f High Availability Cluster Communications (tailf-hcc function pack) is
a lightweight, minimal featured implementation of the high availability framework to coordinate the
master-slave relationships of the HA groups and cluster member nodes via interaction with the NSO HA
capabilities. The tailf-hcc package supports both NSO non-clustered deployments and NSO clustered
deployments.

HCC can run in many different scenarions, in this document we describe three basic scenarios:

• Basic

In this scenario you have a HA group where all nodes can reach each other.

• Cluster

Separate clusters of HA-groups, where the clusters nodes can reach each other internally in the cluster
and the configured remote-nodes can reach each other over.

• Border Gateway Protocol - BGP

Using the quagga-bgp NED, HCC can react on BGP changes to update the master and slave
relationships.

Configuration

NSO/OS requirements and configuration
When setting up a HA cluster using HCC both NSO and HCC configuration needs to be setup correctly in
order for everything to work.

• On all nodes the OS must be configured to allow for NSO HA operations, i.e configure the firewall to
allow the ports used by NSO in regards of HA.

• NSO HA must be enabled in ncs.conf configuration file. The default location on a system install is
/etc/ncs/ncs.conf. Add or uncomment these lines in ncs.conf:

<ha>
 <enabled>true</enabled>
</ha>

NSO Tailf HCC
4

NSO Tailf HCC Usage
Configuration

• The encryption keys in ncs.conf must be the same on the Master and the Slave nodes. A rule of
thumb is that the slave and master should have identical ncs.conf files:

<encrypted-strings>
 <DES3CBC>
 <key1>0123456789abcdef</key1>
 <key2>0123456789abcdef</key2>
 <key3>0123456789abcdef</key3>
 <initVector>0123456789abcdef</initVector>
 </DES3CBC>
 <AESCFB128>
 <key>0123456789abcdef0123456789abcdef</key>
 <initVector>0123456789abcdef0123456789abcdef</initVector>
 </AESCFB128>
</encrypted-strings>

Note If the user fails to enable HA a specific log message can be found in the ncs-java-vm.log:

...
<ERROR> 22-May-2014::15:30:32.908 tcmApp (tailf-hcc:tcm)-Run-0: - NCS
HA is likely not enabled
<ERROR> 22-May-2014::15:30:32.908 NcsMain (tailf-hcc:tcm)-Run-0: -
Received exception from tailf-hcc
...

• All Slave nodes must be reachable by the Master

• All Remote-nodes must be reachable by the Cluster-Manager

Local
Install

If running as non-root user, verify that the sudo command works without being prompted for a
password for privileged commands. Only important for a local installation of NSO.

HA
The top container named ha is used for configuration and status checks of the tailf-hcc HA framework.
This is a presence container.

Global configuration
The HA cluster's global configuration parameters found under /hcc:ha/ are parameters applicable to all
nodes sharing the same token. The global parameters are described in Table 2, “Global configuration”.

Table 2. Global configuration

Parameters Type Description

token string This value is used as the shared
secret when setting up HA
between nodes. Mandatory.

local-user string local-user used for remote
device and/or quagga device
authorization

NSO Tailf HCC
5

NSO Tailf HCC Usage
Configuration

Parameters Type Description

failure-limit int32 The number of failed HA state
checks before declaring a failure
[default: 10]

interval int32 Interval on which HA state and
BGP state are checked (seconds)
[default: 4]

VIP configuration

L2 or
L3

VIP is for L2 failover handling

The HA cluster configuration parameters are found in list /ha/vips/vip containing VIP parameters
applicable for virtual IP address management. For each such VIP configuration element a label
$interface:ncsvip will be added for the current master node with the address specified, and
removed when the node is no longer master. Table 3, “VIP parameters” shows the global VIP parameters.
The support for multiple VIPs aims to replace the older and now deprecated single VIP solution in the
YANG model.

Table 3. VIP parameters

Parameters Type Description

address inet:ip-address The Virtual IP address to bring up
on a labeled interface

broadcast-address inet:ip-address The Broadcast address used for
the labeled interface. If not set,
the broadcast address will be
calculated from the address and
bitmask of the interface

BGP Anycast Configuration

L2 or
L3

BGP is for L3 failover handling

The HA cluster configuration parameters found under /hcc:ha/bgp are parameters applicable for BGP
Anycast failover detection mechanism. Details for the global parameters of BGP Anycast failover are
shown in Table 4, “BGP Anycast configuration”.

QUAGGA-
NED

When BGP is enabled, tailf-hcc requires the NED quagga-bgp to be of version 3.3 and up.

Table 4. BGP Anycast configuration

Parameters Type Description

failure-limit int32 The number of failed anycast path
state checks before declaring a
failure

NSO Tailf HCC
6

NSO Tailf HCC Usage
Actions

Parameters Type Description

anycast-prefix inet:ip-prefix BGP anycast prefix to monitor

anycast-path-min int32 The minimum number of valid
anycast paths.

clear-enable boolean In the case of applying
configuration towards a quagga
device, should the node also clear
BGP sessions and routes on the
quagga

Member Configuration
The HA group member's configuration parameters found under /hcc:ha/member are parameters
applicable to each configured HA group member node. Table 5, “Member parameters” details the HA
group membership parameters.

Table 5. Member parameters

Parameters Type Description

name string The name of the member.

address inet:ip-address Member IP address

default-ha-role cluster-role-type The default HA role for the node

failover-master boolean HA slave nodes capability of
serving as a failover-master.

relay-name string The name of the node that should
act as a relay between this node
and the master

cluster-manager boolean Cluster manager node

managed-cluster-nodes leafref -> /cluster/remote-node/
name

Which remote nodes the cluster-
manager should monitor

quagga-device leafref -> /devices/device/name Device used for quagga device
monitoring and managing

vip-interfaces/vip-interface[vip-
interface address]/vip-interface

string The interface used for each vip

vip-interfaces/vip-interface[vip-
interface address]/address

leafref -> ha/vips/vip[address]/
address

The address used for each vip
interface

Actions
The tailf-hcc package is operated by a series of tailf:actions

Node actions
The actions in Table 6, “Node actions” are applicable for all types of nodes, and only effects the node
itself.

NSO Tailf HCC
7

NSO Tailf HCC Usage
Actions

Table 6. Node actions

action input Description

activate none The node will be activated and
take the HA role configured
under /ha/member/default-ha-role

deactivate none The node will be deactivated, and
take the HA role none

role-override ha-role Override the current HA role with
the specified role

role-revert none Revert the HA role to the default-
ha-role value

status none Retrieve node HA status

force-be-slave-to member Set the node in slave-mode and
try to connect and set master

Cluster manager node actions
The actions in Table 7, “Cluster manager specific actions” are only applicable for cluster-manager nodes,
and effects the node itself as well as its configured remote nodes.

Table 7. Cluster manager specific actions

action input Description

cluster-activate none The node and its managed remote
nodes will be activated and take
the HA role configured under /
ha/member/default-ha-
role

cluster-deactivate none The node and its managed remote
nodes will be deactivated and take
the HA role none

cluster-role-override ha-role Override the current HA role with
the specified role for the node and
its managed remote nodes

cluster-role-revert none Revert the HA role to the default-
ha-role value for the node and its
managed remote nodes

cluster-status none Retrieve node HA status of the
node and its managed remote
nodes

NSO Tailf HCC
8

NSO Tailf HCC Usage
How it works

Action
Authorization

When invoking an action, the user and context, will be that of the user session doing the invocation.
For cluster-actions, this user must have authorization to invoke remote actions. This is configured
under /cluster/authgroup.

How it works

Basics
When tailf-hcc is activated, by issuing the ha action activate, each node will try to assume the
default-ha-role configured under /hcc:ha/hcc:member{name}/hcc:default-ha-
role. If it is a slave it will try to connect to the master, which is the member with default-ha-role set to
master.

Each Slave node will periodically do a status check to see if a HA failure has occurred. The interval
between each check is determined by the global ha configuration value /hcc:ha/hcc:interval.
The default value is four (4 seconds). The number of times a status check is allowed to fail before a Slave
declares a failure is determined by the global ha configuration value /hcc:ha/hcc:failure-limit.
The default value is ten (10). This means that with default values, the Slave will declare a failure around 40
seconds after first persisting negative status check (4 times 10).

What a Slave should do when a failure is detected is determined by its ha configuration and the failure
type. There are three (3) types of failures, described below.

Three types of failure
node-failure A node-failure is when a Slave node loses HA connection with its

master.

device-node-failure A device-node-failure is when a Slave managed cluster node
(remote-node) loses HA connection with its master (Can only happen in a
Cluster Setup).

bgp-failure A bgp-failure is when a Slave node loses its BGP prefix path to its
master (Can only happen if BGP is configured).

Failover
If the Slave is a failover-master, /hcc:ha/hcc:member/hcc:failover-master =
true, it will upon a failure initiate a failover; that is, transition to the 'Master' role. This holds true only
for nodes configured to be slaves by default (default-ha-role = slave); nodes that are slaves due to the
action role-override will not initiate the failover process.

In a Cluster
In a Cluster-setup, the configured cluster-manager, /hcc:ha/hcc:member/hcc:cluster-
manager = true, will check the HA status of its managed remote nodes, /hcc:ha/hcc:member/
hcc:managed-cluster-nodes, as well as its own status. If the cluster-manager detects that its
Master node, or the Master node of one of its managed remote-nodes, is no longer available, the cluster-
manager will initiate the failover as per above, with the difference that it will also instruct its managed
remote-nodes to failover.

The cluster-manager will communicate with its managed remote-nodes via actions, and thus it is important
that tailf-hcc has the authorization to do so. tailf-hcc will use the user configured under /ha/local-user

NSO Tailf HCC
9

NSO Tailf HCC Usage
How it works

for authorization. This user must match a local user under /cluster/authgroup/umap, used towards the
remote-nodes.

With BGP Enabled

QUAGGA-
NED

When BGP is enabled, tailf-hcc requires the NED quagga-bgp to be of version 3.3 and up.

If a BGP is enabled, when /hcc:ha/hcc:bgp is configured, the Slave node will, upon each ha
status check, also issue a show ip bgp <prefix>, where prefix is the value of /hcc:ha/hcc:bgp/
hcc:anycast-prefix, query towards its configured quagga device, /hcc:ha/hcc:member/
hcc:quagga-device. The query will result in something like:

....
 BGP routing table entry for 192.168.60.100/32
 Paths: (2 available, best #2, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 192.168.31.2
 Local
 0.0.0.0 from 0.0.0.0 (192.168.31.3)
 Origin incomplete, metric 1, localpref 100, weight 32768, valid,
 sourced
 Last update: Thu Nov 5 11:19:06 2015

 Local
 0.0.0.0 from 0.0.0.0 (192.168.31.3)
 Origin IGP, metric 0, localpref 100, weight 32768, valid,
 sourced, local, best
 Last update: Thu Nov 5 11:19:06 2015
....

If the available 'Paths' - 'Paths: (2 available, best #2, table Default-IP-Routing-Table)' - are below the
configured minimum, /hcc:ha/hcc:bgp/hcc:anycast-path-min, the Slave will initiate a
failover as per above.

BGP configuration logic

QUAGGA-
NED

When BGP is enabled, tailf-hcc requires the NED quagga-bgp to be of version 3.3 and up.

If BGP is enabled for a node, the node will reconfigure its quagga-device depending on its current HA
state. It will do this by applying pre-configured device templates. There MUST exist (at least, see below)
4 device templates, with specific names. There must be a template for when a node is in state Master,
Slave, None, and finally Failover Master. The Failover Master is quite similare to Master state, but with
the exception that the node became Master due to a failover. The following templates must exist:

hcc-master The template to apply when state is Master. Will be applied to the
default-ha-role = master node, or the node set to master via the
action role-override

hcc-slave The template to apply when state is Slave. Will be applied to the
default-ha-role = slave node, or the node set to slave via the
action role-override and force-be-slave-to

hcc-none The template to apply when state is None. Will be applied to the
default-ha-role = none node, or the node set to none via the

NSO Tailf HCC
10

NSO Tailf HCC Usage
Alarms

action role-override. This template will also be applied when /ha/
bgp is created but the node is not activated, when the node is deactivated,
or when /ha/bgp is deleted

hcc-failover-master The template to apply when state is Master due to a failover. Will be
applied to a slave node that automatically transitioned to master due to a
failover

Node
specific

templates

As a Master and a Slave will contain the same CDB configuration, they will share the device templates
as well. As there might be a need for a Master and a Slave to have different configurations for its quagga
device, each template can be suffixed with its member name, which will have precedence. For example,
hcc-master-NAME.

The node will apply configuration to the quagga device, and thus it is important that tailf-hcc has the
authorization to do so. tailf-hcc will use the user configured under /ha/local-user for authorization.
This user must match a local user under /devices/authgroups/umap, used towards the quagga
device.

See chapter Deployment Example: NSO HA for details on setup, configuration and operations.

VIP logic
If a VIP is configured in list /ha/vips/vip, each node will check its HA state. If it is Master, the
node will bring up a virtual IP with an address set under /ha/vips/vip[address]/address
on the interface /ha/vip/member/vip-interfaces/vip-interface[vip-interface
address]/vip-interface. When the node is not Master, or if the node goes down, it will bring
down the interface again.

Alarms
tailf-hcc can generate the following three alarms:

node-failure
device-node-failure
bgp-failure

Which corresponds to the three types of failure with the same name. See the section called “Three types of
failure” for more information on what triggered the failure and raised the alarm.

See the section called “NSO Tailf HCC Alarms model” for the yang-definition on the alarm types.

The alarms will always be generated with the severity level CRTICITAL. The generated alarm(s) will be
cleared when the role-revert action has been triggered.

NSO Tailf HCC
11

NSO Tailf HCC Usage
Alarms

NSO Tailf HCC
12

CHAPTER 3
NSO Tailf HCC Examples

• Basic deployment, page 13

• Advanced, page 15

• NSO Cluster HA, page 25

• FAQ and known issues, page 38

Basic deployment
In this example there is one Master node, named 'paris_m', and one Slave node, 'paris_s1'. 'paris_s1' will
act as the fail-over master.

Figure 8. NCS HA

Node OS Configuration
The ha member names match the machine hostname, and is resolvable. The hosts-file on 'paris_m':

$ cat /etc/hosts
127.0.1.1 paris_m
127.0.0.1 localhost
192.168.23.99 paris_m
192.168.23.11 paris_s1

Node NSO Configuration
Each node has enabled 'ha' in 'ncs.conf':

NSO Tailf HCC
13

NSO Tailf HCC Examples
Node NSO Configuration

<ha>
 <enabled>true</enabled>
 </ha>

tailf-hcc is properly loaded:

On 'paris_m'
user@ncs> show packages package tailf-hcc
packages package tailf-hcc
 package-version 4.0
 description "NED package for Tail-f HA Cluster Control Interface"
 ncs-min-version [4.0.1]
 ...
 oper-status up
[ok]
On 'paris_s1'
user@ncs> show packages package tailf-hcc
packages package tailf-hcc
 package-version 4.0
 description "NED package for Tail-f HA Cluster Control Interface"
 ncs-min-version [4.0.1]
 ...
 oper-status up
[ok]

Configure the following ha-configuration:

On 'paris_m'
user@ncs> configure
Entering configuration mode private
user@ncs% set ha token sometoken
user@ncs% set ha failure-limit 10
user@ncs% set ha interval 4
user@ncs% set ha member paris_m address 192.168.23.99 default-ha-role master
user@ncs% set ha member paris_s1 address 192.168.23.11 default-ha-role slave failover-master true
user@ncs% commit
Commit complete.
user@ncs% show ha
token sometoken;
interval 4;
failure-limit 10;
member paris_m {
 address 192.168.23.99;
 default-ha-role master;
}
member paris_s1 {
 address 192.168.23.11;
 default-ha-role slave;
 failover-master true;
}

On 'paris_s1' do exactly the same thing

Show status before activation

On 'paris_m'
user@paris_m> show ncs-state ha
ncs-state ha mode none

On 'paris_s1'
user@paris_s1> show ncs-state ha
ncs-state ha mode none

Activate ha

NSO Tailf HCC
14

NSO Tailf HCC Examples
Advanced

On 'paris_m'
user@paris_m> request ha commands activate
status activated

On 'paris_s1'
user@paris_s1> request ha commands activate
status activated

Show status after activation

On 'paris_m'
user@paris_m> show ncs-state ha
ncs-state ha mode master
ncs-state ha node-id paris_m
ncs-state ha connected-slave [paris_s1]

On 'paris_s1'
user@paris_s1> show ncs-state ha
ncs-state ha mode slave
ncs-state ha node-id paris_s1
ncs-state ha master-node-id paris_m

Advanced
The following examples make use of the tool 'nct'. This tool is not required, but makes it easier to
communicate and configure several nodes at once. For each example the corresponding CLI command will
be shown.

The tool is well documented in the NSO man pages.

In this example there is one Master node, named 'paris_m', and three Slave nodes, 'paris_s1', 'paris_s2' and
'paris_s3'. Node 'paris_s1' will act as the fail-over master. Two VIPs are configured.

Figure 9. NCS HA

ncs-
cluster-

The hostsfile for nct used in this example:

$ cat hostsfile
{"192.168.23.99", [

NSO Tailf HCC
15

NSO Tailf HCC Examples
Node OS Configuration

tool
hostsfile

 {name, "paris_m"},
 {groups, ["all", "master"]},
 {ssh_user, ...}, {ssh_pass, ...}
]}.
{"192.168.23.11", [
 {name, "paris_s1"},
 {groups, ["all", "slave"]},
 {ssh_user, ...}, {ssh_pass, ...}
]}.
{"192.168.23.12", [
 {name, "paris_s2"},
 {groups, ["all", "slave"]},
 {ssh_user, ...}, {ssh_pass, ...}
]}.
{"192.168.23.13", [
 {name, "paris_s3"},
 {groups, ["all", "slave"]},
 {ssh_user, ...}, {ssh_pass, ...},
]}.

Node OS Configuration
The ha member names match the machine hostname, and is resolvable. The hosts-file on 'paris_m':

$ cat /etc/hosts
127.0.1.1 paris_m
127.0.0.1 localhost
192.168.23.99 paris_m
192.168.23.11 paris_s1
192.168.23.12 paris_s2
192.168.23.13 paris_s3
192.168.23.111 ha-vip

Node NSO Configuration
Each node has enabled 'ha' in 'ncs.conf'

<ha>
 <enabled>true</enabled>
</ha>

tailf-hcc is properly loaded:

Corresponding CLI command: 'user@ncs> show packages package tailf-hcc'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show packages package tailf-hcc'

Cli command to 192.168.23.99 [paris_m]
packages package tailf-hcc
 package-version 4.0
 description "NED package for Tail-f HA Cluster Control Interface"
 ncs-min-version [4.0.1]
 ...
 oper-status up
[ok]

Cli command to 192.168.23.11 [paris_s1]
...

Each node share the following ha-configuration:

Corresponding CLI command: 'user@ncs> show configuration ha'

NSO Tailf HCC
16

NSO Tailf HCC Examples
Node NSO Configuration

$ nct cli-cmd --hostsfile hostsfile -c 'show configuration ha'

Cli command to 192.168.23.99 [paris_m]
token sometoken;
interval 4;
failure-limit 10;
vips {
 vip 10.0.0.111 {
 netmask 255.255.0.0;
 }
 vip 10.0.0.112 {
 netmask 255.255.0.0;
 }
}
member paris_m {
 address 192.168.23.99;
 default-ha-role master;
 vip-interfaces {
 vip-interface eth0 10.0.0.111;
 vip-interface lo 10.0.0.112;
 }
}
member paris_s1 {
 address 192.168.23.11;
 default-ha-role slave;
 failover-master true;
 vip-interfaces {
 vip-interface eth0 10.0.0.111;
 vip-interface lo 10.0.0.112;
 }
}
member paris_s2 {
 address 192.168.23.12;
 default-ha-role slave;
 vip-interfaces {
 vip-interface eth0 10.0.0.111;
 vip-interface lo 10.0.0.112;
 }
}
member paris_s3 {
 address 192.168.23.13;
 default-ha-role slave;
 vip-interfaces {
 vip-interface eth0 10.0.0.111;
 vip-interface lo 10.0.0.112;
 }
}

Cli command to 192.168.23.11 [paris_s1]
token sometoken;
interval 4;
failure-limit 10;
...

NSO Tailf HCC
17

NSO Tailf HCC Examples
Activate HA

Note There can be only one 'default-ha-role = master' and only one 'failover-master = true'. 'paris_s2' and
'paris_s3' serves as 'disaster recovery' copies of CDB in case both 'paris_m' and 'paris_s1' were lost.

Activate HA
Show status before activation

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode none

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode none

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode none

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode none

Activating HA by invoking the action 'activate', first on the master node, then on the slaves:

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action activate --group master

HA Node 192.168.23.99:8080 [paris_m]
activated

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on each slave node
$ nct ha --hostsfile hostsfile --action activate --group slave

HA Node 192.168.23.11:8080 [paris_s1]
activated

HA Node 192.168.23.12:8080 [paris_s2]
activated

HA Node 192.168.23.13:8080 [paris_s3]
activated

Show status after activation:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode master
ncs-state ha node-id paris_m
ncs-state ha connected-slave [paris_s1 paris_s2 paris_s3]

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode slave
ncs-state ha node-id paris_s1

NSO Tailf HCC
18

NSO Tailf HCC Examples
Activate HA

ncs-state ha master-node-id paris_m

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode slave
ncs-state ha node-id paris_s2
ncs-state ha master-node-id paris_m

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode slave
ncs-state ha node-id paris_s3
ncs-state ha master-node-id paris_m

Note Slaves do not know about the status of the other slaves

Check VIP Interfaces
Check that the VIP interfaces is up on the master but not on the slaves (grep returns nothing if not present):

Corresponding terminal command: '$ sudo ifconfig | grep ncsvip'
issued on each node
$ nct ssh-cmd --hostsfile hostsfile -c 'sudo ifconfig | grep ncsvip'

SSH command to 192.168.23.99:22 [paris_m]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:
eth0:ncsvip Link encap:Ethernet HWaddr 52:54:00:fa:61:99
lo:ncsvip Link encap:Local Loopback

SSH command to 192.168.23.11:22 [paris_s1]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

SSH command to 192.168.23.12:22 [paris_s2]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

SSH command to 192.168.23.13:22 [paris_s3]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

HA Failover
Simulate that the master node is down by inactivating it:

Corresponding CLI command: 'user@ncs> request ha commands deactivate'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action deactivate --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
deactivated

Check that the failover-master transitioned to master:

Note Failover will take (interval*failure limit) seconds before the failover master confirms loss of 'master' and
initiates a failover. If the Master-Slave communication is re-established during this period, HA operation
would continue as normal

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

NSO Tailf HCC
19

NSO Tailf HCC Examples
Activate HA

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode none

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode master
ncs-state ha node-id paris_s1

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode none

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode none

Note The nodes 'paris_s2' and 'paris_s3' will not automatically transition to 'slave' to the new 'master'. They
assume the role 'none' upon connectivity loss to 'paris_m'

Check that the VIP interfaces is now up on the new master:

Corresponding terminal command: '$ sudo ifconfig | grep ncsvip'
issued on each node
$ nct ssh-cmd --hostsfile hostsfile -c 'sudo ifconfig | grep ncsvip'

SSH command to 192.168.23.99:22 [paris_m]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:
encap:Ethernet HWaddr 52:54:00:fa:61:99

SSH command to 192.168.23.11:22 [paris_s1]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:
eth0:ncsvip Link encap:Ethernet HWaddr 52:54:00:fa:61:98
lo:ncsvip Link encap:Local Loopback

SSH command to 192.168.23.12:22 [paris_s2]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

SSH command to 192.168.23.13:22 [paris_s3]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

HA Fail-back to original configuration
After rectifying the cause of the Master-slave communication failure, the approach is to bring the original
Master back on-line initially as a Slave, which will then connect to the new Master to complete a CDB re-
sync prior to being transitioned to the operational Master.

There are no provisions in the tailf-hcc application to automatically sense and initiate a revert back to the
original HA Cluster configuration.

Note It is very important that the original master is setup to be Slave to the failover master before activation
after a fail-over. If not, potential configuration loss may occur.

Override to slave
Override the ha role of paris_m to slave and then activate paris_m:

Corresponding CLI command: 'user@ncs> request ha commands role-override role slave'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action role-override --role slave
--name paris_m

NSO Tailf HCC
20

NSO Tailf HCC Examples
Activate HA

HA Node 192.168.23.99:8080 [paris_m]
override

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action activate --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
activated

Verify override
Verify that paris_m is now slave to paris_s1:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode slave
ncs-state ha node-id paris_m
ncs-state ha master-node-id paris_s1

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode master
ncs-state ha node-id paris_s1
ncs-state ha connected-slave [paris_m]

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode none

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode none

Role-revert nodes
Role-revert all nodes. First paris_m, then the original slave nodes:

Note Allow adequate time for CDB on re-activated paris_m to sync with CDB on the failed-over Master. The
time depends on the CDB size and how much of the CDB needs to be updated.

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action role-revert --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
reverted

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on each slave
$ nct ha --hostsfile hostsfile --action role-revert --group slave

HA Node 192.168.23.11:8080 [paris_s1]
reverted

HA Node 192.168.23.12:8080 [paris_s2]
reverted

NSO Tailf HCC
21

NSO Tailf HCC Examples
HA Disaster Recovery

HA Node 192.168.23.13:8080 [paris_s3]
reverted

Verify role-revert
Verify that paris_m is the master once again:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'
Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode master
ncs-state ha node-id paris_m
ncs-state ha connected-slave [paris_s1 paris_s2 paris_s3]

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode slave
ncs-state ha node-id paris_s1
ncs-state ha master-node-id paris_m

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode slave
ncs-state ha node-id paris_s2
ncs-state ha master-node-id paris_m

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode slave
ncs-state ha node-id paris_s3
ncs-state ha master-node-id paris_m

Check VIP interface
Check that the VIP interfaces is up on the master but not on the slaves (grep returns nothing if not present):

Corresponding terminal command: '$ sudo ifconfig | grep ncsvip'
issued on each node
$ nct ssh-cmd --hostsfile hostsfile -c 'sudo ifconfig | grep ncsvip'

SSH command to 192.168.23.99:22 [paris_m]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:
eth0:ncsvip Link encap:Ethernet HWaddr 52:54:00:fa:61:99
lo:ncsvip Link encap:Local Loopback

SSH command to 192.168.23.11:22 [paris_s1]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

SSH command to 192.168.23.12:22 [paris_s2]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

SSH command to 192.168.23.13:22 [paris_s3]
SSH OK : 'ssh sudo ifconfig | grep ncsvip' returned:

HA Disaster Recovery
Disaster Recovery (DR) when the master CDB is no longer viable and the CDB on one of the Disaster
Recovery Slaves, paris_s2 and paris_s3 has the most up-to-date configuration/operational data in the HA
group. To recover the DR Slave CDB to the configured Master follow the following procedure.

Simulate disaster failover
Simulate that both paris_m and paris_s1 goes down, by deactivating them:

NSO Tailf HCC
22

NSO Tailf HCC Examples
HA Disaster Recovery

Corresponding CLI command: 'user@ncs> request ha commands deactivate'
on node 'paris_s1'
$ nct ha --hostsfile hostsfile --action deactivate --name paris_s1

HA Node 192.168.23.11:8080 [paris_s1]
deactivated

Corresponding CLI command: 'user@ncs> request ha commands deactivate'
on node 'paris_m'
$ nct ha --hostsfile hostsfile --action deactivate --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
deactivated

Check HA status
Check HA status on all nodes:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode none

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode master
ncs-state ha node-id paris_s1

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode none

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode none

Set a new master
Make paris_s2 the new master with the action role-override:

Corresponding CLI command: 'user@ncs> request ha commands role-override role master'
on node 'paris_s2'
$ nct ha --hostsfile hostsfile --action role-override --role master
--name paris_s2

HA Node 192.168.23.12:8080 [paris_s2]
override

Force to be slave
Force paris_m to be slave with the action role-override, then set paris_s2 to be its master with the action
force-be-slave-to, and finally activate paris_m:

Corresponding CLI command: 'user@ncs> request ha commands role-override role slave'
on node 'paris_m'
$ nct ha --hostsfile hostsfile --action role-override --role slave
--name paris_m

HA Node 192.168.23.99:8080 [paris_m]
override

Corresponding CLI command: 'user@ncs> request ha commands force-be-slave-to member paris_s2'
on node 'paris_m'

NSO Tailf HCC
23

NSO Tailf HCC Examples
HA Disaster Recovery

$ nct ha --hostsfile hostsfile --action force-be-slave-to
--member paris_s2 --name paris_m

HA Node 192.168.23.11:8080 [paris_m]
Trying to be slave to paris_s2

Corresponding CLI command: 'user@ncs> request ha commands activate'
on node 'paris_m'
$ nct ha --hostsfile hostsfile --action activate --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
activated

Verify new master
Verify that paris_s1 now is master over paris_m:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode slave
ncs-state ha node-id paris_m
ncs-state ha master-node-id paris_s2

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode none

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode master
ncs-state ha node-id paris_s2
ncs-state ha connected-slave [paris_m]

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode none

Role-revert nodes
Role-revert all nodes. First paris_m, then the original slave nodes, and activate paris_s1 again:

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on 'paris_m'
$ nct ha --hostsfile hostsfile --action role-revert --name paris_m

HA Node 192.168.23.99:8080 [paris_m]
reverted

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on each slave
$ nct ha --hostsfile hostsfile --action role-revert --group slave

HA Node 192.168.23.11:8080 [paris_s1]
reverted

HA Node 192.168.23.12:8080 [paris_s2]
reverted

HA Node 192.168.23.13:8080 [paris_s3]
reverted

Corresponding CLI command: 'user@ncs> request ha commands activate'

NSO Tailf HCC
24

NSO Tailf HCC Examples
NSO Cluster HA

issued on 'paris_s1'
$ nct ha --hostsfile hostsfile --action activate --name paris_s1

HA Node 192.168.23.11:8080 [paris_s1]
activated

Verify role-revert
Verify that paris_m is the master once again:

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c 'show ncs-state ha'

Cli command to 192.168.23.99 [paris_m]
ncs-state ha mode master
ncs-state ha node-id paris_m
ncs-state ha connected-slave [paris_s1 paris_s2 paris_s3]

Cli command to 192.168.23.11 [paris_s1]
ncs-state ha mode slave
ncs-state ha node-id paris_s1
ncs-state ha master-node-id paris_m

Cli command to 192.168.23.12 [paris_s2]
ncs-state ha mode slave
ncs-state ha node-id paris_s2
ncs-state ha master-node-id paris_m

Cli command to 192.168.23.13 [paris_s3]
ncs-state ha mode slave
ncs-state ha node-id paris_s3
ncs-state ha master-node-id paris_m

NSO Cluster HA
In this example there are 2 Clusters, PARIS and LONDON. PARIS is the master cluster, and LONDON
the slave cluster. Cluster PARIS consist of the service node pariss and the device node parisd1. Cluster
LONDON consist of the service node londons and the device node londond1. pariss is the master to slave
londons, parisd1 is the master to slave londond1.

The service nodes will require some additional configuration for remote node communication.

BGP will be enabled for the service nodes, so pariss and londons will require some additional
configuration for the quagga device, using the NED quagga-bgp.

NSO Tailf HCC
25

NSO Tailf HCC Examples
NSO Cluster HA

ncs-
cluster-

The hostsfile for nct used in this example:

 $ cat hostsfile
{"192.168.50.1", [

NSO Tailf HCC
26

NSO Tailf HCC Examples
Node OS configuration

tool
hostsfile

 {name, "pariss"},
 {groups, ["all", "service", "paris"]},
 {ssh_user, ...}, {ssh_pass, ...}
]}.
{"192.168.40.1", [
 {name, "londons"},
 {groups, ["all", "service", "london"]},
 {ssh_user, ...}, {ssh_pass, ...},
]}.
{"192.168.50.2", [
 {name, "parisd1"},
 {groups, ["all", "device", "paris"]},
 {ssh_user, ...}, {ssh_pass, ...},
]}.
{"192.168.40.2", [
 {name, "londond1"},
 {groups, ["all", "device", "london"]},
 {ssh_user, ...}, {ssh_pass, ...},
]}.

Node OS configuration
Hostname Resolution

The ha member names match the machine hostname, and is resolvable.

The cluster configuration needs to point to the Device node(s) as part of the ‘remote-node’ configuration.
As the service nodes pariss and londons share any configuration stored in CDB, an additional hostname
is added for the device nodes. The Service Node in each cluster needs to resolve the hostname d1 to the
appropriate address for its referenced cluster, as shown below.

The hosts-file on each node:

Corresponding terminal command: '$ cat /etc/hosts'
issued on each node
$ nct ssh-cmd --hostsfile hostsfile -c 'cat /etc/hosts'

SSH command to 192.168.50.1:22 [pariss]
SSH OK : 'ssh cat /etc/hosts' returned:
127.0.1.1 pariss
127.0.0.1 localhost
192.168.50.1 pariss
192.168.40.1 londons
192.168.50.2 parisd1 d1
192.168.50.21 s-vip

SSH command to 192.168.40.1:22 [londons]
SSH OK : 'ssh cat /etc/hosts' returned:
127.0.1.1 londons
127.0.0.1 localhost
192.168.50.1 pariss
192.168.40.1 londons
192.168.40.2 londond1 d1
192.168.50.21 s-vip

SSH command to 192.168.50.2:22 [parisd1]
SSH OK : 'ssh cat /etc/hosts' returned:
127.0.1.1 parisd1
127.0.0.1 localhost
192.168.50.1 pariss

NSO Tailf HCC
27

NSO Tailf HCC Examples
Node OS configuration

192.168.50.2 parisd1
192.168.40.2 londond1

SSH command to 192.168.40.2:22 [londond1]
SSH OK : 'ssh cat /etc/hosts' returned:
127.0.1.1 londond1
127.0.0.1 localhost
192.168.40.1 londons
192.168.50.2 parisd1
192.168.40.2 londond1

Cluster remote-node SSH Keys
Cluster configuration needs to maintain the SSH Keys for authentication to the ‘remote-node’ in its
configuration. Therefore, the SSH Keys fetched from Device nodes and maintained in the cluster remote-
node configuration of the Service nodes will need to be the same for d1 in both clusters. The only way to
achieve this is to use the same SSH Keys on both Device nodes, parisd1 and londond1. This can be done
by copying the SSH Keys from NCS on one of the Device nodes to the other after installation of NCS on
each node (SSH Keys get generated during NCS installation).

Node NSO configuration
Each node has enabled ha in ncs.conf:

<ha>
 <enabled>true</enabled>
</ha>

tailf-hcc is properly loaded on each node:

Corresponding CLI command: 'user@ncs> show packages package tailf-hcc'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show packages package tailf-hcc"

Cli command to 192.168.50.1 [pariss]
packages package tailf-hcc
 package-version 4.0
 description "NED package for Tail-f HA Cluster Control Interface"
 ncs-min-version [4.0.1]
 ...
 oper-status up

Cli command to 192.168.40.1 [londons]
packages package tailf-hcc
 package-version 4.0
 description "NED package for Tail-f HA Cluster Control Interface"
 ncs-min-version [4.0.1]
 ...
 oper-status up
... etc

quagga-bgp is properly loaded on the service nodes:

Corresponding CLI command: 'user@ncs> show packages package quagga-bgp'
issued on each service node
$ nct cli-cmd --hostsfile hostsfile
 -c "show packages package quagga-bgp" --group service

Cli command to 192.168.50.1 [pariss]
packages package quagga-bgp
 package-version 3.3.0

NSO Tailf HCC
28

NSO Tailf HCC Examples
Node OS configuration

 description "NED package for Quagga BGP daemon"
 ncs-min-version [3.1 3.2 3.3 3.4 4.0]
 ...
 oper-status up

Cli command to 192.168.40.1 [londons]
packages package quagga-bgp
 package-version 3.3.0
 description "NED package for Quagga BGP daemon"
 ncs-min-version [3.1 3.2 3.3 3.4 4.0]
 ...
 oper-status up

Cluster configuration on the Service nodes
The service nodes have configuration to communicate with its remote nodes (the SSH keys for the remote
nodes have been fetched):

Corresponding CLI command: 'user@ncs> show configuration cluster'
issued on each service node
$ nct cli-cmd --hostsfile hostsfile -c "show configuration cluster"
--group service

Cli command to 192.168.50.1 [pariss]
remote-node d1 {
 address d1;
 port 2022;
 ssh {
 host-key ssh-dss {
 key-data ...;
 }
 }
 authgroup default;
 trace pretty;
}
authgroup default {
 default-map {
 same-user;
 same-pass;
 }
 umap admin {
 same-user;
 remote-password ...;
 }
 umap hcctest {
 remote-name admin;
 remote-password ...;
 }
 umap oper {
 same-user;
 remote-password ...;
 }
}

NSO Tailf HCC
29

NSO Tailf HCC Examples
Node OS configuration

Note In the authgroup default there is a umap for the user hcctest, which is used by tailf-hcc to authenticate
towards the remote nodes during monitoring. When a human user is invoking an action, the current session
user will be used instead.

BGP configuration on the Service nodes
The service nodes have configuration to communicate and configure quagga-devices. As they share
configuration, the quagga-device for pariss will be present in londons as well. Although the quagga-device
for pariss will be out-of-sync on londons , and vice versa. The nodes will be configured with the quagga-
devices it should communicate with in its ha-configuration.

The quagga-device configuration for both service nodes:

Corresponding CLI command: 'user@ncs> show configuration devices device'
issued on each service node
$ nct cli-cmd --hostsfile hostsfile -c "show configuration devices device"
--group service

device quagga_london {
 address londons;
 port 2605;
 authgroup quagga;
 device-type {
 cli {
 ned-id quagga-bgp;
 protocol telnet;
 }
 }
 state {
 admin-state unlocked;
 }
 config {
 ...
 }
}
device quagga_paris {
 address pariss;
 port 2605;
 authgroup quagga;
 device-type {
 cli {
 ned-id quagga-bgp;
 protocol telnet;
 }
 }
 state {
 admin-state unlocked;
 }
 config {
 ...
 }
}

Corresponding CLI command: 'user@ncs> show configuration devices authgroups group quagga'
issued on each service node
$ nct cli-cmd --hostsfile hostsfile -c "show configuration devices authgroups group quagga"
--group service

umap admin {

NSO Tailf HCC
30

NSO Tailf HCC Examples
Node OS configuration

 remote-name bgpd;
 remote-password ...;
}
umap hcctest {
 remote-name bgpd;
 remote-password ...;
}

Note In the authgroups group quagga there is a umap for the user hcctest, which is used by tailf-hcc to
authenticate towards the remote nodes during monitoring.

The service nodes will reconfigure its quagga device depending on its current HA state, by applying one of
four device templates, which need to be present in the configuration as well:

Corresponding CLI command: 'user@ncs> show configuration devices template'
issued on 'pariss'
$ nct cli-cmd --hostsfile hostsfile -c "show configuration devices
template" --name pariss

Cli command to 192.168.50.1 [pariss]
template hcc-failover-master {
 config {
 quagga-bgp:hostname FAILOVERMASTER;
 quagga-bgp:route-map SET-MED 10 {
 set {
 metric 10;
 }
 }
 }
}
template hcc-master {
 config {
 quagga-bgp:hostname MASTER;
 quagga-bgp:route-map SET-MED 10 {
 set {
 metric 12;
 }
 }
 }
}
template hcc-none {
 config {
 quagga-bgp:hostname NONE;
 quagga-bgp:route-map SET-MED 10 {
 set {
 metric 20;
 }
 }
 }
}
template hcc-slave {
 config {
 quagga-bgp:hostname SLAVE;
 quagga-bgp:route-map SET-MED 10 {
 set {
 metric 15;
 }
 }
 }
}

NSO Tailf HCC
31

NSO Tailf HCC Examples
Node OS configuration

Note The above templates are very generic and only change the metric value for the device. In reality, these
templates will be bigger, and not possible to generalize. The above templates can be generated with the
action ha action create-bgp-templates to give a starting point.

It is also quite possible that the device nodes need to apply different device-templates for the same state.
This can be achieved by adding templates with a hostname suffix, which will then have precedence. For
example the hcc-master-pariss will have precedence over the template hcc-master

HA configuration on the Service nodes
The ha configuration for both service nodes:

Corresponding CLI command: 'user@ncs> show configuration ha'
issued on each service node
$ nct cli-cmd --hostsfile hostsfile -c "show configuration ha"
--group service

Cli command to 192.168.50.1 [pariss]
token s;
local-user hcctest;
bgp {
 anycast-prefix 192.168.60.100/32;
 anycast-path-min 3;
 clear-enabled true;
}
member londons {
 address 192.168.40.1;
 default-ha-role slave;
 failover-master true;
 cluster-manager true;
 quagga-device quagga_london;
 managed-cluster-nodes [d1];
}
member pariss {
 address 192.168.50.1;
 default-ha-role master;
 cluster-manager true;
 quagga-device quagga_paris;
 managed-cluster-nodes [d1];
}

Cli command to 192.168.40.1 [londons]
<same as for pariss>

The local-user hcctest will be used for authentication towards both the remote-nodes and quagga-
devices. pariss is configured to use the device quagga_paris and londons is configured to use the device
quagga_london. Both nodes are configured to manage the remote-node d1, which will be resolved to
parisd1 on pariss and to londond1 on londons.

Configuration on the Device nodes
The device nodes have less complicated configuration as they do not manage other nodes, nor need to
communicate with a quagga device:

Corresponding CLI command: 'user@ncs> show configuration ha'
issued on each device node
$ nct cli-cmd --hostsfile hostsfile -c "show configuration ha"
 --group device

NSO Tailf HCC
32

NSO Tailf HCC Examples
Node OS configuration

Cli command to 192.168.50.2 [parisd1]
token d1;
member londond1 {
 address 192.168.40.2;
 default-ha-role slave;
 failover-master true;
}
member parisd1 {
 address 192.168.50.2;
 default-ha-role master;
}

Cli command to 192.168.40.2 [londond1]
<same as for parisd1>

Activate HA

Show status before activation
Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show ncs-state ha"

Cli command to 192.168.50.1 [pariss]
ncs-state ha mode none

Cli command to 192.168.40.1 [londons]
ncs-state ha mode none

Cli command to 192.168.50.2 [parisd1]
ncs-state ha mode none

Cli command to 192.168.40.2 [londond1]
ncs-state ha mode none

When not activated, the none-template have been applied to the quagga devices. Verify that the hostname
is NONE:

$ telnet 192.168.50.1 2605 #pariss quagga
...
NONE> exit #<-- Hostname NONE
Connection closed by foreign host.

$ telnet 192.168.40.1 2605 #londons quagga
...
NONE> exit #<-- Hostname NONE
Connection closed by foreign host.

Activate HA
Activate HA by invoking the action activate First on the PARIS cluster, then on the LONDON cluster:

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on each node in *PARIS* cluster
$ nct ha --hostsfile hostsfile --action activate --group paris

HA Node 192.168.50.1:8080 [pariss]
activated

HA Node 192.168.50.2:8080 [parisd1]
activated

NSO Tailf HCC
33

NSO Tailf HCC Examples
Node OS configuration

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on node each in *LONDON* cluster
$ nct ha --hostsfile hostsfile --action activate --group london

HA Node 192.168.40.1:8080 [londons]
activated

HA Node 192.168.40.2:8080 [londond1]
activated

Show status after activation
Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show ncs-state ha"

Cli command to 192.168.50.1 [pariss]
ncs-state ha mode master
ncs-state ha node-id pariss
ncs-state ha connected-slave [londons]

Cli command to 192.168.40.1 [londons]
ncs-state ha mode slave
ncs-state ha node-id londons
ncs-state ha master-node-id pariss

Cli command to 192.168.50.2 [parisd1]
ncs-state ha mode master
ncs-state ha node-id parisd1
ncs-state ha connected-slave [londond1]

Cli command to 192.168.40.2 [londond1]
ncs-state ha mode slave
ncs-state ha node-id londond1
ncs-state ha master-node-id parisd1

Check Quagga
When activated, the master-template has been applied to the quagga_paris device, and the slave-template
has been applied to the quagga_london device:

$ telnet 192.168.50.1 2605 #pariss quagga
...
MASTER> exit #<-- Hostname MASTER
Connection closed by foreign host.

$ telnet 192.168.40.1 2605 #londons quagga
...
SLAVE> exit #<-- Hostname MASTER
Connection closed by foreign host.

HA Failover

Simulate failover
Simulate that the node pariss is down by deactivating it:

Corresponding CLI command: 'user@ncs> request ha commands deactivate'
issued on node 'pariss'
$ nct ha --hostsfile hostsfile --action deactivate --name pariss

HA Node 192.168.50.1:8080 [pariss]

NSO Tailf HCC
34

NSO Tailf HCC Examples
Node OS configuration

deactivated

Check failover
Check that the failover cluster transitioned to master

Note Failover will take (interval*failure limit) seconds before the failover master confirms loss of master and
initiates a failover. If the Master-Slave communication is re-established during this period, HA operation
would continue as normal

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show ncs-state ha"

Cli command to 192.168.50.1 [pariss]
ncs-state ha mode none

Cli command to 192.168.40.1 [londons]
ncs-state ha mode master
ncs-state ha node-id londons

Cli command to 192.168.50.2 [parisd1]
ncs-state ha mode master
ncs-state ha node-id parisd1

Cli command to 192.168.40.2 [londond1]
ncs-state ha mode master
ncs-state ha node-id londond1

londons noticed that it lost connectivity with its master, and transitioned to master. It also instructed its
remote-node londond1 to transition to master.

Note parisd1 is unaware that pariss is down, and will not automatically change its HA state.

Check Quagga
During a failover, the failover-master-template has been applied to the quagga_london device, and since
this was a controlled failure of pariss, the none-template has been applied to the quagga_paris device:

$ telnet 192.168.50.1 2605 #pariss quagga
...
NONE> exit #<-- Hostname NONE
Connection closed by foreign host.

$ telnet 192.168.40.1 2605 #londons quagga
...
FAILOVERMASTER> exit #<-- Hostname FAILOVERMASTER
Connection closed by foreign host.

HA Fail-back to original configuration
After rectifying the cause of the Master-slave communication failure, the approach is to bring the original
Master cluster back online initially as a Slave, which will then connect to the new Master to complete a
CDB re-sync prior to being transitioned to the operational Master.

There are no provisions in the tailf-hcc application to automatically sense and initiate a revert back to the
original HA Cluster configuration.

NSO Tailf HCC
35

NSO Tailf HCC Examples
Node OS configuration

Note It is very important that the original master cluster is setup to be Slave to the failover master cluster before
activation after a fail-over. If not, potential configuration loss may occur.

Override to slave
Override the ha role of the cluster nodes in PARIS to slave then activate:

Corresponding CLI command: 'user@ncs> request ha commands role-override role slave'
issued on each node in *PARIS* cluster
$ nct ha --hostsfile hostsfile --action role-override --role slave
--group paris

HA Node 192.168.50.1:8080 [pariss]
override

HA Node 192.168.50.2:8080 [parisd1]
override

Corresponding CLI command: 'user@ncs> request ha commands activate'
issued on each node in *PARIS* cluster
$ nct ha --hostsfile hostsfile --action activate --group paris

HA Node 192.168.50.1:8080 [pariss]
activated

HA Node 192.168.50.2:8080 [parisd1]
activated

Verify override
Verify that cluster PARIS now is slave to cluster LONDON

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show ncs-state ha"

Cli command to 192.168.50.1 [pariss]
ncs-state ha mode slave
ncs-state ha node-id pariss
ncs-state ha master-node-id londons

Cli command to 192.168.40.1 [londons]
ncs-state ha mode master
ncs-state ha node-id londons
ncs-state ha connected-slave [pariss]

Cli command to 192.168.50.2 [parisd1]
ncs-state ha mode slave
ncs-state ha node-id parisd1
ncs-state ha master-node-id londond1

Cli command to 192.168.40.2 [londond1]
ncs-state ha mode master
ncs-state ha node-id londond1
ncs-state ha connected-slave [parisd1]

Check Quagga
During a role-override, the slave-template has been applied to the quagga_paris device:

NSO Tailf HCC
36

NSO Tailf HCC Examples
Node OS configuration

$ telnet 192.168.50.1 2605 #pariss quagga
...
SLAVE> exit #<-- Hostname SLAVE
Connection closed by foreign host.

$ telnet 192.168.40.1 2605 #londons quagga
...
FAILOVERMASTER> exit #<-- Hostname FAILOVERMASTER
Connection closed by foreign host.

Role-revert nodes
Role-revert all nodes

Note Allow adequate time for CDB on re-activated paris_m to sync with CDB on the failed-over Master. The
time depends on the CDB size and how much of the CDB needs to be updated.

First role-revert cluster PARIS then cluster LONDON:

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on each node in *PARIS* cluster
$ nct ha --hostsfile hostsfile --action role-revert --group paris

HA Node 192.168.50.1:8080 [pariss]
reverted

HA Node 192.168.50.2:8080 [parisd1]
reverted

Corresponding CLI command: 'user@ncs> request ha commands role-revert'
issued on each node in *LONDON* cluster
$ nct ha --hostsfile hostsfile --action role-revert --group london

HA Node 192.168.40.1:8080 [londons]
reverted

HA Node 192.168.40.2:8080 [londond1]
reverted

Verify role-revert
Verify cluster PARIS is master once again

Corresponding CLI command: 'user@ncs> show ncs-state ha'
issued on each node
$ nct cli-cmd --hostsfile hostsfile -c "show ncs-state ha"

Cli command to 192.168.50.1 [pariss]
ncs-state ha mode master
ncs-state ha node-id pariss
ncs-state ha connected-slave [londons]

Cli command to 192.168.40.1 [londons]
ncs-state ha mode slave
ncs-state ha node-id londons
ncs-state ha master-node-id pariss

Cli command to 192.168.50.2 [parisd1]
ncs-state ha mode master
ncs-state ha node-id parisd1

NSO Tailf HCC
37

NSO Tailf HCC Examples
FAQ and known issues

ncs-state ha connected-slave [londond1]

Cli command to 192.168.40.2 [londond1]
ncs-state ha mode slave
ncs-state ha node-id londond1
ncs-state ha master-node-id parisd1

Check Quagga
After role-revert, the master-template has been applied to the quagga_paris device, and the slave-template
has been applied to the quagga_london device:

$ telnet 192.168.50.1 2605 #pariss quagga
...
MASTER> exit #<-- Hostname MASTER
Connection closed by foreign host.

$ telnet 192.168.40.1 2605 #londons quagga
...
SLAVE> exit #<-- Hostname SLAVE
Connection closed by foreign host.

FAQ and known issues
FAQ

1. After a failover, the new Master cannot connect to its devices, with a authentication failure

As the Master and Slave(s) share the same configuration stored in CDB, they also share the
encrypted passwords for authentication. Therefore, the encryption keys must be the same on the
master and slave nodes in ncs.conf

2. After activating tailf-hcc, nothing happens, the node(s) does not transition to its configured HA-role

Most likely there is a hostname <→ ha member-name mismatch. tailf-hcc will use the node
hostname to identify which member instance configuration to apply. It is therefore required that
the hostname and member’s name is the same

3. Which log files are of interest?

The package is mainly written in Java, so when something goes wrong, start by looking in the
ncs-java-vm.log in the log-directory for ncs (default under /var/log/ncs). If you are
using the VIP-functionality, you also need to look at the devel.log, as the VIP code is written in
erlang and uses the devel.log for logging.

4. Any other debugging tips?

NCS Master and Slave communicates over TCP. The port used is configured in ncs.conf, and
must be the same on the Master and the Slave(s). Make sure that no firewall etc is blocking this
port, with your flavour of iptables command, for example, and you can see which ports the host is
listening to with netstat -anp | grep tcp

Issues
Issues with HA in Openstack VM environment

• Openstack VMs have a VM-level psuedo-firewall capability called Security Groups that needs to
allow the appropriate protocols/ports.

• Issues with unidirectional master-slave traffic - return packet lost in Openstack infrastructure.
Customers have seen, with tcp dump, that the Slave sends a SYN as soon as the master goes

NSO Tailf HCC
38

NSO Tailf HCC Examples
Issues

down, Master sends back a RST,ACK but the Slave never gets that last packet, so the Slave
keeps waiting until the timeout*retries expires. This could be caused by the Neutron bug (https://
bugs.launchpad.net/neutron/+bug/1460741), but this is unconfirmed.

NSO Tailf HCC
39

https://bugs.launchpad.net/neutron/+bug/1460741
https://bugs.launchpad.net/neutron/+bug/1460741

NSO Tailf HCC Examples
Issues

NSO Tailf HCC
40

CHAPTER 4
The NSO Tailf HCC Models

• NSO Tailf HCC model, page 41

• NSO Tailf HCC typedefs model, page 47

• NSO Tailf HCC Actions model, page 47

• NSO Tailf HCC Alarms model, page 51

NSO Tailf HCC model
Example 10. NSO Tailf HCC YANG Model

module tailf-hcc {
 namespace "http://tail-f.com/pkg/tailf-hcc";
 prefix hcc;

 import ietf-inet-types {
 prefix inet;
 }
 import tailf-common {
 prefix tailf;
 }
 import tailf-ncs {
 prefix ncs;
 }
 include tailf-hcc-typedefs {
 revision-date "2015-09-14";
 }
 include tailf-hcc-alarms {
 revision-date "2015-09-14";
 }
 include tailf-hcc-actions {
 revision-date "2015-09-14";
 }

 organization "Tail-f Systems";
 description
 "This module contains a collection of YANG definitions for
 configuring and monitoring the NCS high availability
 API. This yang file is used by the Tail-f Cluster Manager (tailf-hcc)
 package.";

 revision 2017-12-22 {
 description

NSO Tailf HCC
41

The NSO Tailf HCC Models
NSO Tailf HCC model

 "Support of multiple VIP";
 }

 revision 2017-05-05 {
 description
 "Add the netmask leaf to the VIP configuration";
 }

 revision 2016-03-10 {
 description
 "Removed the operational leaf 'current-ha-role', as the ncs operational
 leaf '/ncs-state/ha' contains the same information";
 }

 revision 2015-09-14 {
 description
 "Initial revision.";
 }

 grouping vip-content {
 leaf address {
 mandatory true;
 tailf:info "The Virtual IP address to bring up on a labeled interface";
 type inet:ip-address;
 }
 leaf netmask {
 tailf:info "The netmask used for the labeled interface";
 type inet:ip-address;
 description
 "The netmask used for the brought up VIP. If it is not present
 in the configuration, the netmask will be the same as the one
 from the underlying interface.";
 }
 leaf broadcast-address {
 tailf:info "The Broadcast address used for the labeled interface";
 type inet:ip-address;
 description
 "The broadcast address used for the brought up VIP. If it is not present
 in the configuration, the broadcast address will be calculated from the
 address and netmask (configured or taken from the underlying interface).";
 }
 }

 augment "/hcc:ha" {
 uses local-actions;
 }
 augment "/ncs:cluster/ncs:remote-node" {
 uses remote-actions;
 }
 container ha {
 presence "Enable hcc ha";
 tailf:info "High availability cluster configuration";
 leaf token {
 tailf:info "A shared secret within an HA group.";
 type string;
 mandatory true;
 description
 "This value is used as the shared secret when setting
 up HA between nodes. All nodes within the same HA group
 (e.g a master-node and slave(s)) must share this token,
 and the token must be unique";
 }

NSO Tailf HCC
42

The NSO Tailf HCC Models
NSO Tailf HCC model

 leaf local-user {
 when "../member/cluster-manager = 'true' or ../bgp";
 tailf:info "local-user used for remote device and/or quagga device authentication";
 type string;
 description
 "The local user used by tailf-hcc to issue actions on remote nodes
 and/or configure the quagga device. It must match a local user under
 /cluster/authgroup/umap and/or /devices/authgroups/group/umap";
 }

 leaf interval {
 tailf:info "Interval on which HA state is checked (seconds)";
 type int32 {
 range "1..60";
 }
 default "4";
 description
 "Interval on which a (slave) node check its HA status.
 The node will check if it has connection with its master.
 If the node is a cluster-manager, it will also check the HA-status
 of its managed remote-nodes. If the node is a cluster-manager and BGP
 is enabled, it will also check the anycast prefix path length on the
 BGP device.";
 }

 leaf failure-limit {
 tailf:info "Number of failed HA state check interval(s) before declaring a failure";
 type int32 {
 range "1..100";
 }
 default "10";
 description
 "This is the number of times a slave node notice that it, or its
 managed remote-nodes, lost HA connection with its master. When the limit is hit,
 the node will declare a failure and a failover-process will initiate.";
 }
 choice l2orl3 {
 case l3 {
 container bgp {
 must '/ncs:devices/ncs:template[starts-with(., "hcc-master")]' {
 error-message "You must have a device template starting with the name 'hcc-master'";
 }
 must '/ncs:devices/ncs:template[starts-with(., "hcc-failover-master")]' {
 error-message "You must have a device template starting with the name 'hcc-failover-master'";
 }
 must '/ncs:devices/ncs:template[starts-with(., "hcc-slave")]' {
 error-message "You must have a device template starting with the name 'hcc-slave'";
 }
 must '/ncs:devices/ncs:template[starts-with(., "hcc-none")]' {
 error-message "You must have a device template starting with the name 'hcc-none'";
 }

 must " ../local-user" {
 error-message "You must specify a local-user for quagga device authentication";
 }
 tailf:info "BGP anycast failover configuration";
 presence "Enable BGP";
 description
 "The configuration needed for BGP monitoring and configuring. The node
 will apply different device templates depending on which HA state it is in.
 The (slave) node will monitor a configured anycast prefix paths,

NSO Tailf HCC
43

The NSO Tailf HCC Models
NSO Tailf HCC model

 and when the number of paths fall below a set minimum, the node will
 start the failover process, which include applying a failover device template.";
 leaf failure-limit {
 tailf:info "Number of failed anycast path state check before declaring a failure";
 type int32 {
 range "1..100";
 }
 default "10";
 description
 "This is the number of times a slave node notice that the prefix anycast
 path is lower than the configured minimum.
 When the limit is hit, the node will declare a failure and
 a failover-process will initiate.";
 }
 leaf anycast-prefix {
 tailf:info "BGP anycast prefix to monitor";
 type inet:ip-prefix;
 mandatory true;
 }
 leaf anycast-path-min {
 tailf:info "Minimum number of valid anycast paths before the declaring loss of connectivity";
 type int32;
 default "3";
 description
 "The minimum number of valid anycast paths. When below this number
 more times than the allowed failure limit, configured under
 /ha/bgp/failure-limit, a loss of connectivity to the master
 node is declared, and a fail over is initiated";
 }
 leaf clear-enabled {
 tailf:info "If set, all BGP sessions and routes are cleared each time a new configuration is applied to the quagga device";
 type boolean;
 default "false";
 description
 "In the case of applying configuration towards a quagga device, should the node
 also clear BGP sessions and routes on the quagga";
 }
 }
 }
 case l2 {
 choice vip-ordinal-choice {
 case vip-single {
 container vip {
 status deprecated;
 presence "Enable VIP";
 tailf:info "VIP failover configuration (deprecated)";
 description
 "If enabled, a VIP with the label $interface:ncsvip will be
 added for the current master node with the address specified.";

 uses vip-content;
 }
 }
 case vip-multiple {
 container vips {
 tailf:info "VIPs failover configuration";
 list vip {
 key "address";
 description
 "If list contains VIPs, then with the label $interface:ncsvip they will be
 added for the current master node with the address specified.";

NSO Tailf HCC
44

The NSO Tailf HCC Models
NSO Tailf HCC model

 uses vip-content;
 }
 }
 }
 }
 }
 }
 list member {
 must "count(../member[default-ha-role = 'master']) <= 1" {
 error-message "At most one node can serve as a master";
 }
 must "count(../member[failover-master = 'true']) <= 1" {
 error-message "At most one node can serve as a failover master";
 }
 must "not(./cluster-manager = 'true') or ../local-user" {
 error-message "You must specify a local-user for remote node authentication";
 }
 must "not(../bgp) or ./quagga-device" {
 error-message "You must specify a device used for BGP monitoring";
 }
 must "not(../vip) or ./vip-interface" {
 error-message "You must specify a vip interface when vip is enabled";
 }
 must "not(../vips/vip) or (count(./vip-interfaces/vip-interface) = count(../vips/vip))" {
 error-message "You must specify a vip interface for each vip enabled";
 }
 key name;
 unique "address";
 max-elements 64;
 tailf:info "HA Cluster member configuration";
 description
 "This table is the cluster member nodes";
 leaf name {
 tailf:info "The name of the member. Must be the same as the member's hostname";
 type string;
 }
 leaf address {
 tailf:info "Ip Address of the ncs instance";
 type inet:ip-address;
 mandatory true;
 }
 leaf default-ha-role {
 tailf:info "The preferred HA role for this member";
 type cluster-role-type;
 default none;
 description
 "This is the HA role the node should have when everything is
 working as it should. This is also the role the node will try
 to take when given the action 'role-revert'";
 }
 leaf failover-master {
 tailf:info "HA node will assume role of HA master when default HA master is down";
 when "../default-ha-role = 'slave'";
 type boolean;
 default "false";
 }
 leaf relay-name {
 type leafref {
 path "/hcc:ha/hcc:member/hcc:name";
 }
 tailf:info "This member's relay-node";
 description "The name of the node that should act as a relay

NSO Tailf HCC
45

The NSO Tailf HCC Models
NSO Tailf HCC model

 between this node and the master";
 }
 leaf cluster-manager {
 type boolean;
 default "false";
 tailf:info "A cluster manager will manage HA within its NCS cluster";
 description
 "A cluster node acting as Cluster manager
 will monitor and manage HA for all its remote nodes
 specified under /ha/member/managed-cluster-nodes";
 }
 leaf-list managed-cluster-nodes {
 when "../cluster-manager = 'true'";
 type leafref {
 path "/ncs:cluster/ncs:remote-node/ncs:name";
 }
 tailf:info "Remote nodes in the cluster managed by the cluster-manager";
 description
 "The remote nodes for which the cluster-manager should monitor HA status,
 and manage HA roles depending on changes in the HA network.";
 }
 leaf quagga-device {
 when "../../bgp";
 type leafref {
 path "/ncs:devices/ncs:device/ncs:name";
 }
 tailf:info "Device used for BGP anycast monitoring and managing";
 }
 choice vip-ordinal-choice {
 case vip-multiple {
 container vip-interfaces {
 list vip-interface {
 key "vip-interface address";
 when "../../../hcc:vips/vip";
 tailf:info "The interfaces used for the vips";

 leaf vip-interface {
 type string;
 }

 leaf address {
 type leafref {
 path "../../../../hcc:vips/hcc:vip/hcc:address";
 }
 }
 }
 }
 }
 case vip-single {
 leaf vip-interface {
 status deprecated;
 when "../../vip";
 tailf:info "The interface used for the vip (deprecated)";
 type string;
 }
 }
 }
 }
 }
}

NSO Tailf HCC
46

The NSO Tailf HCC Models
NSO Tailf HCC typedefs model

NSO Tailf HCC typedefs model
Example 11. NSO Tailf HCC notif typedefs Model

submodule tailf-hcc-typedefs {
 belongs-to tailf-hcc {
 prefix hcc;
 }

 revision "2015-09-14" {
 description "Initial revision";
 }

 typedef cluster-role-type {
 type enumeration {
 enum unknown {value 0;}
 enum none {value 1;}
 enum slave {value 2;}
 enum master {value 3;}
 enum relay {value 4;}
 }
 }
}

NSO Tailf HCC Actions model
Example 12. NSO Tailf HCC actions YANG Model

submodule tailf-hcc-actions {
 belongs-to tailf-hcc {
 prefix hcc;
 }

 import tailf-common {
 prefix tailf;
 }

 import tailf-ncs {
 prefix ncs;
 }

 include tailf-hcc-typedefs;

 description
 "This submodule contains all tailf:actions used for managing the ha.";

 revision "2015-09-14" {
 description "Initial revision";
 }

 //Actions used both locally and remotely.
 grouping shared-actions {
 tailf:action activate {
 tailf:actionpoint hcc-action-point;
 tailf:info "Activate HA";
 output {
 leaf status {
 type string;
 }
 }
 description

NSO Tailf HCC
47

The NSO Tailf HCC Models
NSO Tailf HCC Actions model

 "The node will be activated and take the HA role configured
 under /ha/member/default-ha-role";
 }

 tailf:action deactivate {
 tailf:actionpoint hcc-action-point;
 tailf:info "deactivate HA";
 output {
 leaf status {
 type string;
 }
 }
 description
 "The node will be deactivated, and the HA role 'none'";
 }

 tailf:action role-override {
 tailf:actionpoint hcc-action-point;
 tailf:info "Override the current HA role";
 input {
 leaf role {
 type cluster-role-type;
 }
 }
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action role-revert {
 tailf:actionpoint hcc-action-point;
 tailf:info "Revert the HA role to the default-ha-role value";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action status {
 tailf:actionpoint hcc-action-point;
 tailf:info "Retrieve node HA status";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action connect-state {
 tailf:actionpoint hcc-action-point;
 tailf:hidden "hcc-remote-actions";
 tailf:info "Retrieve node connection state on a remote node";
 output {
 leaf status {
 type string;
 }
 }
 }
 }

NSO Tailf HCC
48

The NSO Tailf HCC Models
NSO Tailf HCC Actions model

 grouping cluster-wide-actions {
 tailf:action cluster-status {
 tailf:actionpoint hcc-action-point;
 tailf:info "Retrieve cluster wide HA status";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action cluster-activate {
 tailf:actionpoint hcc-action-point;
 tailf:info "Issue activation command to all nodes in the cluster";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action cluster-deactivate {
 tailf:actionpoint hcc-action-point;
 tailf:info "Stop all HA activity on all nodes";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action cluster-role-revert {
 tailf:actionpoint hcc-action-point;
 tailf:info "Revert the HA role to the default-ha-role value on all nodes";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action cluster-role-override {
 tailf:actionpoint hcc-action-point;
 tailf:info "Revert the HA role to the default-ha-role value on all nodes";
 input {
 leaf role {
 type cluster-role-type;
 }
 }
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action cluster-connect-state {
 tailf:actionpoint hcc-action-point;
 tailf:hidden "hcc-remote-actions";
 tailf:info "Retrieve cluster wide HA connection state";
 output {

NSO Tailf HCC
49

The NSO Tailf HCC Models
NSO Tailf HCC Actions model

 leaf status {
 type string;
 }
 }
 }
 }

 //Local actions
 grouping local-actions {
 container commands {
 config false;
 tailf:info "Modify HA behavior modifying commands/actions";

 uses shared-actions;
 uses cluster-wide-actions;

 tailf:action force-be-slave-to {
 tailf:actionpoint hcc-action-point;
 tailf:info "Set the node in slave-mode and try to connect to a set master";
 input {
 leaf member {
 type leafref {
 path "/hcc:ha/hcc:member/hcc:name";
 }
 }
 }
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action create-bgp-templates {
 tailf:actionpoint hcc-action-point;
 tailf:info "Creates example device templates for BGP";
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action readonly {
 tailf:actionpoint hcc-action-point;
 tailf:info "Configure the node to be readonly mode";
 input {
 leaf mode {
 type boolean;
 default false;
 }
 }
 output {
 leaf status {
 type string;
 }
 }
 }

 tailf:action reactivate {
 tailf:actionpoint hcc-action-point;
 tailf:info "Issue reactivation command to node";

NSO Tailf HCC
50

The NSO Tailf HCC Models
NSO Tailf HCC Alarms model

 output {
 leaf status {
 type string;
 }
 }
 }
 }
 }

 //Remote actions
 grouping remote-actions {
 container commands {
 tailf:info "Modify HA behavior modifying commands/actions";
 tailf:hidden "hcc-remote-actions";
 uses shared-actions {
 refine activate {
 tailf:actionpoint hcc-rm-ap;
 }

 refine deactivate {
 tailf:actionpoint hcc-rm-ap;
 }

 refine role-override {
 tailf:actionpoint hcc-rm-ap;
 }

 refine role-revert {
 tailf:actionpoint hcc-rm-ap;
 }

 refine status {
 tailf:actionpoint hcc-rm-ap;
 }

 refine connect-state {
 tailf:actionpoint hcc-rm-ap;
 }
 }
 }
 }
}

NSO Tailf HCC Alarms model
Example 13. NSO Tailf HCC alarms YANG Model

submodule tailf-hcc-alarms {
 belongs-to tailf-hcc {
 prefix hcc;
 }

 import tailf-ncs-alarms {
 prefix al;
 }

 organization "Tail-f Systems";

 revision "2015-09-14" {
 description "Initial revision";
 }

NSO Tailf HCC
51

The NSO Tailf HCC Models
NSO Tailf HCC Alarms model

 identity hcc-alarm {
 base al:alarm-type;
 description "Alarms raised by the tailf-hcc package.";
 }

 identity node-failure {
 base hcc-alarm;
 description
 "The node lost HA connection with its master";
 }

 identity device-node-failure {
 base hcc-alarm;
 description
 "A service node noticed one of its device nodes lost
 HA connection with its master";
 }

 identity bgp-failure {
 base hcc-alarm;
 description
 "A service node noticed it lost its BGP prefix path to
 its master";
 }
}

NSO Tailf HCC
52

CHAPTER 5
Resources

• References for further reading, page 53

References for further reading
NSO Packages chapter in NSO 4.7 Administration Guide.

The AAA Infrastructure chapter in NSO 4.7 Administration Guide.

NSO Tailf HCC
53

Resources
References for further reading

NSO Tailf HCC
54

	NSO Tailf HCC
	Table of Contents
	Chapter 1. NSO Tailf HCC Guide
	Introduction

	Chapter 2. NSO Tailf HCC Usage
	NSO HA
	Tail-f High Availability Cluster Communications (tailf-hcc)
	Configuration
	NSO/OS requirements and configuration
	HA
	Global configuration
	VIP configuration
	BGP Anycast Configuration
	Member Configuration

	Actions
	Node actions
	Cluster manager node actions

	How it works
	Basics
	Three types of failure
	Failover
	In a Cluster
	With BGP Enabled
	BGP configuration logic
	VIP logic

	Alarms

	Chapter 3. NSO Tailf HCC Examples
	Basic deployment
	Node OS Configuration
	Node NSO Configuration

	Advanced
	Node OS Configuration
	Node NSO Configuration
	Activate HA
	Check VIP Interfaces
	HA Failover
	HA Fail-back to original configuration
	Override to slave
	Verify override
	Role-revert nodes
	Verify role-revert
	Check VIP interface

	HA Disaster Recovery
	Simulate disaster failover
	Check HA status
	Set a new master
	Force to be slave
	Verify new master
	Role-revert nodes
	Verify role-revert

	NSO Cluster HA
	Node OS configuration
	Hostname Resolution
	Cluster remote-node SSH Keys
	Node NSO configuration
	Cluster configuration on the Service nodes
	BGP configuration on the Service nodes
	HA configuration on the Service nodes
	Configuration on the Device nodes

	Activate HA
	Show status before activation
	Activate HA
	Show status after activation
	Check Quagga

	HA Failover
	Simulate failover
	Check failover
	Check Quagga

	HA Fail-back to original configuration
	Override to slave
	Verify override
	Check Quagga
	Role-revert nodes
	Verify role-revert
	Check Quagga

	FAQ and known issues
	FAQ
	Issues

	Chapter 4. The NSO Tailf HCC Models
	NSO Tailf HCC model
	NSO Tailf HCC typedefs model
	NSO Tailf HCC Actions model
	NSO Tailf HCC Alarms model

	Chapter 5. Resources
	References for further reading

