
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
Tel: 800 553-NETS (6387)
Fax: 408 527-0883

Administration Guide
Release: NSO 6.1

Published: May 17, 2010

Last Modified: April 14, 2023

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED
WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output,
network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is
unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (1110R)

This product includes software developed by the NetBSD Foundation, Inc. and its contributors.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit http://www.openssl.org/.

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

U.S. Pat. No. 8,533,303 and 8,913,519

Copyright © 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021-2023 Cisco Systems, Inc. All rights reserved.

ii

https://www.cisco.com/go/trademarks
https://www.cisco.com/go/trademarks
https://www.openssl.org/

CONTENTS

CHAPTER 1 Introduction 1

CHAPTER 2 NSO System Management 3

Introduction 3

Configuring NSO 3

Overview 3

Configuration file 3

Dynamic configuration 4

Built-in or external SSH server 4

Starting NSO 5

Licensing NSO 5

Monitoring NSO 5

NSO status 5

Monitoring the NSO daemon 6

Logging 6

syslog 8

Log messages and formats 8

Trace ID 26

Backup and restore 27

Backup 27

NSO Restore 27

Disaster management 27

NSO fails to start 28

NSO failure after startup 29

Transaction commit failure 29

Troubleshooting 30

Installation Problems 30

Problems Starting NSO 30

Administration Guide
iii

Contents

Problems Running Examples 30

Problems Using and Developing Services 31

General Troubleshooting Strategies 31

CHAPTER 3 Cisco Smart Licensing 35

Introduction 35

Smart Accounts and Virtual Accounts 35

Request a Smart Account 35

Adding users to a Smart Account 37

Create a License Registration Token 38

Notes on Configuring Smart Licensing 41

Validation and Troubleshooting 41

Available Show Commands 41

Available Show Commands 41

CHAPTER 4 NSO Alarms 43

Overview 43

Alarm type structure 43

Alarm type descriptions 44

CHAPTER 5 NSO Packages 53

Package Overview 53

Loading Packages 54

Redeploying Packages 55

Adding NED Packages 55

NED Migration 56

Managing Packages 58

Package repositories 58

Actions 58

CHAPTER 6 Advanced Topics 61

Locks 61

Global locks 61

Transaction locks 62

Northbound agents and global locks 62

External data providers 62

Administration Guide
iv

Contents

CDB 62

Lock impact on user sessions 63

Compaction 63

Automatic Compaction 63

Manual Compaction 63

Delayed Compaction 64

IPC ports 64

Restricting access to the IPC port 65

Restart strategies for service manager 65

Security issues 65

Running NSO as a non privileged user 67

Using IPv6 on northbound interfaces 67

CHAPTER 7 High Availability 69

Introduction to NSO High Availability 69

NSO built-in HA 71

Prerequisites 71

HA Member configuration 71

HA Roles 72

Failover 72

Startup 74

Actions 75

Status Check 75

Tail-f HCC Package 76

Overview 76

Dependencies 76

Running the HCC Package with NSO as a Non-Root User 77

Tail-f HCC Compared with HCC Version 4.x and Older 77

Upgrading 77

Layer-2 77

Layer-3 BGP 79

Usage 80

Data Model 83

Setup with an External Load Balancer 86

NB listen addresses on HA primary for Load Balancers 89

Administration Guide
v

Contents

HA framework requirements 89

Mode of operation 90

Security aspects 92

API 92

Ticks 92

Relay secondaries 93

CDB replication 94

CHAPTER 8 Rollbacks 95

Introduction 95

Configuration 95

CHAPTER 9 The AAA infrastructure 97

The problem 97

Structure - data models 97

Data model contents 98

AAA related items in ncs.conf 98

Authentication 99

Public Key Login 101

Password Login 102

PAM 102

External authentication 103

External token validation 105

External multi factor authentication 107

Package authentication 109

Restricting the IPC port 111

Group Membership 111

Authorization 112

Command authorization 113

Rpc, notification, and data authorization 116

NACM Rules and Services 121

Authorization Examples 122

The AAA cache 125

Populating AAA using CDB 125

Hiding the AAA tree 125

Administration Guide
vi

Contents

CHAPTER 10 Upgrade 127

Preparing for Upgrade 127

Single Instance Upgrade 129

Recover from Failed Upgrade 130

NSO HA Version Upgrade 131

Package Upgrade 134

Patch Management 137

CHAPTER 11 Deployment Example 139

Initial NSO Installation 140

Initial NSO Configuration 143

The ncs.conf Configuration 143

The aaa_init.xml Configuration 145

The High-Availability and VIP Configuration 145

Global Settings and Timeouts 147

Initial Package Setup 147

Cisco Smart Licensing 148

Verifying the Initial NSO Configuration 148

Log Management 148

Log Rotate 149

Syslog 149

NED Logs 149

Python Logs 149

Java Logs 149

Internal NSO Log 150

Monitoring the Installation 150

Alarms 150

Metric - Counters, Gauges and Rate of Change Gauges 150

Counters 150

Gauges 150

Rate of change gauges 150

Security Considerations 151

CHAPTER 12 Administration 153

User Management 153

Administration Guide
vii

Contents

Packages 154

Adding and upgrading a package 155

Simulating the new device 156

Adding the new devices to NSO 156

Configuring NSO 157

ncs.conf 157

Run-time configuration 157

Monitoring NSO 157

Backup and Restore 157

Backup 158

NSO Restore 158

CHAPTER 13 Running NSO in Containers 159

Introduction 159

Getting Started 159

System Requirements 159

Running the Image 160

Administration 161

ncs.conf File Configuration and Preference 161

Admin User Creation 162

Exposed Ports 162

Backup and Restore 163

SSH Host Key 164

HTTPS TLS Certificate 164

NSO Upgrade 164

YANG Model Changes (destructive) 165

Health Check 165

Administration Guide
viii

CHAPTER 1
Introduction

Cisco Network Service Orchestrator (NSO) version 6.1 is an evolution of the Tail-f Network Control
System (NCS). Tail-f was acquired by Cisco in 2014. The product has been enhanced and forms the
base for Cisco NSO. Note that the terms 'ncs' and 'tail-f' are used extensively in file names, command-
line command names, YANG models, application programming interfaces (API), etc. Throughout this
document we will use NSO to mean the product, which consists of a number of tools and executables.
These executable components will be referred to by their command line name, e.g. ncs, ncs-netsim,
ncs_cli, etc.

Administration Guide
1

Introduction

Administration Guide
2

CHAPTER 2
NSO System Management

• Introduction, page 3

• Configuring NSO, page 3

• Starting NSO, page 5

• Licensing NSO, page 5

• Monitoring NSO, page 5

• Backup and restore, page 27

• Disaster management, page 27

• Troubleshooting, page 30

Introduction
Cisco Network Service Orchestrator enabled by Tail-f (NSO) version 6.1 is an evolution of the Tail-f
Network Control System (NCS). Tail-f was acquired by Cisco in 2014. The product has been enhanced
and forms the base for Cisco NSO. Note that the 'ncs' and 'tail-f' terms are used extensively in file
names, command-line command names, YANG models, application programming interfaces (API), etc.
Throughout this document we will use NSO to mean the product, which consists of a number of modules
and executable components. These executable components will be referred to by their command line name,
e.g. ncs, ncs-netsim, ncs_cli, etc. ncs is used to refer to the executable, the running daemon.

Configuring NSO
Overview

NSO is configured in two different ways. Its configuration file, ncs.conf, and also through whatever
data that is configured at run-time over any northbound, for example turning on trace using the CLI.

Configuration file
The ncs.conf file is described by the the section called “CONFIGURATION PARAMETERS” in
Manual Pages manual page. There is a large number of configuration items in ncs.conf, most of them
have sane default values. The ncs.conf file is an XML file that must adhere to the tailf-ncs-
config.yang model. If we start the NSO daemon directly we must provide the path to the ncs config
file as in:

ncs -c /etc/ncs/ncs.conf

Administration Guide
3

NSO System Management
Dynamic configuration

However in a "system install", the init script must be used to start NSO, and it will pass the appropriate
options to the ncs command. Thus NSO is started with the command:

/etc/init.d/ncs start

It is possible to edit the ncs.conf file, and then tell NSO to reload the edited file without restarting the
daemon as in:

ncs --reload

This command also tells NSO to close and reopen all log files, which makes it suitable to use from a
system like logrotate.

In this section some of the important configuration settings will be described and discussed.

Dynamic configuration
In this section all settings that can be manipulated through the NSO northbound interfaces are briefly
described. NSO itself has a number of built-in YANG modules. These YANG modules describe structure
that is stored in CDB. Whenever we change anything under, say /devices/device, it will change
the CDB, but it will also change the configuration of NSO. We call this dynamic config since it can be
changed at will through all northbound APIs.

We summarize the most relevant parts below:

ncs@ncs(config)#
Possible completions:
 aaa AAA management, users and groups
 cluster Cluster configuration
 devices Device communication settings
 java-vm Control of the NCS Java VM
 nacm Access control
 packages Installed packages
 python-vm Control of the NCS Python VM
 services Global settings for services, (the services themselves might be augmented somewhere else)
 session Global default CLI session parameters
 snmp Top-level container for SNMP related configuration and status objects.
 snmp-notification-receiver Configure reception of SNMP notifications
 software Software management
 ssh Global SSH connection configuration

tailf-ncs.yang
This is the most important YANG module that is used to control and configure NSO. The module can be
found at: $NCS_DIR/src/ncs/yang/tailf-ncs.yang in the release. Everything in that module
is available through the northbound APIs. The YANG module has descriptions for everything that can be
configured.

tailf-common-monitoring.yang and tailf-ncs-monitoring.yang are two modules that
are relevant to monitoring NSO.

Built-in or external SSH server
NSO has a built-in SSH server which makes it possible to SSH directly into the NSO daemon. Both NSO
northbound NETCONF agent and the CLI need SSH. To configure the built-in SSH server we need a
directory with server SSH keys - it is specified via /ncs-config/aaa/ssh-server-key-dir
in ncs.conf. We also need to enable /ncs-config/netconf-north-bound/transport/
ssh and /ncs-config/cli/ssh in ncs.conf. In a "system install", ncs.conf is installed in the
"config directory", by default /etc/ncs, with the SSH server keys in /etc/ncs/ssh.

Administration Guide
4

NSO System Management
Starting NSO

Starting NSO
When NSO is started, it reads its configuration file and starts all subsystems configured to start (such as
NETCONF, CLI etc.).

By default, NSO starts in the background without an associated terminal. It is recommended to use a
"system install" when installing NSO for production deployment, see the section called “System Install
Steps” in Getting Started. This will create an init script that starts NSO when the system boots, and make
NSO start the service manager.

Licensing NSO
NSO is licensed using Cisco Smart Licensing. To register your NSO instance, you need to enter a token
from your Cisco Smart Software Manager account. For more information on this topic, please see
Chapter 3, Cisco Smart Licensing

Monitoring NSO
This section describes how to monitor NSO. Also read the dedicated session on alarms, the section called
“Overview”

NSO status
Checking the overall status of NSO can be done using the shell:

$ ncs --status

or in the CLI

ncs# show ncs-state

For details on the output see $NCS_DIR/src/yang/tailf-common-monitoring.yang and

Below follows an overview of the output:

• daemon-status You can see the NSO daemon mode, starting, phase0, phase1, started, stopping. The
phase0 and phase1 modes are schema upgrade modes and will appear if you have upgraded any data-
models.

• version The NSO version.

• smp Number of threads used by the daemon.

• ha The High-Availability mode of the ncs daemon will show up here: secondary, primary, relay-
secondary.

• internal/callpoints Next section is call-points. Make sure that any validation points etc are registered.
(The ncs-rfs-service-hook is an obsolete call-point, ignore this one).

• UNKNOWN code tries to register a call-point that does not exist in a data-model.

• NOT-REGISTERED a loaded data-model has a call-point but no code has registered.

Of special interest is of course the servicepoints. All your deployed service models should have a
corresponding service-point. For example:

servicepoints:
 id=l3vpn-servicepoint daemonId=10 daemonName=ncs-dp-6-l3vpn:L3VPN
 id=nsr-servicepoint daemonId=11 daemonName=ncs-dp-7-nsd:NSRService
 id=vm-esc-servicepoint daemonId=12 daemonName=ncs-dp-8-vm-manager-esc:ServiceforVMstarting

Administration Guide
5

NSO System Management
Monitoring the NSO daemon

 id=vnf-catalogue-esc daemonId=13 daemonName=ncs-dp-9-vnf-catalogue-esc:ESCVNFCatalogueService

• internal/cdb The cdb section is important. Look for any locks. This might be a sign that a developer
has taken a CDB lock without releasing it. The subscriber section is also important. A design pattern
is to register subscribers to wait for something to change in NSO and then trigger an action. Reactive
FASTMAP is designed around that. Validate that all expected subscribers are ok..

• loaded-data-models The next section shows all namespaces and YANG modules that are loaded. If
you for example are missing a service model, make sure it is really loaded..

• cli, netconf, rest, snmp, webui All northbound agents like CLI, REST, NETCONF, SNMP etc are
listed with their IP and port. So if you want to connect over REST for example, you can see the port
number here. .

• patches Lists any installed patches.

• upgrade-mode If the node is in upgrade mode, it is not possible to get any information from the
system over NETCONF. Existing CLI sessions can get system information..

It is also important to look at the packages that are loaded. This can be done in the CLI with:

admin> show packages
packages package cisco-asa
 package-version 3.4.0
 description "NED package for Cisco ASA"
 ncs-min-version [3.2.2 3.3 3.4 4.0]
 directory ./state/packages-in-use/1/cisco-asa
 component upgrade-ned-id
 upgrade java-class-name com.tailf.packages.ned.asa.UpgradeNedId
 component ASADp
 callback java-class-name [com.tailf.packages.ned.asa.ASADp]
 component cisco-asa
 ned cli ned-id cisco-asa
 ned cli java-class-name com.tailf.packages.ned.asa.ASANedCli
 ned device vendor Cisco

Monitoring the NSO daemon
NSO runs following processes:

• The daemon: ncs.smp: this is the ncs process running in the Erlang VM.

• Java VM: com.tailf.ncs.NcsJVMLauncher: service applications implemented in Java runs in this
VM. There are several options on how to start the Java VM, it can be monitored and started/restarted
by NSO or by an external monitor. See ncs.conf(5) man page and the java-vm settings in the
CLI.

• Python VMs: NSO packages can be implemented in Python. The individual packages can be
configured to run a VM each or share Python VM. Use the show python-vm status current to see
current threads and show python-vm status start to see which threads where started at startup-time.

Logging
NSO has extensive logging functionality. Log settings are typically very different for a production system
compared to a development system. Furthermore, the logging of the NSO daemon and the NSO Java VM/
Python VM is controlled by different mechanisms. During development, we typically want to turn on the
developer-log. The sample ncs.conf that comes with the NSO release has log settings suitable for
development, while the ncs.conf created by a "system install" are suitable for production deployment.

NSO logs in /logs in your running directory, (depends on your settings in ncs.conf). You might want
the log files to be stored somewhere else. See man ncs.conf for details on how to configure the various
logs. Below follows a list of the most useful log files:

Administration Guide
6

NSO System Management
Logging

• ncs.log : ncs daemon log. See the section called “Log messages and formats”. Can be configured to
syslog.

• ncserr.log.1, ncserr.log.idx, ncserr.log.siz: if the NSO daemon has a problem. this contains debug
information relevant for support. The content can be displayed with "ncs --printlog ncserr.log".

• audit.log: central audit log covering all northbound interfaces. See the section called “Log messages
and formats” for formats. Can be configured to syslog.

• localhost:8080.access: all HTTP requests to the daemon. This an access log for the embedded Web
server. This file adheres to the Common Log Format, as defined by Apache and others. This log is not
enabled by default and is not rotated, i.e. use logrotate(8). Can be configured to syslog.

• devel.log: developer-log is a debug log for troubleshooting user-written code. This log is enabled
by default and is not rotated, i.e. use logrotate(8). This log shall be used in combination with the
java-vm or python-vm logs. The user code logs in the VM logs and corresponding library logs in
devel.log. Disable this log in production systems. Can be configured to syslog. You can manage
this log and set its logging level in ncs.conf.

 <developer-log>
 <enabled>true</enabled>
 <file>
 <name>${NCS_LOG_DIR}/devel.log</name>
 <enabled>false</enabled>
 </file>
 <syslog>
 <enabled>true</enabled>
 </syslog>
 </developer-log>
 <developer-log-level>trace</developer-log-level>

• ncs-java-vm.log, ncs-python-vm.log: logger for code running in Java or Python VM, for example
service applications. Developers writing Java and Python code use this log (in combination with
devel.log) for debugging. Both Java and Python log levels can be set from their respective VM
settings in, for example, the CLI.

admin@ncs(config)# python-vm logging level level-info
admin@ncs(config)# java-vm java-logging logger com.tailf.maapi level level-info

• netconf.log, snmp.log: log for northbound agents. Can be configured to Syslog.

• rollbackNNNNN: all NSO commits generates a corresponding rollback file. The maximum number of
rollback files and file numbering can be configured in ncs.conf.

• xpath.trace: XPATH is used in many places, for example XML templates. This log file shows the
evaluation of all XPATH expressions and can be enabled in the ncs.conf.

 <xpathTraceLog>
 <enabled>true</enabled>
 <filename>${NCS_LOG_DIR}/xpath.trace</filename>
 </xpathTraceLog>

To debug XPATH for a template, use the pipe-target debug in the CLI instead.

admin@ncs(config)# commit | debug template

• ned-cisco-ios-xr-pe1.trace (for example): if device trace is turned on a trace file will be created per
device. The file location is not configured in ncs.conf but is configured when device trace is
turned on, for example in the CLI.

admin@ncs(config)# devices device r0 trace pretty

• Progress trace log: When a transaction or action is applied, NSO emits specific progress events.
These events can be displayed and recorded in a number of different ways, either in CLI with the

Administration Guide
7

NSO System Management
syslog

pipe-target details on a commit, or by writing it to a log file. You can read more about progress
trace log in Chapter 25, Progress Trace in Development Guide.

syslog
NSO can syslog to a local syslog. See man ncs.conf how to configure the syslog settings. All syslog
messages are documented in "Log messages". The ncs.conf also lets you decide which of the logs
should go into syslog: ncs.log, devel.log, netconf.log, snmp.log, audit.log,
WebUI access log. There is also a possibility to integrate with rsyslog to log the ncs, developer,
audit, netconf, snmp, and webui access logs to syslog with facility set to daemon in ncs.conf. For
reference, see the upgrade-l2 example, located in examples.ncs/development-guide/high-
availability/hcc .

Below follows an example of syslog configuration:

 <syslog-config>
 <facility>daemon</facility>
 </syslog-config>

 <ncs-log>
 <enabled>true</enabled>
 <file>
 <name>./logs/ncs.log</name>
 <enabled>true</enabled>
 </file>
 <syslog>
 <enabled>true</enabled>
 </syslog>
 </ncs-log>

Log messages and formats
Table 1. Syslog Messages

Symbol Severity

Comment

Format String

AAA_LOAD_FAIL CRIT

Failed to load the AAA data, it could be that an external db is misbehaving or AAA is mounted/populated
badly

"Failed to load AAA: ~s"

ABORT_CAND_COMMIT INFO

Aborting candidate commit, request from user, reverting configuration.

"Aborting candidate commit, request from user, reverting
configuration."

ABORT_CAND_COMMIT_REBOOT INFO

ConfD restarted while having a ongoing candidate commit timer, reverting configuration.

"ConfD restarted while having a ongoing candidate commit timer,
reverting configuration."

ABORT_CAND_COMMIT_TERM INFO

Candidate commit session terminated, reverting configuration.

Administration Guide
8

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Candidate commit session terminated, reverting configuration."

ABORT_CAND_COMMIT_TIMER INFO

Candidate commit timer expired, reverting configuration.

"Candidate commit timer expired, reverting configuration."

ACCEPT_FATAL CRIT

ConfD encountered an OS-specific error indicating that networking support is unavailable.

"Fatal error for accept() - ~s"

ACCEPT_FDLIMIT CRIT

ConfD failed to accept a connection due to reaching the process or system-wide file descriptor limit.

"Out of file descriptors for accept() - ~s limit reached"

AUTH_LOGIN_FAIL INFO

A user failed to log in to ConfD.

"login failed via ~s from ~s with ~s: ~s"

AUTH_LOGIN_SUCCESS INFO

A user logged into ConfD.

"logged in via ~s from ~s with ~s using ~s authentication"

AUTH_LOGOUT INFO

A user was logged out from ConfD.

"logged out <~s> user"

BADCONFIG CRIT

confd.conf contained bad data.

"Bad configuration: ~s:~s: ~s"

BAD_DEPENDENCY ERR

A dependency was not found

"The dependency node '~s' for node '~s' in module '~s' does not exist"

BAD_NS_HASH CRIT

Two namespaces have the same hash value. The namespace hashvalue MUST be unique. You can pass
the flag --nshash <value> to confdc when linking the .xso files to force another value for the namespace
hash.

"~s"

BIND_ERR CRIT

ConfD failed to bind to one of the internally used listen sockets.

"~s"

BRIDGE_DIED ERR

ConfD is configured to start the confd_aaa_bridge and the C program died.

"confd_aaa_bridge died - ~s"

Administration Guide
9

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

CAND_COMMIT_ROLLBACK_DONE INFO

Candidate commit rollback done

"Candidate commit rollback done"

CAND_COMMIT_ROLLBACK_FAILURE ERR

Failed to rollback candidate commit

"Failed to rollback candidate commit due to: ~s"

CANDIDATE_BAD_FILE_FORMAT WARNING

The candidate database file has a bad format. The candidate database is reset to the empty database.

"Bad format found in candidate db file ~s; resetting candidate"

CANDIDATE_CORRUPT_FILE WARNING

The candidate database file is corrupt and cannot be read. The candidate database is reset to the empty
database.

"Corrupt candidate db file ~s; resetting candidate"

CDB_BOOT_ERR CRIT

CDB failed to start. Some grave error in the cdb data files prevented CDB from starting - a recovery from
backup is necessary.

"CDB boot error: ~s"

CDB_CLIENT_TIMEOUT ERR

A CDB client failed to answer within the timeout period. The client will be disconnected.

"CDB client (~s) timed out, waiting for ~s"

CDB_CONFIG_LOST INFO

CDB found it's data files but no schema file. CDB recovers by starting from an empty database.

"CDB: lost config, deleting DB"

CDB_DB_LOST INFO

CDB found it's data schema file but not it's data file. CDB recovers by starting from an empty database.

"CDB: lost DB, deleting old config"

CDB_FATAL_ERROR CRIT

CDB encounterad an unrecoverable error

"fatal error in CDB: ~s"

CDB_INIT_LOAD INFO

CDB is processing an initialization file.

"CDB load: processing file: ~s"

CDB_OP_INIT ERR

The operational DB was deleted and re-initialized (because of upgrade or corrupt file)

"CDB: Operational DB re-initialized"

CDB_UPGRADE_FAILED ERR

Administration Guide
10

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

Automatic CDB upgrade failed. This means that the data model has been changed in a non-supported
way.

"CDB: Upgrade failed: ~s"

CGI_REQUEST INFO

CGI script requested.

"CGI: '~s' script with method ~s"

CLI_CMD_ABORTED INFO

CLI command aborted.

"CLI aborted"

CLI_CMD_DONE INFO

CLI command finished successfully.

"CLI done"

CLI_CMD INFO

User executed a CLI command.

"CLI '~s'"

CLI_DENIED INFO

User was denied to execute a CLI command due to permissions.

"CLI denied '~s'"

COMMIT_INFO INFO

Information about configuration changes committed to the running data store.

"commit ~s"

COMMIT_QUEUE_CORRUPT ERR

Failed to load commit queue. ConfD recovers by starting from an empty commit queue.

"Resetting commit queue due do inconsistent or corrupt data."

CONFIG_CHANGE INFO

A change to ConfD configuration has taken place, e.g., by a reload of the configuration file

"ConfD configuration change: ~s"

CONFIG_TRANSACTION_LIMIT INFO

Configuration transaction limit reached, rejected new transaction request.

"Configuration transaction limit of type '~s' reached, rejected new
transaction request"

CONSULT_FILE INFO

ConfD is reading its configuration file.

"Consulting daemon configuration file ~s"

DAEMON_DIED CRIT

An external database daemon closed its control socket.

Administration Guide
11

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Daemon ~s died"

DAEMON_TIMEOUT CRIT

An external database daemon did not respond to a query.

"Daemon ~s timed out"

DEVEL_AAA INFO

Developer aaa log message

"~s"

DEVEL_CAPI INFO

Developer C api log message

"~s"

DEVEL_CDB INFO

Developer CDB log message

"~s"

DEVEL_CONFD INFO

Developer ConfD log message

"~s"

DEVEL_ECONFD INFO

Developer econfd api log message

"~s"

DEVEL_SLS INFO

Developer smartlicensing api log message

"~s"

DEVEL_SNMPA INFO

Developer snmp agent log message

"~s"

DEVEL_SNMPGW INFO

Developer snmp GW log message

"~s"

DEVEL_WEBUI INFO

Developer webui log message

"~s"

DUPLICATE_NAMESPACE CRIT

Duplicate namespace found.

"The namespace ~s is defined in both module ~s and ~s."

DUPLICATE_PREFIX CRIT

Administration Guide
12

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

Duplicate prefix found.

"The prefix ~s is defined in both ~s and ~s."

ERRLOG_SIZE_CHANGED INFO

Notify change of log size for error log

"Changing size of error log (~s) to ~s (was ~s)"

EVENT_SOCKET_TIMEOUT CRIT

An event notification subscriber did not reply within the configured timeout period

"Event notification subscriber with bitmask ~s timed out, waiting for
~s"

EVENT_SOCKET_WRITE_BLOCK CRIT

Write on an event socket blocked for too long time

"~s"

EXEC_WHEN_CIRCULAR_DEPENDENCY WARNING

An error occurred while evaluating a when-expression.

"When-expression evaluation error: circular dependency in ~s"

EXT_AUTH_2FA_FAIL INFO

External challenge authentication failed for a user.

"external challenge authentication failed via ~s from ~s with ~s: ~s"

EXT_AUTH_2FA INFO

External challenge sent to a user.

"external challenge sent to ~s from ~s with ~s"

EXT_AUTH_2FA_SUCCESS INFO

An external challenge authenticated user logged in.

"external challenge authentication succeeded via ~s from ~s with ~s,
member of groups: ~s~s"

EXTAUTH_BAD_RET ERR

Authentication is external and the external program returned badly formatted data.

"External auth program (user=~s) ret bad output: ~s"

EXT_AUTH_FAIL INFO

External authentication failed for a user.

"external authentication failed via ~s from ~s with ~s: ~s"

EXT_AUTH_SUCCESS INFO

An externally authenticated user logged in.

"external authentication succeeded via ~s from ~s with ~s, member of
groups: ~s~s"

EXT_AUTH_TOKEN_FAIL INFO

Administration Guide
13

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

External token authentication failed for a user.

"external token authentication failed via ~s from ~s with ~s: ~s"

EXT_AUTH_TOKEN_SUCCESS INFO

An externally token authenticated user logged in.

"external token authentication succeeded via ~s from ~s with ~s,
member of groups: ~s~s"

EXT_BIND_ERR CRIT

ConfD failed to bind to one of the externally visible listen sockets.

"~s"

FILE_ERROR CRIT

File error

"~s: ~s"

FILE_LOAD DEBUG

System loaded a file.

"Loaded file ~s"

FILE_LOAD_ERR CRIT

System tried to load a file in its load path and failed.

"Failed to load file ~s: ~s"

FILE_LOADING DEBUG

System starts to load a file.

"Loading file ~s"

FXS_MISMATCH ERR

A secondary connected to a primary where the fxs files are different

"Fxs mismatch, secondary is not allowed"

GROUP_ASSIGN INFO

A user was assigned to a set of groups.

"assigned to groups: ~s"

GROUP_NO_ASSIGN INFO

A user was logged in but wasn't assigned to any groups at all.

"Not assigned to any groups - all access is denied"

HA_BAD_VSN ERR

A secondary connected to a primary with an incompatible HA protocol version

"Incompatible HA version (~s, expected ~s), secondary is not allowed"

HA_DUPLICATE_NODEID ERR

A secondary arrived with a node id which already exists

Administration Guide
14

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Nodeid ~s already exists"

HA_FAILED_CONNECT ERR

An attempted library become secondary call failed because the secondary couldn't connect to the primary

"Failed to connect to primary: ~s"

HA_SECONDARY_KILLED ERR

A secondary node didn't produce its ticks

"Secondary ~s killed due to no ticks"

INTERNAL_ERROR CRIT

A ConfD internal error - should be reported to support@tail-f.com.

"Internal error: ~s"

JSONRPC_LOG_MSG INFO

JSON-RPC traffic log message

"JSON-RPC traffic log: ~s"

JSONRPC_REQUEST_ABSOLUTE_TIMEOUT INFO

JSON-RPC absolute timeout.

"Stopping session due to absolute timeout: ~s"

JSONRPC_REQUEST_IDLE_TIMEOUT INFO

JSON-RPC idle timeout.

"Stopping session due to idle timeout: ~s"

JSONRPC_REQUEST INFO

JSON-RPC method requested.

"JSON-RPC: '~s' with JSON params ~s"

JSONRPC_WARN_MSG WARNING

JSON-RPC warning message

"JSON-RPC warning: ~s"

KICKER_MISSING_SCHEMA INFO

Failed to load kicker schema

"Failed to load kicker schema"

LIB_BAD_SIZES ERR

An application connecting to ConfD used a library version that can't handle the depth and number of keys
used by the data model.

"Got connect from library with insufficient keypath depth/keys support
(~s/~s, needs ~s/~s)"

LIB_BAD_VSN ERR

An application connecting to ConfD used a library version that doesn't match the ConfD version (e.g. old
version of the client library).

Administration Guide
15

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Got library connect from wrong version (~s, expected ~s)"

LIB_NO_ACCESS ERR

Access check failure occurred when an application connected to ConfD.

"Got library connect with failed access check: ~s"

LISTENER_INFO INFO

ConfD starts or stops to listen for incoming connections.

"~s to listen for ~s on ~s:~s"

LOCAL_AUTH_FAIL_BADPASS INFO

Authentication for a locally configured user failed due to providing bad password.

"local authentication failed via ~s from ~s with ~s: ~s"

LOCAL_AUTH_FAIL INFO

Authentication for a locally configured user failed.

"local authentication failed via ~s from ~s with ~s: ~s"

LOCAL_AUTH_FAIL_NOUSER INFO

Authentication for a locally configured user failed due to user not found.

"local authentication failed via ~s from ~s with ~s: ~s"

LOCAL_AUTH_SUCCESS INFO

A locally authenticated user logged in.

"local authentication succeeded via ~s from ~s with ~s, member of
groups: ~s"

LOGGING_DEST_CHANGED INFO

The target logfile will change to another file

"Changing destination of ~s log to ~s"

LOGGING_SHUTDOWN INFO

Logging subsystem terminating

"Daemon logging terminating, reason: ~s"

LOGGING_STARTED INFO

Logging subsystem started

"Daemon logging started"

LOGGING_STARTED_TO INFO

Write logs for a subsystem to a specific file

"Writing ~s log to ~s"

LOGGING_STATUS_CHANGED INFO

Notify a change of logging status (enabled/disabled) for a subsystem

"~s ~s log"

Administration Guide
16

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

LOGIN_REJECTED INFO

Authentication for a user was rejected by application callback.

"~s"

MAAPI_LOGOUT INFO

A maapi user was logged out.

"Logged out from maapi ctx=~s (~s)"

MISSING_AES256CFB128_SETTINGS ERR

AES256CFB128 keys were not found in confd.conf

"AES256CFB128 keys were not found in confd.conf"

MISSING_AESCFB128_SETTINGS ERR

AESCFB128 keys were not found in confd.conf

"AESCFB128 keys were not found in confd.conf"

MISSING_DES3CBC_SETTINGS ERR

DES3CBC keys were not found in confd.conf

"DES3CBC keys were not found in confd.conf"

MISSING_NS2 CRIT

While validating the consistency of the config - a required namespace was missing.

"The namespace ~s (referenced by ~s) could not be found in the
loadPath."

MISSING_NS CRIT

While validating the consistency of the config - a required namespace was missing.

"The namespace ~s could not be found in the loadPath."

MMAP_SCHEMA_FAIL ERR

Failed to setup the shared memory schema

"Failed to setup the shared memory schema"

NCS_PACKAGE_AUTH_BAD_RET ERR

Package authentication program returned badly formatted data.

"package authentication using ~s program ret bad output: ~s"

NCS_PACKAGE_AUTH_FAIL INFO

Package authentication failed.

"package authentication using ~s failed via ~s from ~s with ~s: ~s"

NCS_PACKAGE_AUTH_SUCCESS INFO

A package authenticated user logged in.

"package authentication using ~s succeeded via ~s from ~s with ~s,
member of groups: ~s~s"

NETCONF_HDR_ERR ERR

Administration Guide
17

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

The cleartext header indicating user and groups was badly formatted.

"Got bad NETCONF TCP header"

NETCONF INFO

NETCONF traffic log message

"~s"

NOAAA_CLI_LOGIN INFO

A user used the --noaaa flag to confd_cli

"logged in from the CLI with aaa disabled"

NO_CALLPOINT CRIT

ConfD tried to populate an XML tree but no code had registered under the relevant callpoint.

"no registration found for callpoint ~s of type=~s"

NO_SUCH_IDENTITY CRIT

The fxs file with the base identity is not loaded

"The identity ~s in namespace ~s refers to a non-existing base
identity ~s in namespace ~s"

NO_SUCH_NS CRIT

A nonexistent namespace was referred to. Typically this means that a .fxs was missing from the loadPath.

"No such namespace ~s, used by ~s"

NO_SUCH_TYPE CRIT

A nonexistent type was referred to from a ns. Typically this means that a bad version of an .fxs file was
found in the loadPath.

"No such simpleType '~s' in ~s, used by ~s"

NOTIFICATION_REPLAY_STORE_FAILURE CRIT

A failure occurred in the builtin notification replay store

"~s"

NS_LOAD_ERR2 CRIT

System tried to process a loaded namespace and failed.

"Failed to process namespaces: ~s"

NS_LOAD_ERR CRIT

System tried to process a loaded namespace and failed.

"Failed to process namespace ~s: ~s"

OPEN_LOGFILE INFO

Indicate target file for certain type of logging

"Logging subsystem, opening log file '~s' for ~s"

PAM_AUTH_FAIL INFO

A user failed to authenticate through PAM.

Administration Guide
18

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"PAM authentication failed via ~s from ~s with ~s: phase ~s, ~s"

PAM_AUTH_SUCCESS INFO

A PAM authenticated user logged in.

"pam authentication succeeded via ~s from ~s with ~s"

PHASE0_STARTED INFO

ConfD has just started its start phase 0.

"ConfD phase0 started"

PHASE1_STARTED INFO

ConfD has just started its start phase 1.

"ConfD phase1 started"

READ_STATE_FILE_FAILED CRIT

Reading of a state file failed

"Reading state file failed: ~s: ~s (~s)"

RELOAD INFO

Reload of daemon configuration has been initiated.

"Reloading daemon configuration."

REOPEN_LOGS INFO

Logging subsystem, reopening log files

"Logging subsystem, reopening log files"

REST_AUTH_FAIL INFO

Rest authentication for a user failed.

"rest authentication failed from ~s"

REST_AUTH_SUCCESS INFO

A rest authenticated user logged in.

"rest authentication succeeded from ~s , member of groups: ~s"

RESTCONF_REQUEST INFO

RESTCONF request

"RESTCONF: request with ~s: ~s"

RESTCONF_RESPONSE INFO

RESTCONF response

"RESTCONF: response with ~s: ~s duration ~s us"

REST_REQUEST INFO

REST request

"REST: request with ~s: ~s"

REST_RESPONSE INFO

Administration Guide
19

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

REST response

"REST: response with ~s: ~s duration ~s ms"

ROLLBACK_FAIL_CREATE ERR

Error while creating rollback file.

"Error while creating rollback file: ~s: ~s"

ROLLBACK_FAIL_DELETE ERR

Failed to delete rollback file.

"Failed to delete rollback file ~s: ~s"

ROLLBACK_FAIL_RENAME ERR

Failed to rename rollback file.

"Failed to rename rollback file ~s to ~s: ~s"

ROLLBACK_FAIL_REPAIR ERR

Failed to repair rollback files.

"Failed to repair rollback files."

ROLLBACK_REMOVE INFO

Found half created rollback0 file - removing and creating new.

"Found half created rollback0 file - removing and creating new"

ROLLBACK_REPAIR INFO

Found half created rollback0 file - repairing.

"Found half created rollback0 file - repairing"

SESSION_CREATE INFO

A new user session was created

"created new session via ~s from ~s with ~s"

SESSION_LIMIT INFO

Session limit reached, rejected new session request.

"Session limit of type '~s' reached, rejected new session request"

SESSION_MAX_EXCEEDED INFO

A user failed to create a new user sessions due to exceeding sessions limits

"could not create new session via ~s from ~s with ~s due to session
limits"

SESSION_TERMINATION INFO

A user session was terminated due to specified reason

"terminated session (reason: ~s)"

SKIP_FILE_LOADING DEBUG

System skips a file.

Administration Guide
20

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Skipping file ~s: ~s"

SNMP_AUTHENTICATION_FAILED INFO

An SNMP authentication failed.

"SNMP authentication failed: ~s"

SNMP_CANT_LOAD_MIB CRIT

The SNMP Agent failed to load a MIB file

"Can't load MIB file: ~s"

SNMP_MIB_LOADING DEBUG

SNMP Agent loading a MIB file

"Loading MIB: ~s"

SNMP_NOT_A_TRAP INFO

An UDP package was received on the trap receiving port, but it's not an SNMP trap.

"SNMP gateway: Non-trap received from ~s"

SNMP_READ_STATE_FILE_FAILED CRIT

Read SNMP agent state file failed

"Read state file failed: ~s: ~s"

SNMP_REQUIRES_CDB WARNING

The SNMP agent requires CDB to be enabled in order to be started.

"Can't start SNMP. CDB is not enabled"

SNMP_TRAP_NOT_FORWARDED INFO

An SNMP trap was to be forwarded, but couldn't be.

"SNMP gateway: Can't forward trap from ~s; ~s"

SNMP_TRAP_NOT_RECOGNIZED INFO

An SNMP trap was received on the trap receiving port, but its definition is not known

"SNMP gateway: Can't forward trap with OID ~s from ~s; There is no
notification with this OID in the loaded models."

SNMP_TRAP_OPEN_PORT ERR

The port for listening to SNMP traps could not be opened.

"SNMP gateway: Can't open trap listening port ~s: ~s"

SNMP_TRAP_UNKNOWN_SENDER INFO

An SNMP trap was to be forwarded, but the sender was not listed in confd.conf.

"SNMP gateway: Not forwarding trap from ~s; the sender is not
recognized"

SNMP_TRAP_V1 INFO

An SNMP v1 trap was received on the trap receiving port, but forwarding v1 traps is not supported.

"SNMP gateway: V1 trap received from ~s"

Administration Guide
21

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

SNMP_WRITE_STATE_FILE_FAILED WARNING

Write SNMP agent state file failed

"Write state file failed: ~s: ~s"

SSH_HOST_KEY_UNAVAILABLE ERR

No SSH host keys available.

"No SSH host keys available"

SSH_SUBSYS_ERR INFO

Typically errors where the client doesn't properly send the \"subsystem\" command.

"ssh protocol subsys - ~s"

STARTED INFO

ConfD has started.

"ConfD started vsn: ~s"

STARTING INFO

ConfD is starting.

"Starting ConfD vsn: ~s"

STOPPING INFO

ConfD is stopping (due to e.g. confd --stop).

"ConfD stopping (~s)"

TOKEN_MISMATCH ERR

A secondary connected to a primary with a bad auth token

"Token mismatch, secondary is not allowed"

UPGRADE_ABORTED INFO

In-service upgrade was aborted.

"Upgrade aborted"

UPGRADE_COMMITTED INFO

In-service upgrade was committed.

"Upgrade committed"

UPGRADE_INIT_STARTED INFO

In-service upgrade initialization has started.

"Upgrade init started"

UPGRADE_INIT_SUCCEEDED INFO

In-service upgrade initialization succeeded.

"Upgrade init succeeded"

UPGRADE_PERFORMED INFO

In-service upgrade has been performed (not committed yet).

Administration Guide
22

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"Upgrade performed"

WEB_ACTION INFO

User executed a Web UI action.

"WebUI action '~s'"

WEB_CMD INFO

User executed a Web UI command.

"WebUI cmd '~s'"

WEB_COMMIT INFO

User performed Web UI commit.

"WebUI commit ~s"

WEBUI_LOG_MSG INFO

WebUI access log message

"WebUI access log: ~s"

WRITE_STATE_FILE_FAILED CRIT

Writing of a state file failed

"Writing state file failed: ~s: ~s (~s)"

XPATH_EVAL_ERROR1 WARNING

An error occurred while evaluating an XPath expression.

"XPath evaluation error: ~s for ~s"

XPATH_EVAL_ERROR2 WARNING

An error occurred while evaluating an XPath expression.

"XPath evaluation error: '~s' resulted in ~s for ~s"

COMMIT_UN_SYNCED_DEV INFO

Data was committed toward a device with bad or unknown sync state

"Committed data towards device ~s which is out of sync"

NCS_DEVICE_OUT_OF_SYNC INFO

A check-sync action reported out-of-sync for a device

"NCS device-out-of-sync Device '~s' Info '~s'"

NCS_JAVA_VM_FAIL ERR

The NCS Java VM failure/timeout

"The NCS Java VM ~s"

NCS_JAVA_VM_START INFO

Starting the NCS Java VM

"Starting the NCS Java VM"

NCS_PACKAGE_BAD_DEPENDENCY CRIT

Administration Guide
23

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

Bad NCS package dependency

"Failed to load NCS package: ~s; required package ~s of version ~s is
not present (found ~s)"

NCS_PACKAGE_BAD_NCS_VERSION CRIT

Bad NCS version for package

"Failed to load NCS package: ~s; requires NCS version ~s"

NCS_PACKAGE_CIRCULAR_DEPENDENCY CRIT

Circular NCS package dependency

"Failed to load NCS package: ~s; circular dependency found"

NCS_PACKAGE_COPYING DEBUG

A package is copied from the load path to private directory

"Copying NCS package from ~s to ~s"

NCS_PACKAGE_DUPLICATE CRIT

Duplicate package found

"Failed to load duplicate NCS package ~s: (~s)"

NCS_PACKAGE_SYNTAX_ERROR CRIT

Syntax error in package file

"Failed to load NCS package: ~s; syntax error in package file"

NCS_PACKAGE_UPGRADE_ABORTED CRIT

The CDB upgrade was aborted implying that CDB is untouched. However the package state is changed

"NCS package upgrade failed with reason '~s'"

NCS_PACKAGE_UPGRADE_UNSAFE CRIT

Package upgrade has been aborted due to warnings.

"NCS package upgrade has been aborted due to warnings:\n~s"

NCS_PYTHON_VM_FAIL ERR

The NCS Python VM failure/timeout

"The NCS Python VM ~s"

NCS_PYTHON_VM_START INFO

Starting the named NCS Python VM

"Starting the NCS Python VM ~s"

NCS_PYTHON_VM_START_UPGRADE INFO

Starting a Python VM to run upgrade code

"Starting upgrade of NCS Python package ~s"

NCS_SERVICE_OUT_OF_SYNC INFO

A check-sync action reported out-of-sync for a service

Administration Guide
24

NSO System Management
Log messages and formats

Symbol Severity

Comment

Format String

"NCS service-out-of-sync Service '~s' Info '~s'"

NCS_SET_PLATFORM_DATA_ERROR ERR

The device failed to set the platform operational data at connect

"NCS Device '~s' failed to set platform data Info '~s'"

NCS_SMART_LICENSING_ENTITLEMENT_NOTIFICATION INFO

Smart Licensing Entitlement Notification

"Smart Licensing Entitlement Notification: ~s"

NCS_SMART_LICENSING_EVALUATION_COUNTDOWN INFO

Smart Licensing evaluation time remaining

"Smart Licensing evaluation time remaining: ~s"

NCS_SMART_LICENSING_FAIL INFO

The NCS Smart Licensing Java VM failure/timeout

"The NCS Smart Licensing Java VM ~s"

NCS_SMART_LICENSING_GLOBAL_NOTIFICATION INFO

Smart Licensing Global Notification

"Smart Licensing Global Notification: ~s"

NCS_SMART_LICENSING_START INFO

Starting the NCS Smart Licensing Java VM

"Starting the NCS Smart Licensing Java VM"

NCS_SNMP_INIT_ERR INFO

Failed to locate snmp_init.xml in loadpath

"Failed to locate snmp_init.xml in loadpath ~s"

NCS_SNMPM_START INFO

Starting the NCS SNMP manager component

"Starting the NCS SNMP manager component"

NCS_SNMPM_STOP INFO

The NCS SNMP manager component has been stopped

"The NCS SNMP manager component has been stopped"

BAD_LOCAL_PASS INFO

A locally configured user provided a bad password.

"Provided bad password"

EXT_LOGIN INFO

An externally authenticated user logged in.

"Logged in over ~s using externalauth, member of groups: ~s~s"

EXT_NO_LOGIN INFO

Administration Guide
25

NSO System Management
Trace ID

Symbol Severity

Comment

Format String

External authentication failed for a user.

"failed to login using externalauth: ~s"

NO_SUCH_LOCAL_USER INFO

A non existing local user tried to login.

"no such local user"

PAM_LOGIN_FAILED INFO

A user failed to login through PAM.

"pam phase ~s failed to login through PAM: ~s"

PAM_NO_LOGIN INFO

A user failed to login through PAM

"failed to login through PAM: ~s"

SSH_LOGIN INFO

A user logged into ConfD's builtin ssh server.

"logged in over ssh from ~s with authmeth:~s"

SSH_LOGOUT INFO

A user was logged out from ConfD's builtin ssh server.

"Logged out ssh <~s> user"

SSH_NO_LOGIN INFO

A user failed to login to ConfD's builtin SSH server.

"Failed to login over ssh: ~s"

WEB_LOGIN INFO

A user logged in through the WebUI.

"logged in through Web UI from ~s"

WEB_LOGOUT INFO

A Web UI user logged out.

"logged out from Web UI"

Trace ID
NSO can issue a unique Trace ID per northbound request, visible in logs and trace headers. This Trace ID
can be used to follow the request from service invocation to configuration changes pushed to any device
affected by the change. The Trace ID may either be passed in from external client or generated by NSO

Trace ID is enabled by default, and can be turned off by adding the following snippet to NSO.conf:

 <trace-id>false</trace-id>

Trace ID is propagated downwards in LSA setups and is fully integrated with commit queues.

Trace ID can be passed to NSO over NETCONF, RESTCONF, JSON-RPC or CLI as a commit parameter.

Administration Guide
26

NSO System Management
Backup and restore

If Trace ID is not given as a commit parameter, NSO will generate one if the feature is enabled. This
generated Trace ID will be on the form UUID version 4.

For RESTCONF request, this generated Trace ID will be communicated back to the requesting client as a
HTTP header called "X-Cisco-NSO-Trace-ID" .

For NETCONF, the Trace ID will be returned as an attributed called "trace-id".

Trace ID will appear in relevant log entries and trace file headers on the form "trace-id=...".

Backup and restore
All parts of the NSO installation, can be backed up and restored with standard file system backup
procedures.

In a "system install" of NSO, the most convenient way to do backup and restore is to use the ncs-backup
command. In that case the following procedure is used.

Backup
NSO Backup backs up the database (CDB) files, state files, config files and rollback files from the
installation directory. To take a complete backup (for disaster recovery), use

ncs-backup

The backup will be stored in the "run directory", by default /var/opt/ncs, as /var/opt/ncs/
backups/ncs-VERSION@DATETIME.backup

For more information on backup, refer to the ncs-backup(1) in Manual Pages manual page.

NSO Restore
NSO Restore is performed if you would like to switch back to a previous good state or restore a backup.

Note NSO must be stopped before performing Restore.

Step 1 Stop NSO if it is running.

/etc/init.d/ncs stop

Step 2 Restore the backup.

ncs-backup --restore

Select the backup to be restored from the available list of backups. The configuration and database with run-time state
files are restored in /etc/ncs and /var/opt/ncs.

Step 3 Start NSO.

/etc/init.d/ncs start

Disaster management
This section describes a number of disaster scenarios and recommends various actions to take in the
different disaster variants.

Administration Guide
27

NSO System Management
NSO fails to start

NSO fails to start
CDB keeps its data in four files A.cdb, C.cdb, O.cdb and S.cdb. If NSO is stopped, these four files
can simply be copied, and the copy is then a full backup of CDB.

Furthermore, if neither files exists in the configured CDB directory, CDB will attempt to initialize from all
files in the CDB directory with the suffix ".xml".

Thus, there exists two different ways to re-initiate CDB from a previous known good state, either
from .xml files or from a CDB backup. The .xml files would typically be used to reinstall "factory
defaults" whereas a CDB backup could be used in more complex scenarios.

If the S.cdb file has become inconsistent or has been removed, all commit queue items will be removed
and devices not yet processed out of sync. For such an event appropriate alarms will be raised on the
devices and any service instance that has unprocessed device changes will be set in the failed state.

When NSO starts and fails to initialize, the following exit codes can occur:

• Exit codes 1 and 19 mean that an internal error has occurred. A text message should be in the logs, or
if the error occurred at startup before logging had been activated, on standard error (standard output if
NSO was started with --foreground --verbose). Generally the message will only be meaningful to the
NSO developers, and an internal error should always be reported to support.

• Exit codes 2 and 3 are only used for the ncs "control commands" (see the section
COMMUNICATING WITH NCS in the ncs(1) in Manual Pages manual page), and mean that the
command failed due to timeout. Code 2 is used when the initial connect to NSO didn't succeed within
5 seconds (or the TryTime if given), while code 3 means that the NSO daemon did not complete the
command within the time given by the --timeout option.

• Exit code 10 means that one of the init files in the CDB directory was faulty in some way. Further
information in the log.

• Exit code 11 means that the CDB configuration was changed in an unsupported way. This will only
happen when an existing database is detected, which was created with another configuration than the
current in ncs.conf.

• Exit code 13 means that the schema change caused an upgrade, but for some reason the upgrade
failed. Details are in the log. The way to recover from this situation is either to correct the problem or
to re-install the old schema (fxs) files.

• Exit code 14 means that the schema change caused an upgrade, but for some reason the upgrade
failed, corrupting the database in the process. This is rare and usually caused by a bug. To recover,
either start from an empty database with the new schema, or re-install the old schema files and apply a
backup.

• Exit code 15 means that A.cdb or C.cdb is corrupt in a non-recoverable way. Remove the files and
re-start using a backup or init files.

• Exit code 16 means that CDB ran into an unrecoverable file-error (such as running out of space on the
device while performing journal compaction).

• Exit code 20 means that NSO failed to bind a socket.

• Exit code 21 means that some NSO configuration file is faulty. More information in the logs.

• Exit code 22 indicates a NSO installation related problem, e.g. that the user does not have read access
to some library files, or that some file is missing.

If the NSO daemon starts normally, the exit code is 0.

If the AAA database is broken, NSO will start but with no authorization rules loaded. This means that all
write access to the configuration is denied. The NSO CLI can be started with a flag ncs_cli --noaaa which
will allow full unauthorized access to the configuration.

Administration Guide
28

NSO System Management
NSO failure after startup

NSO failure after startup
NSO attempts to handle all runtime problems without terminating, e.g. by restarting specific components.
However there are some cases where this is not possible, described below. When NSO is started the default
way, i.e. as a daemon, the exit codes will of course not be available, but see the --foreground option in the
ncs(1) manual page.

• Out of memory: If NSO is unable to allocate memory, it will exit by calling abort(3). This will
generate an exit code as for reception of the SIGABRT signal - e.g. if NSO is started from a shell
script, it will see 134 as exit code (128 + the signal number).

• Out of file descriptors for accept(2): If NSO fails to accept a TCP connection due to lack of file
descriptors, it will log this and then exit with code 25. To avoid this problem, make sure that the
process and system-wide file descriptor limits are set high enough, and if needed configure session
limits in ncs.conf.

Note The out-of-file descriptors issue may also manifest itself in that applications are no longer able to
open new file descriptors.

In many Linux systems the default limit is 1024, but if we, for example, assume that there are 4
northbound interface ports, CLI, RESTCONF, SNMP, WebUI/JSON-RPC, or similar, plus a few
hundreds of IPC ports, x 1024 == 5120. But one might as well use the next power of two, 8192, to be
on the safe side.

Several application issues can contribute to consuming extra ports. In the scope of a NSO application
that could, for example, be a script application that invokes CLI command or a callback daemon
application that does not close the connection socket as they should.

A commonly used command for changing the maximum number of open file descriptors is ulimit -n
[limit]. Commands such as netstat and lsof can be useful to debug file descriptor related issues.

Transaction commit failure
When the system is updated, NSO executes a two phase commit protocol towards the different
participating databases including CDB. If a participant fails in the commit() phase although the
participant succeeded in the prepare phase, the configuration is possibly in an inconsistent state.

When NSO considers the configuration to be in a inconsistent state, operations will continue. It is still
possible to use NETCONF, the CLI and all other northbound management agents. The CLI has a different
prompt which reflects that the system is considered to be in an inconsistent state and also the Web UI
shows this:

 -- WARNING --
 Running db may be inconsistent. Enter private configuration mode and
 install a rollback configuration or load a saved configuration.
 --

The MAAPI API has two interface functions which can be used to set and retrieve the consistency status,
those are maapi_set_running_db_status() and maapi_get_running_db_status()
corresponding. This API can thus be used to manually reset the consistency state. The only alternative to
reset the state to a consistent state is by reloading the entire configuration.

Administration Guide
29

NSO System Management
Troubleshooting

Troubleshooting
This section discusses problems that new users have seen when they started to use NSO. Please do not
hesitate to contact our support team (see below) if you are having trouble, regardless of whether your
problem is listed here or not. A very useful tool in that regard is the ncs-collect-tech-report tool, which is
Bash script that comes with the product. It collects all log files, CDB backup, and several debug dumps as
a TAR file. Note that it only works with a system install.

root@linux:/# ncs-collect-tech-report --full

Installation Problems
Error messages during installation

The installation program gives a lot of error messages, the first few like the ones below. The resulting
installation is obviously incomplete.

tar: Skipping to next header
gzip: stdin: invalid compressed data--format violated

Cause: This happens if the installation program has been damaged, most likely because it has been
downloaded in 'ascii' mode.

Resolution: Remove the installation directory. Download a new copy of NSO from our servers. Make sure
you use binary transfer mode every step of the way.

Problems Starting NSO
NSO terminating with GLIBC error

NSO terminates immediately with a message similar to the one below.

Internal error: Open failed: /lib/tls/libc.so.6: version
`GLIBC_2.3.4' not found (required by
.../lib/ncs/priv/util/syst_drv.so)

Cause: This happens if you are running on a very old Linux version. The GNU libc (GLIBC) version is
older than 2.3.4, which was released 2004.

Resolution: Use a newer Linux system, or upgrade the GLIBC installation.

Problems Running Examples
The 'netconf-console' program fails

Sending NETCONF commands and queries with 'netconf-console' fails, while it works using 'netconf-
console-tcp'. The error message is below.

You must install the python ssh implementation paramiko in order to use ssh.

Cause: The netconf-console command is implemented using the Python programming language. It depends
on the python SSH implementation Paramiko. Since you are seeing this message, your operating system
doesn't have the python-module Paramiko installed. The Paramiko package, in turn, depends on a Python
crypto library (pycrypto).

Administration Guide
30

NSO System Management
Problems Using and Developing Services

Resolution: Install Paramiko (and pycrypto, if necessary) using the standard installation mechanisms for
your OS. An alternative approach is to go to the project home pages to fetch, build and install the missing
packages.

• https://www.lag.net/paramiko/

• https://www.amk.ca/python/code/crypto

These packages come with simple installation instructions. You will need root privileges to install these
packages, however. When properly installed, you should be able to import the paramiko module without
error messages

$ python
...
>>> import paramiko
>>>

Exit the Python interpreter with Ctrl+D.

A workaround is to use 'netconf-console-tcp'. It uses TCP instead of SSH and doesn't require Paramiko or
Pycrypto. Note that TCP traffic is not encrypted.

Problems Using and Developing Services
If you encounter issues while loading service packages, creating service instances, or developing service
models, template, and code, you can consult the Troubleshooting section in Chapter 14, Developing NSO
Services in Development Guide.

General Troubleshooting Strategies
If you have trouble starting or running NSO, the examples or the clients you write, here are some
troubleshooting tips.

Transcript When contacting support, it often helps the support engineer to
understand what you are trying to achieve if you copy-paste the
commands, responses and shell scripts that you used to trigger the
problem, together with any CLI outputs and logs produced by NSO.

Source ENV variables If you have problems executing ncs commands, make sure you
source the ncsrc script in your NSO directory (your path may be
different than the one in the example if you are using a local install),
which sets the required environmental variables.

$ source /etc/profile.d/ncs.sh

Log files To find out what NSO is/was doing, browsing NSO log files is
often helpful. In the examples, they are called 'devel.log', 'ncs.log',
'audit.log'. If you are working with your own system, make sure the
log files are enabled in ncs.conf. They are already enabled in all
the examples. You can read more about how to enable and inspect
various logs in the logging chapter

Verify hardware resources Both high CPU utilization and a lack of memory can negatively
affect the performance of NSO. You can use commands such as
top to examine resource utilization, and free -mh to see the
amount of free and consumed memory. A common symptom of a
lack of memory is NSO or Java-VM restarting. A sufficient amount
of disk space is also required for CDB persistence and logs, so you
can also check disk space with df -h command. In case there is

Administration Guide
31

https://www.lag.net/paramiko/
https://www.amk.ca/python/code/crypto

NSO System Management
General Troubleshooting Strategies

enough space on disk and you still encounter ENOSPC errors, check
the inode usage with df -i command.

Status NSO will give you a comprehensive status of daemon status, YANG
modules, loaded packages, MIBs, active user sessions, CDB locks
and more, if you run

$ ncs --status

NSO status information is also available as operational data under /
ncs-state.

Check data provider If you are implementing a data provider (for operational or
configuration data), you can verify that it works for all possible data
items using

$ ncs --check-callbacks

Debug dump If you suspect you have experienced a bug in NSO, or NSO told
you so, you can give Support a debug dump to help us diagnose the
problem. It contains a lot of status information (including a full ncs
--status report) and some internal state information. This information
is only readable and comprehensible to the NSO development team,
so send the dump to your support contact. A debug dump is created
using

$ ncs --debug-dump mydump1

Just as in CSI on TV, it's important that the information is collected
as soon as possible after the event. Many interesting traces will wash
away with time, or stay undetected if there are lots of irrelevant facts
in the dump.

If NSO gets stuck while terminating, it can optionally create a debug
dump after being stuck for 60 seconds. To enable this mechanism,
set the environment variable $NCS_DEBUG_DUMP_NAME to a
filename of your choice.

Error log Another thing you can do in case you suspect that you have
experienced a bug in NSO, is to collect the error log. The logged
information is only readable and comprehensible to the NSO
development team, so send the log to your support contact. The log
actually consists of a number of files called ncserr.log.* -
make sure to provide them all.

System dump If NSO aborts due to failure to allocate memory (see the section
called “Disaster management”), and you believe that this is due
to a memory leak in NSO, creating one or more debug dumps
as described above (before NSO aborts) will produce the most
useful information for Support. If this is not possible, NSO
will produce a system dump by default before aborting, unless
DISABLE_NCS_DUMP is set. The default system dump file
name is ncs_crash.dump and it could be changed by setting
the environment variable $NCS_DUMP before starting NSO.
The dumped information is only comprehensible to the NSO
development team, so send the dump to your support contact.

System call trace To catch certain types of problems, especially relating to system
start and configuration, the operating system's system call trace can

Administration Guide
32

NSO System Management
General Troubleshooting Strategies

be invaluable. This tool is called strace/ktrace/truss. Please send the
result to your support contact for a diagnosis. Running instructions
below.

Linux:

strace -f -o mylog1.strace -s 1024 ncs ...

BSD:

ktrace -ad -f mylog1.ktrace ncs ...
kdump -f mylog1.ktrace > mylog1.kdump

Solaris:

truss -f -o mylog1.truss ncs ...

Administration Guide
33

NSO System Management
General Troubleshooting Strategies

Administration Guide
34

CHAPTER 3
Cisco Smart Licensing

• Introduction, page 35

• Smart Accounts and Virtual Accounts, page 35

• Validation and Troubleshooting, page 41

Introduction
Cisco Smart Licensing is a cloud-based approach to licensing and it simplifies purchase, deployment
and management of Cisco software assets. Entitlements are purchased through a Cisco account via Cisco
Commerce Workspace (CCW) and are immediately deposited into a Smart Account for usage. This
eliminates the need to install license files on every device. Products that are smart enabled communicate
directly to Cisco to report consumption.

Cisco Smart Software Manager (CSSM) enables the management of software licenses and Smart Account
from a single portal. The interface allows you to activate your product, manage entitlements, renew and
upgrade software.

A functioning Smart Account is required to complete the registration process. For detailed information
about CSSM, see Cisco Smart Software Manager.

Smart Accounts and Virtual Accounts
A Virtual Account exists as a sub-account within the Smart Account. Virtual Accounts are a customer
defined structure based on organizational layout, business function, geography or any defined hierarchy.
They are created and maintained by the Smart Account administrator(s).

Visit Cisco Cisco Software Central to learn about how to create and manage Smart Accounts.

Request a Smart Account
The creation of a new Smart Account is a one-time event and subsequent management of users is a
capability provided through the tool. To request a Smart Account, visit Cisco Cisco Software Central and
take the following steps:

Step 1 After logging in select Request a Smart Account in the Administration section:

Administration Guide
35

https://www.cisco.com/web/ordering/smart-software-licensing/index.html
https://www.cisco.com/c/en/us/buy/smart-accounts/software-manager.html
https://software.cisco.com
https://software.cisco.com

Cisco Smart Licensing
Request a Smart Account

Step 2 Select the type of Smart Account to create. There are two options: (a) Individual Smart Account requiring agreement
to represent your company. By creating this Smart Account you agree to authorization to create and manage product
and service entitlements, users and roles on behalf of your organization. (b) Create the account on behalf of someone
else.

Step 3 Provide the required domain identifier and the preferred account name:

Step 4 The account request will be pending an approval of the Account Domain Identifier. A subsequent email will be sent
to the requester to complete the setup process:

Administration Guide
36

Cisco Smart Licensing
Adding users to a Smart Account

Adding users to a Smart Account
Smart Account user management is available in the Administration section of Cisco Cisco Software
Central. Take the following steps to add a new user to a Smart Account:

Step 1 After logging in Select "Manage Smart Account" in the Administration section:

Step 2 Choose the Users tab:

Step 3 Select New User and follow the instructions in the wizard to add a new user:

Administration Guide
37

https://software.cisco.com
https://software.cisco.com

Cisco Smart Licensing
Create a License Registration Token

Create a License Registration Token

Step 1 To create a new token, log into CSSM and select the appropriate Virtual Account:

Step 2 Click on the "Smart Licenses" link to enter CSSM:

Administration Guide
38

Cisco Smart Licensing
Create a License Registration Token

Step 3 In CSSM click on "New Token...":

Step 4 Follow the dialog to provide a description, expiration and export compliance applicability before accepting the terms
and responsibilities. Click on "Create Token" to continue.

Administration Guide
39

Cisco Smart Licensing
Create a License Registration Token

Step 5 Click on the new token:

Step 6 Copy the token from the dialogue window into your clipboard:

Step 7 Go to the NSO CLI and provide the token to the license smart register idtoken command:

admin@ncs# license smart register idtoken YzY2YjFlOTYtOWYzZi00MDg1...
Registration process in progress.
Use the 'show license status' command to check the progress and result.

Administration Guide
40

Cisco Smart Licensing
Notes on Configuring Smart Licensing

Notes on Configuring Smart Licensing

Note If ncs.conf contains configuration for any of java-executable, java-options, override-url/url or proxy/url
under the configure path /ncs-config/smart-license/smart-agent/ any corresponding configuration done via
the CLI is ignored.

Note The smart licensing component of NSO runs its own Java virtual machine. Usually the default Java options
are sufficient:

 leaf java-options {
 tailf:info "Smart licensing Java VM start options";
 type string;
 default "-Xmx64M -Xms16M
 -Djava.security.egd=file:/dev/./urandom";
 description
 "Options which NCS will use when starting
 the Java VM.";}

If you for some reason need to modify the Java options, remember to include the default values as found in
the YANG model.

Validation and Troubleshooting
Available Show Commands

show license all Displays all information

show license status Displays status information

show license summary Displays summary

show license tech Displays license tech support information

show license usage Displays usage information

Available Show Commands
debug smart_lic all All available Smart Licensing debug flags

Administration Guide
41

Cisco Smart Licensing
Available Show Commands

Administration Guide
42

CHAPTER 4
NSO Alarms

• Overview, page 43

• Alarm type structure, page 43

• Alarm type descriptions, page 44

Overview
NSO generates alarms for serious problems that must be remedied. Alarms are available over all north-
bound interfaces and the exist at the path /alarms. NSO alarms are managed as any other alarms by the
general NSO Alarm Manager, see the specific section on the alarm manager in order to understand the
general alarm mechanisms.

The NSO alarm manager also presents a northbound SNMP view, alarms can be retrieved as an
alarm table, and alarm state changes are reported as SNMP Notifications. See the "NSO Northbound"
documentation on how to configure the SNMP Agent.

This is also documented in the example /examples.ncs/getting-started/using-ncs/5-
snmp-alarm-northbound.

Alarm type structure
 alarm-type
 ha-alarm
 ha-node-down-alarm
 ha-primary-down
 ha-secondary-down
 ncs-cluster-alarm
 cluster-subscriber-failure
 ncs-dev-manager-alarm
 abort-error
 bad-user-input
 commit-through-queue-blocked
 commit-through-queue-failed
 commit-through-queue-rollback-failed
 configuration-error
 connection-failure
 final-commit-error
 missing-transaction-id
 ned-live-tree-connection-failure
 out-of-sync
 revision-error

Administration Guide
43

NSO Alarms
Alarm type descriptions

 ncs-package-alarm
 package-load-failure
 package-operation-failure
 ncs-service-manager-alarm
 service-activation-failure
 ncs-snmp-notification-receiver-alarm
 receiver-configuration-error
 time-violation-alarm
 transaction-lock-time-violation

Alarm type descriptions
Table 2. Alarm type descriptions (alphabetically)

Alarm Identity Initial Perceived Severity

abort-error major

Description Recommended Action

An error happened while aborting or reverting a
transaction. Device's configuration is likely to be
inconsistent with the NCS CDB.

Inspect the configuration difference with compare-
config, resolve conflicts with sync-from or sync-to
if any.

Alarm message(s)

• Device {dev} is locked

• Device {dev} is southbound locked

• abort error

Clear condition(s)

If NCS achieves sync with the device, or receives a transaction id for a netconf session towards the
device, the alarm is cleared.

Alarm Identity

alarm-type

Description

Base identity for alarm types. A unique identification of the fault, not including the managed object.
Alarm types are used to identify if alarms indicate the same problem or not, for lookup into external
alarm documentation, etc. Different managed object types and instances can share alarm types. If the
same managed object reports the same alarm type, it is to be considered to be the same alarm. The alarm
type is a simplification of the different X.733 and 3GPP alarm IRP alarm correlation mechanisms and it
allows for hierarchical extensions. A 'specific-problem' can be used in addition to the alarm type in order
to have different alarm types based on information not known at design-time, such as values in textual
SNMP Notification varbinds.

Alarm Identity Initial Perceived Severity

bad-user-input critical

Description Recommended Action

Invalid input from user. NCS cannot recognize
parameters needed to connect to device.

Verify that the user supplied input are correct.

Alarm message(s)

• Resource {resource} doesn't exist

Clear condition(s)

Administration Guide
44

NSO Alarms
Alarm type descriptions

This alarm is not cleared.

Alarm Identity Initial Perceived Severity

cluster-subscriber-failure critical

Description Recommended Action

Failure to establish a notification subscription
towards a remote node.

Verify IP connectivity between cluster nodes.

Alarm message(s)

• Failed to establish netconf notification subscription to node ~s,
stream ~s

• Commit queue items with remote nodes will not receive required
event notifications.

Clear condition(s)

This alarm is cleared if NCS succeeds to establish a subscription towards the remote node, or when the
subscription is explicitly stopped.

Alarm Identity Initial Perceived Severity

commit-through-queue-blocked warning

Description

A commit was queued behind a queue item waiting to be able to connect to one of its devices. This is
potentially dangerous since one unreachable device can potentially fill up the commit queue indefinitely.

Alarm message(s)

• Commit queue item ~p is blocked because item ~p cannot connect to
~s

Clear condition(s)

An alarm raised due to a transient error will be cleared when NCS is able to reconnect to the device.

Alarm Identity Initial Perceived Severity

commit-through-queue-failed critical

Description Recommended Action

A queued commit failed. Resolve with rollback if possible.

Alarm message(s)

• Failed to connect to device {dev}: {reason}

• Connection to {dev} timed out

• Failed to authenticate towards device {device}: {reason}

• The configuration database is locked for device {dev}: {reason}

• the configuration database is locked by session {id}
{identification}

• Device {dev} is locked

• the configuration database is locked by session {id}
{identification}

• {Reason}

• {Dev}: Device is locked in a {Op} operation by session {session-id}

• resource denied

Administration Guide
45

NSO Alarms
Alarm type descriptions

• Device {dev} is southbound locked

• Commit queue item {CqId} rollback invoked

• Commit queue item {CqId} has failed: Operation failed because:
inconsistent database

• Remote commit queue item ~p cannot be unlocked: cluster node not
configured correctly

Clear condition(s)

This alarm is not cleared.

Alarm Identity Initial Perceived Severity

commit-through-queue-rollback-failed critical

Description Recommended Action

Rollback of a commit-queue item failed. Investigate the status of the device and resolve the
situation by issuing the appropriate action, i.e.,
service redeploy or a sync operation.

Alarm message(s)

• {Reason}

Clear condition(s)

This alarm is not cleared.

Alarm Identity Initial Perceived Severity

configuration-error critical

Description Recommended Action

Invalid configuration of NCS managed device,
NCS cannot recognize parameters needed to
connect to device.

Verify that the configuration parameters defined in
tailf-ncs-devices.yang submodule are consistent for
this device.

Alarm message(s)

• Failed to resolve IP address for {dev}

• the configuration database is locked by session {id}
{identification}

• {Reason}

• Resource {resource} doesn't exist

Clear condition(s)

The alarm is cleared when NCS reads the configuration parameters for the device, and is raised again if
the parameters are invalid.

Alarm Identity Initial Perceived Severity

connection-failure major

Description Recommended Action

NCS failed to connect to a managed device before
the timeout expired.

Verify address, port, authentication, check that
the device is up and running. If the error occurs
intermittently, increase connect-timeout.

Alarm message(s)

• The connection to {dev} was closed

Administration Guide
46

NSO Alarms
Alarm type descriptions

• Failed to connect to device {dev}: {reason}

Clear condition(s)

If NCS successfully reconnects to the device, the alarm is cleared.

Alarm Identity Initial Perceived Severity

final-commit-error critical

Description Recommended Action

A managed device validated a configuration
change, but failed to commit. When this happens,
NCS and the device are out of sync.

Reconcile by comparing and sync-from or sync-to.

Alarm message(s)

• The connection to {dev} was closed

• External error in the NED implementation for device {dev}: {reason}

• Internal error in the NED NCS framework affecting device {dev}:
{reason}

Clear condition(s)

If NCS achieves sync with a device, the alarm is cleared.

Alarm Identity

ha-alarm

Description

Base type for all alarms related to high availablity. This is never reported, sub-identities for the specific
high availability alarms are used in the alarms.

Alarm Identity

ha-node-down-alarm

Description

Base type for all alarms related to nodes going down in high availablity. This is never reported, sub-
identities for the specific node down alarms are used in the alarms.

Alarm Identity Initial Perceived Severity

ha-primary-down critical

Description Recommended Action

The node lost the connection to the primary node. Make sure the HA cluster is operational, investigate
why the primary went down and bring it up again.

Alarm message(s)

• Lost connection to primary due to: Primary closed connection

• Lost connection to primary due to: Tick timeout

• Lost connection to primary due to: code {Code}

Clear condition(s)

This alarm is never automatically cleared and has to be cleared manually when the HA cluster has been
restored.

Alarm Identity Initial Perceived Severity

Administration Guide
47

NSO Alarms
Alarm type descriptions

ha-secondary-down critical

Description Recommended Action

The node lost the connection to a secondary node. Investigate why the secondary node went down, fix
the connectivity issue and reconnect the secondary
to the HA cluster.

Alarm message(s)

• Lost connection to secondary

Clear condition(s)

This alarm is cleared when the secondary node is reconnected to the HA cluster.

Alarm Identity Initial Perceived Severity

missing-transaction-id warning

Description Recommended Action

A device announced in its NETCONF hello
message that it supports the transaction-id
as defined in http://tail-f.com/yang/netconf-
monitoring. However when NCS tries to read the
transaction-id no data is returned. The NCS check-
sync feature will not work. This is usually a case
of misconfigured NACM rules on the managed
device.

Verify NACM rules on the concerned device.

Alarm message(s)

• {Reason}

Clear condition(s)

If NCS successfully reads a transaction id for which it had previously failed to do so, the alarm is
cleared.

Alarm Identity

ncs-cluster-alarm

Description

Base type for all alarms related to cluster. This is never reported, sub-identities for the specific cluster
alarms are used in the alarms.

Alarm Identity

ncs-dev-manager-alarm

Description

Base type for all alarms related to the device manager This is never reported, sub-identities for the
specific device alarms are used in the alarms.

Alarm Identity

ncs-package-alarm

Description

Base type for all alarms related to packages. This is never reported, sub-identities for the specific
package alarms are used in the alarms.

Administration Guide
48

NSO Alarms
Alarm type descriptions

Alarm Identity

ncs-service-manager-alarm

Description

Base type for all alarms related to the service manager This is never reported, sub-identities for the
specific service alarms are used in the alarms.

Alarm Identity

ncs-snmp-notification-receiver-alarm

Description

Base type for SNMP notification receiver Alarms. This is never reported, sub-identities for specific
SNMP notification receiver alarms are used in the alarms.

Alarm Identity Initial Perceived Severity

ned-live-tree-connection-failure major

Description Recommended Action

NCS failed to connect to a managed device using
one of the optional live-status-protocol NEDs.

Verify the configuration of the optional NEDs. If
the error occurs intermittently, increase connect-
timeout.

Alarm message(s)

• The connection to {dev} was closed

• Failed to connect to device {dev}: {reason}

Clear condition(s)

If NCS successfully reconnects to the managed device, the alarm is cleared.

Alarm Identity Initial Perceived Severity

out-of-sync major

Description Recommended Action

A managed device is out of sync with NCS.
Usually it means that the device has been
configured out of band from NCS point of view.

Inspect the difference with compare-config,
reconcile by invoking sync-from or sync-to.

Alarm message(s)

• Device {dev} is out of sync

• Out of sync due to no-networking or failed commit-queue commits.

• got: ~s expected: ~s.

Clear condition(s)

If NCS achieves sync with a device, the alarm is cleared.

Alarm Identity Initial Perceived Severity

package-load-failure critical

Description Recommended Action

NCS failed to load a package. Check the package for the reason.

Alarm message(s)

• failed to open file {file}: {str}

Administration Guide
49

NSO Alarms
Alarm type descriptions

• Specific to the concerned package.

Clear condition(s)

If NCS successfully loads a package for which an alarm was previously raised, it will be cleared.

Alarm Identity Initial Perceived Severity

package-operation-failure critical

Description Recommended Action

A package has some problem with its operation. Check the package for the reason.

Clear condition(s)

This alarm is not cleared.

Alarm Identity Initial Perceived Severity

receiver-configuration-error major

Description Recommended Action

The snmp-notification-receiver could not setup
its configuration, either at startup or when
reconfigured. SNMP notifications will now be
missed.

Check the error-message and change the
configuration.

Alarm message(s)

• Configuration has errors.

Clear condition(s)

This alarm will be cleared when the NCS is configured to successfully receive SNMP notifications

Alarm Identity Initial Perceived Severity

revision-error major

Description Recommended Action

A managed device arrived with a known module,
but too new revision.

Upgrade the Device NED using the new YANG
revision in order to use the new features in the
device.

Alarm message(s)

• The device has YANG module revisions not supported by NCS. Use
the /devices/device/check-yang-modules action to check which
modules that are not compatible.

Clear condition(s)

If all device yang modules are supported by NCS, the alarm is cleared.

Alarm Identity Initial Perceived Severity

service-activation-failure critical

Description Recommended Action

A service failed during re-deploy. Corrective action and another re-deploy is needed.

Alarm message(s)

• Multiple device errors: {str}

Clear condition(s)

Administration Guide
50

NSO Alarms
Alarm type descriptions

If the service is successfully redeployed, the alarm is cleared.

Alarm Identity

time-violation-alarm

Description

Base type for all alarms related to time violations. This is never reported, sub-identities for the specific
time violation alarms are used in the alarms.

Alarm Identity Initial Perceived Severity

transaction-lock-time-violation warning

Description Recommended Action

The transaction lock time exceeded its threshold
and might be stuck in the critical section. This
threshold is configured in /ncs-config/transaction-
lock-time-violation-alarm/timeout.

Investigate if the transaction is stuck and possibly
interrupt it by closing the user session which it is
attached to.

Alarm message(s)

• Transaction lock time exceeded threshold.

Clear condition(s)

This alarm is cleared when the transaction has finished.

Administration Guide
51

NSO Alarms
Alarm type descriptions

Administration Guide
52

CHAPTER 5
NSO Packages

• Package Overview, page 53

• Loading Packages, page 54

• Redeploying Packages, page 55

• Adding NED Packages, page 55

• NED Migration, page 56

• Managing Packages, page 58

Package Overview
All user code that needs to run in NSO must be part of a package. A package is basically a directory of
files with a fixed file structure, or a tar archive with the same directory layout. A package consists of code,
YANG modules, etc., that are needed in order to add an application or function to NSO. Packages are a
controlled way to manage loading and versions of custom applications.

Network Element Drivers (NEDs) are also packages. Each NED allows NSO to manage a network
device of a specific type. NED contains device YANG model and the code, specifying how NSO should
connect to the device. For NETCONF devices, NSO includes tools to help you build a NED, as shown in
Chapter 3, NETCONF NED Builder in NED Development, but often a vendor provides the required NEDs.
In practice, all NSO instances use at least one NED. The set of used NED packages depends of the number
of different device types the NSO manages.

When NSO starts, it searches for packages to load. The ncs.conf parameter /ncs-config/load-
path defines a list of directories. At initial startup, NSO searches these directories for packages, copies
the packages to a private directory tree in the directory defined by the /ncs-config/state-dir
parameter in ncs.conf, and loads and starts all the packages found. On subsequent startups, NSO will
by default only load and start the copied packages. The purpose of this procedure is to make it possible
to reliably load new or updated packages while NSO is running, with fallback to the previously existing
version of the packages if the reload should fail.

In a "system install" of NSO, packages are always installed (normally by means of symbolic links) in the
packages subdirectory of the "run directory", i.e. by default /var/opt/ncs/packages, and the
private directory tree is created in the state subdirectory, i.e. by default /var/opt/ncs/state.

Administration Guide
53

NSO Packages
Loading Packages

Loading Packages
Loading of new or updated packages (as well as removal of packages that should no longer be used) can be
requested via the reload action - from the NSO CLI:

admin@ncs# packages reload
reload-result {
 package cisco-ios
 result true
}

This request makes NSO copy all packages found in the load path to a temporary version of its private
directory, and load the packages from this directory. If the loading is successful, this temporary directory
will be made permanent, otherwise the temporary directory is removed and NSO continues to use the
previous version of the packages. Thus when updating packages, always update the version in the load
path, and request that NSO does the reload via this action.

If the package changes include modified, added, or deleted .fxs files or .ccl files, NSO needs to run a data
model upgrade procedure. In this case, all transactions must be closed, in particular users having CLI
sessions in configure mode must exit to operational mode. If there are ongoing commit queue items, and
the wait-commit-queue-empty parameter is supplied, it will wait for the items to finish before
proceeding the reload. During this time, it will not allow creating any new transactions. Hence, if one of
the queue items fails with 'rollback-on-error' option set, the commit queue's rollback will also fail, and the
queue item will be locked. In this case, the reload will be canceled. A manual investigation of the failure is
needed in order to proceed the reload.

By default, the reload action will (when needed) wait up to 10 seconds for commit queue to empty (if
the wait-commit-queue-empty parameter is entered) and reload to start.

If there are still open transactions at the end of this period, the upgrade will be canceled and the reload
operation will fail. The max-wait-time and timeout-action parameters to the action can modify
this behaviour. For example, to wait for up to 30 seconds, and forcibly terminate any transactions that still
remain open after this period, we can invoke the action as:

admin@ncs# packages reload max-wait-time 30 timeout-action kill

Thus the default values for these parameters are 10 and fail, respectively. In case there are no changes
to .fxs or .ccl files, the reload can be carried out without the data model upgrade procedure, and these
parameters are ignored, since there is no need to close open transactions.

When reloading packages NSO will give a warning when the upgrade looks "suspicious", i.e. may break
some functionality. Note that this is not a strict upgrade validation, but only intended as a hint to NSO
administrator early in the upgrade process that something might be wrong. Currently the following
scenarios will trigger the warnings:

• one or more namespaces are removed by the upgrade. The consequence of this is all data belonging
to this namespace is permanently deleted from CDB upon upgrade. This may be intended in some
scenarios, in which case it is advised to proceed overriding warnings as described below.

• there are source .java files found in the package, but no matching .class files in the jars loaded by
NSO. This likely means that the package has not been compiled.

• there are matching .class files with modification time older than the source files, which hints that the
source has been modified since the last time the package has been compiled. This likely means that
the package was not re-compiled the last time source code has been changed.

If a warning has been triggered it is a strong recommendation to fix the root cause. If all of the warnings
are intended, it is possible to proceed with "packages reload force" command.

Administration Guide
54

NSO Packages
Redeploying Packages

In some cases we may want NSO to do the same operation as the reload action at NSO startup, i.e. copy
all packages from the load path before loading, even though the private directory copy already exists. This
can be achieved in the following ways:

• Setting the shell environment variable $NCS_RELOAD_PACKAGES to true. This will make NSO
do the copy from the load path on every startup, as long as the environment variable is set. In a
"system install", NSO must be started via the init script, and this method must be used, but with a
temporary setting of the environment variable:

NCS_RELOAD_PACKAGES=true /etc/init.d/ncs start

• Giving the option --with-package-reload to the ncs command when starting NSO. This will
make NSO do the copy from the load path on this particular startup, without affecting the behaviour
on subsequent startups.

• If warnings are encountered when reloading packages at startup using one of the options above, the
recommended way forward is to fix the root cause as indicated by the warnings as mentioned before.
If the intention is to proceed with the upgrade without fixing the underlying cause for the warnings, it
is possible to force the upgrade using NCS_RELOAD_PACKAGES=force environment variable or
--with-package-reload-force option.

Always use one of these methods when upgrading to a new version of NSO in an existing directory
structure, to make sure that new packages are loaded together with the other parts of the new system.

Redeploying Packages
If it is known in advance that there were no data model changes, i.e. none of the .fxs or .ccl files changed,
and none of the shared JARs changed in a Java package, and the declaration of the components in the
package-meta-data.xml is unchanged, then it is possible to do a lightweight package upgrade, called
package redeploy. Package redeploy only loads the specified package, unlike packages reload which loads
all of the packages found in the load-path.

admin@ncs# packages package mserv redeploy
result true

Redeploying a package allows to reload updated or load new templates, reload private JARs for a Java
package or reload the python code which is a part of this package. Only the changed part of the package
will be reloaded, e.g. if there were no changes to Python code, but only templates, then the Python VM will
not be restarted, but only templates reloaded. The upgrade is not seamless however as the old templates
will be unloaded for a short while before the new ones are loaded, so any user of the template during
this period of time will fail; same applies to changed Java or Python code. It is hence the responsibility
of the user to make sure that the services or other code provided by package is unused while it is being
redeployed.

The package redeploy will return true if the package's resulting status after the redeploy is up.
Consequently, if the result of the action is false, then it is advised to check the operational status of the
package in the package list.

admin@ncs# show packages package mserv oper-status
oper-status file-load-error
oper-status error-info "template3.xml:2 Unknown servicepoint: templ42-servicepoint"

Adding NED Packages
Unlike a full packages reload operation, new NED packages can be loaded into the system without
disrupting existing transactions. This is only possible for new packages, since these packages don't yet
have any instance data.

Administration Guide
55

NSO Packages
NED Migration

The operation is performed through the /packages/add action. No additional input is necessary. The
operation scans all the load-paths for any new NED packages and also verifies the existing packages are
still present. If packages are modified or deleted, the operation will fail.

Each NED package defines a ned-id, an identifier that is used in selecting the NED for each managed
device. A new NED package is therefore a package with a ned-id value that is not already in use.

In addition, the system imposes some additional constraints, so it is not always possible to add just any
arbitrary NED. In particular, NED packages can also contain one or more shared data models, such as
NED settings or operational data for private use by the NED, that are not specific to each version of a NED
package but rather shared between all versions. These are typically placed outside any mountpoint (device-
specific data model), extending the NSO schema directly. So, if a NED defines schema nodes outside any
mountpoint, there must be no changes to these nodes if they already exist.

Adding a NED package with modified shared data model is therefore not allowed and all shared data
models are verified to be identical before a NED package can be added. If they are not, the /packages/
add action will fail and you will have to use the /packages/reload command.

admin@ncs# packages add
add-result {
 package router-nc-1.1
 result true
}

The command returns true if the package's resulting status after deployment is up. Likewise, if the result
for a package is false, then the package was added but its code has not started successfully and you
should check the operational status of the package with the show packages package PKG oper-status
command for additional information. You may then use the /packages/package/redeploy action
to retry deploying the package's code, once you have corrected the error.

Note In a High Availability setup, you can perform this same operation on all the nodes in the cluster with a
single packages ha sync and-add command.

NED Migration
If you upgrade a managed device, such as installing a new firmware, the device data model can change in
some significant way. If that is the case, you usually need to use a different, newer NED, with an updated
YANG model.

When the changes in the NED are not backwards compatible, the NED is assigned a new ned-id to avoid
breaking existing code. On the plus side, this allows you to use both versions of the NED at the same time,
so some devices can use the new version and some can use the old one. So, there is no need to upgrade
all devices at the same time. The downside is, NSO doesn't know the two NEDs are related and won't
perform any upgrade on its own, due to different ned-ids. Instead, you must manually change the NED of a
managed device through a NED migration.

Migration is required when upgrading a NED and the ned-id changes, which is signified by a change in
either the first or the second number in the NED package version. For example, if you're upgrading the
existing router-nc-1.0.1 NED to router-nc-1.2.0 or router-nc-2.0.2, you must perform the NED migration.
On the other hand, upgrading to router-nc-1.0.2 or router-nc-1.0.3 retains the same ned-id and you can
upgrade the router-1.0.1 package in-place, directly replacing it with the new one. However, note that some
3rd-party, non-Cisco packages may not adhere to this standard versioning convention. In that case, you
must check the ned-id values to see whether migration is needed.

Administration Guide
56

NSO Packages
NED Migration

Figure 3. Sample NED package versioning

A potential issue with a new NED is that it can break an existing service or other packages that rely on
it. To help service developers and operators verify or upgrade the service code, NSO provides additional
options to migration tooling for identifying the paths and service instances that may be impacted. So,
please ensure all the other packages are compatible with the new NED before you start migrating devices.

To prepare for the NED migration process, first load the new NED package into NSO with either packages
reload or packages add command. Then use the show packages command to verify that both NEDs,
the new and the old, are present. Finally, you may perform the migration of devices either one by one or
multiple at a time.

Depending on your operational policies, this may be done during normal operations and does not strictly
require a maintenance window, as the migration only reads from and doesn't write to a network device.
Still, it is recommended you create an NSO backup before proceeding.

Note that changing a ned-id also affects device templates if you use them. To make existing device
templates compatible with the new ned-id, you can use the copy action. It will copy the configuration
used for one ned-id to another, as long as the schema nodes used haven't changed between the versions.
The following example demonstrates the copy action usage:

admin@ncs(config)# devices template acme-ntp ned-id router-nc-1.0 copy ned-id router-nc-1.2

For individual devices, use the /devices/device/migrate action, with the new-ned-id
parameter. Without additional options, the command will read and update the device configuration in
NSO. As part of this process, NSO migrates all the configuration and service meta-data. Use the dry-run
option to see what the command would do and verbose to list all impacted service instances.

You may also use the no-networking option to prevent NSO from generating any southbound traffic
towards the device. In this case, only the device configuration in the CDB is used for the migration but
then NSO can't know if the device is in sync. Afterwards, you must use the compare-config or the sync-
from action to remedy this.

For migrating multiple devices, use the /devices/migrate action, which takes the same options.
However, with this action you must also specify the old-ned-id, which limits the migration to devices
using the old NED. You can further restrict the action with the device parameter, selecting only specific
devices.

Depending on what changes are introduced by the migration and how these impact the services, it
might be good to re-deploy the affected services before removing the old NED package. It is especially
recommended in the following cases:

Administration Guide
57

NSO Packages
Managing Packages

• When the service touches a list key that has changed. As long as the old schema is loaded, NSO is
able to perform an upgrade.

• When a namespace that was used by the service has been removed. The service diffset, that is, the
recorded configuration changes created by the service, will no longer be valid. The diffset is needed
for the correct get-modifications output, deep-check-sync, and similar operations.

Managing Packages
In a "system install" of NSO, management of pre-built packages is supported through a number of actions,
as well as the possibility to configure remote software repositories from which packages can be retrieved.
This support is not available in a "local install", since it is dependent on the directory structure created by
the "system install". Please refer to the YANG submodule $NCS_DIR/src/ncs/yang/tailf-ncs-
software.yang for the full details of the functionality described in this section.

Package repositories
The /software/repository list allows for configuration of one or more remote repositories. The
Tail-f delivery server can be configured as a repository, but it is also possible to set up a local server for
this purpose - the (simple) requirements are described in detail in the YANG submodule. Authenticated
access to the repositories via HTTP or HTTPS is supported.

Example 4. Configuring a remote repository

admin@ncs(config)# software repository tail-f
Value for 'url' (<string>): https://support.tail-f.com/delivery
admin@ncs(config-repository-tail-f)# user name
admin@ncs(config-repository-tail-f)# password
(<AES encrypted string>): *******
admin@ncs(config-repository-tail-f)# commit
Commit complete.

Actions
Actions are provided to list local and repository packages, to fetch packages from a repository or from the
file system, and to install or deinstall packages:

• software packages list [...] List local packages, categorized into loaded, installed, and installable.
The listing can be restricted to only one of the categories - otherwise each package listed will include
the category for the package.

• software packages fetch package-from-file file Fetch a package by copying it from the file
system, making it installable.

• software packages install package package-name [...] Install a package, making it available
for loading via the packages reload action, or via a system restart with package reload. The action
ensures that only one version of the package is installed - if any version of the package is installed
already, the replace-existing option can be used to deinstall it before proceeding with the
installation.

• software packages deinstall package package-name Deinstall a package, i.e. remove it from the
set of packages available for loading.

• software repository name packages list [...] List packages available in the repository identified by
name. The list can be filtered via the name-pattern option.

• software repository name packages fetch package package-name Fetch a package from the
repository identified by name, making it installable.

Administration Guide
58

NSO Packages
Actions

There is also an upload action that can be used via NETCONF or REST to upload a package from the
local host to the NSO host, making it installable there. It is not feasible to use in the CLI or Web UI, since
the actual package file contents is a parameter for the action. It is also not suitable for very large (more
than a few megabytes) packages, since the processing of action parameters is not designed to deal with
very large values, and there is a significant memory overhead in the processing of such values.

Administration Guide
59

NSO Packages
Actions

Administration Guide
60

CHAPTER 6
Advanced Topics

• Locks, page 61

• Compaction, page 63

• IPC ports, page 64

• Restart strategies for service manager, page 65

• Security issues, page 65

• Running NSO as a non privileged user, page 67

• Using IPv6 on northbound interfaces, page 67

Locks
This section will explain the different locks that exist in NSO and how they interact. It is important to
understand the architecture of NSO with its management backplane, and the transaction state machine as
described in Chapter 13, Package Development in Development Guide to be able to understand how the
different locks fit into the picture.

Global locks
The NSO management backplane keeps a lock on the datastore: running. This lock is usually referred to as
the global lock and it provides a mechanism to grant exclusive access to the datastore.

The global is the only lock that can explicitly be taken through a northbound agent, for example by the
NETCONF <lock> operation, or by calling Maapi.lock().

A global lock can be taken for the whole datastore, or it can be a partial lock (for a subset of the data
model). Partial locks are exposed through NETCONF and Maapi.

An agent can request a global lock to ensure that it has exclusive write-access. When a global lock is held
by an agent it is not possible for anyone else to write to the datastore the lock guards - this is enforced by
the transaction engine. A global lock on running is granted to an agent if there are no other holders of it
(including partial locks), and if all data providers approve the lock request. Each data provider (CDB and/
or external data providers) will have its lock() callback invoked to get a chance to refuse or accept the
lock. The output of ncs --status includes locking status. For each user session locks (if any) per datastore is
listed.

Administration Guide
61

Advanced Topics
Transaction locks

Transaction locks
A northbound agent starts a user session towards NSO's management backplane. Each user session can
then start multiple transactions. A transaction is either read/write or read-only.

The transaction engine has its internal locks towards the running datastore. These transaction locks exists
to serialize configuration updates towards the datastore and are separate from the global locks.

As a northbound agent wants to update the running datastore with a new configuration it will implicitly
grab and release the transactional lock. The transaction engine takes care of managing the locks, as it
moves through the transaction state machine and there is no API that exposes the transactional locks to the
northbound agents.

When the transaction engine wants to take a lock for a transaction (for example when entering the validate
state) it first checks that no other transaction has the lock. Then it checks that no user session has a global
lock on that datastore. Finally each data provider is invoked by its transLock() callback.

Northbound agents and global locks
In contrast to the implicit transactional locks, some northbound agents expose explicit access to the global
locks. This is done a bit differently by each agent.

The management API exposes the global locks by providing Maapi.lock() and Maapi.unlock()
methods (and the corresponding Maapi.lockPartial() Maapi.unlockPartial() for partial
locking). Once a user session is established (or attached to) these functions can be called.

In the CLI the global locks are taken when entering different configure modes as follows:

config exclusive The running datastore global lock will be taken.

config terminal Does not grab any locks

The global lock is then kept by the CLI until the configure mode is exited.

The Web UI behaves in the same way as the CLI (it presents three edit tabs called "Edit private", "Edit
exclusive", and which corresponds to the CLI modes described above).

The NETCONF agent translates the <lock> operation into a request for the global lock for the requested
datastore. Partial locks are also exposed through the partial-lock rpc.

External data providers
Implementing the lock() and unlock() callbacks is not required of an external data provider.
NSO will never try to initiate the transLock() state transition (see the transaction state diagram in
Chapter 13, Package Development in Development Guide) towards a data provider while a global lock is
taken - so the reason for a data provider to implement the locking callbacks is if someone else can write (or
lock for example to take a backup) to the data providers database.

CDB
CDB ignores the lock() and unlock() callbacks (since the data-provider interface is the only write
interface towards it).

CDB has its own internal locks on the database. The running datastore has a single write and multiple read
locks. It is not possible to grab the write-lock on a datastore while there are active read-locks on it. The
locks in CDB exists to make sure that a reader always gets a consistent view of the data (in particular it
becomes very confusing if another user is able to delete configuration nodes in between calls to getNext()
on YANG list entries).

Administration Guide
62

Advanced Topics
Lock impact on user sessions

During a transaction transLock() takes a CDB read-lock towards the transactions datastore and
writeStart() tries to release the read-lock and grab the write-lock instead.

A CDB external reader client implicitly takes a CDB read-lock between Cdb.startSession()
and Cdb.endSession() This means that while an CDB client is reading, a transaction can not pass
through writeStart() (and conversely a CDB reader can not start while a transaction is in between
writeStart() and commit() or abort()).

The Operational store in CDB does not have any locks. NSO's transaction engine can only read from it,
and the CDB client writes are atomic per write operation.

Lock impact on user sessions
When a session tries to modify a data store that is locked in some way, it will fail. For example, the CLI
might print:

admin@ncs(config)# commit
Aborted: the configuration database is locked

Since some of the locks are short lived (such as a CDB read lock), NSO is by default configured to retry
the failing operation for a short period of time. If the data store still is locked after this time, the operation
fails.

To configure this, set /ncs-config/commit-retry-timeout in ncs.conf.

Compaction
CDB implements write-ahead logging to provide durability in the datastores, appending a new log for
each CDB transaction to the target datastore (A.cdb for configuration, O.cdb for operational, and S.cdb for
snapshot datastore). Depending on the size and number of transactions towards the system, these files will
grow in size leading to increased disk utilization, longer boot times, and longer initial data synchronization
time when setting up a high-availability cluster. Compaction is a mechanism used to reduce the size of the
write-ahead logs to a minimum. It works by replacing an existing write-ahead log, which is composed by a
number of consecutive transactions logs created in run-time, with a single transaction log representing the
full current state of the datastore. From this perspective, it can be seen that a compaction acts similar to a
write transaction towards a datastore. To ensure data integrity, write transactions towards the datastore are
not permitted during the time compaction takes place.

Automatic Compaction
By default, compaction is handled automatically by the CDB. After each transaction, CDB evaluates
whether compaction is required for the affected datastore.

This is done by examining the number of added nodes as well as the file size changes since the last
performed compaction. The thresholds used can be modified in the ncs.conf file by configuring the /
ncs-config/compaction/file-size-relative, /ncs-config/compaction/file-
size-absolute, and /ncs-config/compaction/num-node-relative settings. It is also
possible to automatically trigger compaction after a set number of transactions by setting the /ncs-
config/compaction/num-transaction property.

Manual Compaction
Compaction may require a significant amount of time, during which write transactions cannot be
performed. In certain use-cases, it may be preferable to disable automatic compaction by CDB and instead

Administration Guide
63

Advanced Topics
Delayed Compaction

trigger compaction manually according to the specific needs. If doing so, it is highly recommended to have
another automated system in place.

CDB CAPI provides a set of functions which may be used to create an external
mechanism for compaction. See cdb_initiate_journal_compaction(),
cdb_initiate_journal_dbfile_compaction(), and cdb_get_compaction_info() in
confd_lib_cdb(3) in Manual Pages .

Automation of compaction can be done by using a scheduling mechanism such as CRON, or by using the
NCS scheduler. See Chapter 24, Scheduler in Development Guide. for more information

By default, CDB may perform compaction during its boot process. This may be disabled if required, by
starting NSO with the flag --disable-compaction-on-start.

Delayed Compaction
In the configuration datastore, compaction is by default delayed by 5 seconds when the threshold is
reached in order to prevent any upcoming write transaction from being blocked. If the system is idle
during these 5 seconds, meaning that there is no new transaction, the compaction will initiate. Otherwise,
compaction is delayed by another 5 seconds. The delay time can be configured in ncs.conf by setting
the /ncs-config/compaction/delayed-compaction-timeout property.

IPC ports
Client libraries connect to NSO using TCP. We tell NSO which address to use for these connections
through the /ncs-config/ncs-ipc-address/ip (default value 127.0.0.1) and /ncs-config/
ncs-ipc-address/port (default value 4569) elements in ncs.conf. It is possible to change these
values, but it requires a number of steps to also configure the clients. Also there are security implications,
see the section called “Security issues” below.

Some clients read the environment variables NCS_IPC_ADDR and NCS_IPC_PORT to determine if
something other than the default is to be used, others might need to be recompiled. This is a list of clients
which communicate with NSO, and what needs to be done when ncs-ipc-address is changed.

Client Changes required

Remote commands via the ncs command Remote commands, such as ncs --reload, check
the environment variables NCS_IPC_ADDR and
NCS_IPC_PORT.

CDB and MAAPI clients The address supplied to Cdb.connect() and
Maapi.connect() must be changed.

Data provider API clients The address supplied to Dp constructor socket must
be changed.

ncs_cli The Command Line Interface (CLI) client, ncs_cli,
checks the environment variables NCS_IPC_ADDR
and NCS_IPC_PORT. Alternatively the port can be
provided on the command line (using the -P option).

Notification API clients The new address must be supplied to the socket for
the Nofif constructor.

To run more than one instance of NSO on the same host (which can be useful in development scenarios)
each instance needs its own IPC port. For each instance set /ncs-config/ncs-ipc-address/
port in ncs.conf to something different.

Administration Guide
64

Advanced Topics
Restricting access to the IPC port

There are two more instances of ports that will have to be modified, NETCONF and CLI over SSH. The
netconf (SSH and TCP) ports that NSO listens to by default are 2022 and 2023 respectively. Modify /
ncs-config/netconf/transport/ssh and /ncs-config/netconf/transport/tcp,
either by disabling them or changing the ports they listen to. The CLI over SSH by default listens to 2024;
modify /ncs-config/cli/ssh either by disabling or changing the default port.

Restricting access to the IPC port
By default, the clients connecting to the IPC port are considered trusted, i.e. there is no authentication
required, and we rely on the use of 127.0.0.1 for /ncs-config/ncs-ipc-address/ip to
prevent remote access. In case this is not sufficient, it is possible to restrict the access to the IPC port by
configuring an access check.

The access check is enabled by setting the ncs.conf element /ncs-config/ncs-ipc-access-
check/enabled to "true", and specifying a filename for /ncs-config/ncs-ipc-access-
check/filename. The file should contain a shared secret, i.e. a random character string. Clients
connecting to the IPC port will then be required to prove that they have knowledge of the secret through a
challenge handshake, before they are allowed access to the NSO functions provided via the IPC port.

Note Obviously the access permissions on this file must be restricted via OS file permissions, such that it can
only be read by the NSO daemon and client processes that are allowed to connect to the IPC port. E.g. if
both the daemon and the clients run as root, the file can be owned by root and have only "read by owner"
permission (i.e. mode 0400). Another possibility is to have a group that only the daemon and the clients
belong to, set the group ID of the file to that group, and have only "read by group" permission (i.e. mode
040).

To provide the secret to the client libraries, and inform them that they need to use the access check
handshake, we have to set the environment variable NCS_IPC_ACCESS_FILE to the full pathname of
the file containing the secret. This is sufficient for all the clients mentioned above, i.e. there is no need to
change application code to support or enable this check.

Note The access check must be either enabled or disabled for both the daemon and the clients. E.g. if /ncs-
config/ncs-ipc-access-check/enabled in ncs.conf is not set to "true", but clients are
started with the environment variable NCS_IPC_ACCESS_FILE pointing to a file with a secret, the client
connections will fail.

Restart strategies for service manager
The service manager executes in a Java VM outside of NSO. The NcsMux initializes a number of sockets
to NSO at startup. These are Maapi sockets and data provider sockets. NSO can choose to close any of
these sockets whenever NSO requests the service manager to perform a task, and that task is not finished
within the stipulated timeout. If that happens, the service manager must be restarted. The timeout(s) are
controlled by a several ncs.conf parameters found under /ncs-config/japi.

Security issues
NSO requires some privileges to perform certain tasks. The following tasks may, depending on the target
system, require root privileges.

Administration Guide
65

Advanced Topics
Security issues

• Binding to privileged ports. The ncs.conf configuration file specifies which port numbers NSO
should bind(2) to. If any of these port numbers are lower than 1024, NSO usually requires root
privileges unless the target operating system allows NSO to bind to these ports as a non-root user.

• If PAM is to be used for authentication, the program installed as $NCS_DIR/lib/ncs/priv/
pam/epam acts as a PAM client. Depending on the local PAM configuration, this program may
require root privileges. If PAM is configured to read the local passwd file, the program must either
run as root, or be setuid root. If the local PAM configuration instructs NSO to run for example
pam_radius_auth, root privileges are possibly not required depending on the local PAM installation.

• If the CLI is used and we want to create CLI commands that run executables, we may want to modify
the permissions of the $NCS_DIR/lib/ncs/priv/ncs/cmdptywrapper program.

To be able to run an executable as root or a specific user, we need to make cmdptywrapper setuid
root, i.e.:

1 # chown root cmdptywrapper
2 # chmod u+s cmdptywrapper

Failing that, all programs will be executed as the user running the ncs daemon. Consequently, if that
user is root we do not have to perform the chmod operations above.

The same applies for executables run via actions, but then we may want to modify the permissions of
the $NCS_DIR/lib/ncs/priv/ncs/cmdwrapper program instead:

1 # chown root cmdwrapper
2 # chmod u+s cmdwrapper

NSO can be instructed to terminate NETCONF over clear text TCP. This is useful for debugging since the
NETCONF traffic can then be easily captured and analyzed. It is also useful if we want to provide some
local proprietary transport mechanism which is not SSH. Clear text TCP termination is not authenticated,
the clear text client simply tells NSO which user the session should run as. The idea is that authentication
is already done by some external entity, such as an SSH server. If clear text TCP is enabled, it is very
important that NSO binds to localhost (127.0.0.1) for these connections.

Client libraries connect to NSO. For example the CDB API is TCP based and a CDB client connects to
NSO. We instruct NSO which address to use for these connections through the ncs.conf parameters /
ncs-config/ncs-ipc-address/ip (default address 127.0.0.1) and /ncs-config/ncs-ipc-
address/port (default port 4565).

NSO multiplexes different kinds of connections on the same socket (IP and port combination). The
following programs connect on the socket:

• Remote commands, such as e.g. ncs --reload
• CDB clients.

• External database API clients.

• MAAPI, The Management Agent API clients.

• The ncs_cli program

By default, all of the above are considered trusted. MAAPI clients and ncs_cli should supposedly
authenticate the user before connecting to NSO whereas CDB clients and external database API clients are
considered trusted and do not have to authenticate.

Thus, since the ncs-ipc-address socket allows full unauthenticated access to the system, it is important
to ensure that the socket is not accessible from untrusted networks. However it is also possible to restrict
access to this socket by means of an access check, see the section called “Restricting access to the IPC
port”.

Administration Guide
66

Advanced Topics
Running NSO as a non privileged user

Running NSO as a non privileged user
A common misfeature found on UN*X operating systems is the restriction that only root can bind to ports
below 1024. Many a dollar has been wasted on workarounds and often the results are security holes.

Both FreeBSD and Solaris have elegant configuration options to turn this feature off. On FreeBSD:

sysctl net.inet.ip.portrange.reservedhigh=0

The above is best added to your /etc/sysctl.conf

Similarly on Solaris we can just configure this. Assuming we want to run NSO under a non-root user
"ncs". On Solaris we can do that easily by granting the specific right to bind privileged ports below 1024
(and only that) to the "ncs" user using:

/usr/sbin/usermod -K defaultpriv=basic,net_privaddr ncs

And check the we get what we want through:

grep ncs /etc/user_attr
ncs::::type=normal;defaultpriv=basic,net_privaddr

Linux doesn't have anything like the above. There are a couple of options on Linux. The best is to use an
auxiliary program like authbind http://packages.debian.org/stable/authbind or privbind
http://sourceforge.net/projects/privbind/

These programs are run by root. To start ncs under e.g privbind we can do:

privbind -u ncs /opt/ncs/current/bin/ncs -c /etc/ncs.conf

The above command starts NSO as user ncs and binds to ports below 1024

Using IPv6 on northbound interfaces
NSO supports access to all northbound interfaces via IPv6, and in the most simple case, i.e. IPv6-only
access, this is just a matter of configuring an IPv6 address (typically the wildcard address "::") instead
of IPv4 for the respective agents and transports in ncs.conf, e.g. /ncs-config/cli/ssh/ip for
SSH connections to the CLI, or /ncs-config/netconf-north-bound/transport/ssh/
ip for SSH to the NETCONF agent. The SNMP agent configuration is configured via one of the other
northbound interfaces rather than via ncs.conf, see Chapter 4, The NSO SNMP Agent in Northbound
APIs . For example via the CLI, we would set 'snmp agent ip' to the desired address. All these addresses
default to the IPv4 wildcard address "0.0.0.0".

In most IPv6 deployments, it will however be necessary to support IPv6 and IPv4 access simultaneously.
This requires that both IPv4 and IPv6 addresses are configured, typically "0.0.0.0" plus "::". To support
this, there is in addition to the ip and port leafs also a list extra-listen for each agent and transport,
where additional IP address and port pairs can be configured. Thus to configure the CLI to accept SSH
connections to port 2024 on any local IPv6 address, in addition to the default (port 2024 on any local IPv4
address), we can add an <extra-listen> section under /ncs-config/cli/ssh in ncs.conf:

 <cli>
 <enabled>true</enabled>

 <!-- Use the built-in SSH server -->
 <ssh>
 <enabled>true</enabled>
 <ip>0.0.0.0</ip>
 <port>2024</port>

Administration Guide
67

Advanced Topics
Using IPv6 on northbound interfaces

 <extra-listen>
 <ip>::</ip>
 <port>2024</port>
 </extra-listen>

 </ssh>

 ...
 </cli>

To configure the SNMP agent to accept requests to port 161 on any local IPv6 address, we could similarly
use the CLI and give the command:

admin@ncs(config)# snmp agent extra-listen :: 161

The extra-listen list can take any number of address/port pairs, thus this method can also be used
when we want to accept connections/requests on several specified (IPv4 and/or IPv6) addresses instead of
the wildcard address, or we want to use multiple ports.

Administration Guide
68

CHAPTER 7
High Availability

• Introduction to NSO High Availability, page 69

• NSO built-in HA, page 71

• Tail-f HCC Package, page 76

• Setup with an External Load Balancer, page 86

• NB listen addresses on HA primary for Load Balancers, page 89

• HA framework requirements, page 89

• Mode of operation, page 90

• Security aspects, page 92

• API, page 92

• Ticks, page 92

• Relay secondaries, page 93

• CDB replication, page 94

Introduction to NSO High Availability
NSO supports replication of the CDB configuration as well as of the operational data kept in CDB. The
replication architecture is that of one active primary and a number of passive secondaries.

A group of NSO hosts consisting of a primary, and one or more secondaries, is referred to as an HA group
(and sometimes as an HA cluster - however this is completely independent and separate from the Layered
Service Architecture cluster feature.

All configuration write operations must occur at the primary and NSO will automatically distribute the
configuration updates to the set of live secondaries. Operational data in CDB may be replicated or not
based on the tailf:persistent statement in the data model. All write operations for replicated
operational data must also occur at the primary, with the updates distributed to the live secondaries,
whereas non-replicated operational data can also be written on the secondaries.

As of NSO 5.4, NSO has built capabilities for defining HA group members, managing assignment of
roles, handling failover etc. Alternatively, an external HA framework can be used. If so, NSO built-in HA
must be disabled. The concepts described in the following sections applies both for NSO built-in HA and
external HA framework.

Administration Guide
69

High Availability
Introduction to NSO High Availability

Replication is supported in several different architectural setups. For example two-node active/standby
designs as well as multi-node clusters with runtime software upgrade.

Primary - secondary configuration

One primary - several secondaries

Furthermore it is assumed that the entire cluster configuration is equal on all hosts in the cluster. This
means that node specific configuration must be kept in different node specific subtrees, for example as in
Example 5, “A data model divided into common and node specific subtrees”.

Example 5. A data model divided into common and node specific subtrees

container cfg {
 container shared {
 leaf dnsserver {
 type inet:ipv4-address;
 }
 leaf defgw {
 type inet:ipv4-address;
 }
 leaf token {
 type AESCFB128EncryptedString;
 }
 ...
 }
 container cluster {
 list host {
 key ip;
 max-elements 8;

Administration Guide
70

High Availability
NSO built-in HA

 leaf ip {
 type inet:ipv4-address;
 }
 ...
 }
 }
}

NSO built-in HA
NSO has capabilities for managing HA groups out of the box as of version 5.4 and greater. The built-in
capabilities allows administrators to:

• Configure HA group members with IP addresses and default roles

• Configure failover behavior

• Configure start-up behavior

• Configure HA group members with IP addresses and default roles

• Assign roles, join HA group, enabled/disable built-in HA through actions

• View the state of current HA setup

NSO Built-in HA is defined in tailf-ncs-high-availability.yang, and is found under /
high-availability/.

NSO built-in HA does not manage any virtual IP addresses, advertise any BGP routes or similar. This must
be handled by an external package. Tail-f HCC 5.x and greater has this functionality compatible with NSO
built-in HA. You can read more about the HCC package in the following chapter

Note: External HA frameworks are supported but should not be used in parallel with NSO built-in HA.

Prerequisites
In order to use NSO built-in HA, HA must first be enabled ncs.conf - See the section called “Mode of
operation”

Note: if the package tailf-hcc with a version less than 5.0 is loaded, NSO built in HA will not function.
These HCC versions may still be used but NSO Built-in HA will not function in parallel.

HA Member configuration
All HA group members are defined under /high-availability/ha-node. Each configured node
must have a unique IP address configured, and a unique HA Id. Additionally, nominal roles and fail-over
settings may be configured on a per node-basis.

The HA Node Id is a unique identifier used to identify NSO instances in a HA group. The HA Id of the
local node - relevant amongst others when an action is called - is determined by matching configured HA
node IP addresses against IP addresses assigned to the host machine of the NSO instance. As the HA Id is
crucial to NSO HA, NSO built-in HA will not function if the local node cannot be identified.

In order to join a HA group, a shared secret must be configured on the active primary and any prospective
secondary. This used for a CHAP-2 like authentication and is specified under /high-availability/
token/.

Administration Guide
71

High Availability
HA Roles

Note In an NSO system install setup, not only the shared token needs to match between the HA group nodes, the
configuration for encrypted-strings, default stored in /etc/ncs/ncs.crypto_keys, need to match between the
nodes in the HA group too.

The token configured on the secondary node is overwritten with the encrypted token of type aes-256-
cfb-128-encrypted-string from the primary node when the secondary node connects to the
primary. If there is a mismatch between the encrypted-string configuration on the nodes, NSO will not
decrypt the HA token to match the token presented. As a result, the primary node denies the secondary
node access the next time the HA connection needs to reestablish with a "Token mismatch, secondary is
not allowed" error.

See the upgrade-l2 example, referenced from examples.ncs/development-guide/high-
availability/hcc, for an example setup and the Chapter 11, Deployment Example for a description
of the example.

Also, note that the ncs.crypto_keys file is highly sensitive. The file contains the encryption keys for all
CDB data that is encrypted on disk. Besides the HA token, this often includes passwords for various
entities, such as login credentials to managed devices.

HA Roles
NSO can assume HA roles primary, secondary and none. Roles can be assigned directly through actions,
or at startup or failover. See the section called “HA framework requirements” for the definition of these
roles.

Note: NSO Built-in HA does not support relay-secondaries.

NSO Built-in HA differs between the concepts of nominal role and assigned role. Nominal-role is
configuration data that applies when a NSO instance starts up and at failover. Assigned role is the role the
NSO instance has been ordered to assume either by an action, or as result of startup or failover.

Failover
Failover may occur when a secondary node loses the connection to the primary node. A secondary may
then take over the primary role. Failover behaviour is configurable and controlled by the parameters:

• /high-availability/ha-node{id}/failover-primary

• /high-availability/settings/enable-failover

For automatic failover to function, /high-availability/settings/enable-failover
must be se to true. It is then possible to enable at most one node with nominal role secondary as failover-
primary, by setting the parameter /high-availability/ha-node{id}/failover-primary.
A node with nominal role primary is also implicitly a failover-primary - it will act as failover-primary if its
currently assigned role is a secondary.

Before failover happens, a failover-primary enabled secondary node may attempt to reconnect to the
previous primary before assuming the primary role. This behaviour is configured by the parameters

• /high-availability/settings/reconnect-attempts

• /high-availability/settings/reconnect-interval

denoting how many reconnect attempts will be made, and with which interval, respectively.

Administration Guide
72

High Availability
Failover

HA Members that are assigned as secondaries, but are neither failover-primaries nor set with nominal-role
primary, may attempt to rejoin the HA group after losing connection to primary.

This is controlled by /high-availability/settings/reconnect-secondaries. If this is
true, secondary nodes will query the nodes configured under /high-availability/ha-node for
a NSO instance that currently has the primary role. Any configured nominal-roles will not be considered.
If no primary node is found, subsequent attempts to rejoin the HA setup will be issued with an interval
defined by /high-availability/settings/reconnect-interval.

In case a net-split provokes a failover it is possible to end up in a situation with two primaries, both nodes
accepting writes. The primaries are then not synchronized and will end up in split-brain. Once one of the
primaries join the other as a secondary, the HA cluster is once again consistent but any out of sync changes
will be overwritten.

To prevent split-brain to occur, NSO 5.7 or later comes with a rule-based algorithm. The algorithm is
enabled by default, it can be disabled or changed from the parameters:

• /high-availability/settings/consensus/enabled [true]

• /high-availability/settings/consensus/algorithm [ncs:rule-based]

The rule-based algorithm can be used in either of the two HA constellations:

• Two nodes: one nominal primary and one nominal secondary configured as failover-primary.

• Three nodes: one nominal primary, one nominal secondary configured as failover-primary and one
perpetual secondary.

On failover:

• Failover-primary: become primary but enable read-only mode. Once the secondary joins, disable
read-only.

• Nominal primary: on loss of all secondaries, change role to none. If one secondary node is connected,
stay primary.

Note: In certain cases the rule-based consensus algorithm results in nodes being disconnected and will not
automatically re-join the HA cluster, such as in the example above when the nominal primary becomes
none on loss of all secondaries.

To restore the HA cluster one may need to manually invoke the /high-availability/be-secondary-to action.

Note #2: In the case where the failover-primary takes over as primary, it will enable read-only mode, if no
secondary connects it will remain read-only. This is done to guarantee consistency.

Read-write mode can manually be enabled from the the /high-availability/read-only action with the
parameter mode passed with value false.

When any node loses connection, this can also be observed in high-availability alarms as either a ha-
primary-down or a ha-secondary-down alarm.

alarms alarm-list alarm ncs ha-primary-down /high-availability/ha-node[id='paris']
 is-cleared false
 last-status-change 2022-05-30T10:02:45.706947+00:00
 last-perceived-severity critical
 last-alarm-text "Lost connection to primary due to: Primary closed connection"
 status-change 2022-05-30T10:02:45.706947+00:00

Administration Guide
73

High Availability
Startup

 received-time 2022-05-30T10:02:45.706947+00:00
 perceived-severity critical
 alarm-text "Lost connection to primary due to: Primary closed connection"

alarms alarm-list alarm ncs ha-secondary-down /high-availability/ha-node[id='london'] ""
 is-cleared false
 last-status-change 2022-05-30T10:04:33.231808+00:00
 last-perceived-severity critical
 last-alarm-text "Lost connection to secondary"
 status-change 2022-05-30T10:04:33.231808+00:00
 received-time 2022-05-30T10:04:33.231808+00:00
 perceived-severity critical
 alarm-text "Lost connection to secondary"

Startup
Startup behaviour is defined by a combination of the parameters /high-availability/settings/
start-up/assume-nominal-role and /high-availability/settings/start-up/
join-ha as well as the nodes nominal role:

assume-nominal-
role

join-ha nominal-role behaviour

true false primary Assume primary role.

true false secondary Attempt to connect as
secondary to the node (if
any) which has nominal-
role primary. If this fails,
no retry attempts are
made.

true false none Assume none role

false true primary Attempt to join HA setup
as secondary by querying
for current primary.
Retries will be attempted.
Retry attempt interval
is defined by /high-
availability/
settings/
reconnect-
interval

false true secondary Attempt to join HA setup
as secondary by querying
for current primary.
Retries will be attempted.
Retry attempt interval
is defined by /high-
availability/
settings/
reconnect-
interval

false true none Assume none role.

Administration Guide
74

High Availability
Actions

true true primary Query HA setup once
for a node with primary
role. If found, attempt to
connect as secondary to
that node. If no current
primary is found, assume
primary role.

true true secondary Attempt to join HA setup
as secondary by querying
for current primary.
Retries will be attempted.
Retry attempt interval
is defined by /high-
availability/
settings/
reconnect-
interval

true true none Assume none role.

false false - Assume none role.

Actions
NSO Built-in HA ca be controlled through a number of actions. All actions are found under /high-
availability/. The available actions is listed below:

Action Description

be-primary Order the local node to assume ha role primary

be-none Order the local node to assume ha role none

be-secondary-to Order the local node to connect as secondary to
the provided HA node. This is an asynchronous
operation, result can be found under /high-
availability/status/be-secondary-
result

local-node-id Identify the which of the nodes in /high-
availability/ha-node (if any) corresponds
to the local NSO instance

enable Enable NSO built in HA and optionally assume a ha
role according to /high-availability/settings/start-up/
parameters

disable Disable NSO built in HA and assume a ha role none

Status Check
The current state of NSO Built-in HA can be monitored by observing /high-availability/
status/. Information can be found about current active HA mode and current assigned role. For nodes
with active mode primary a list of connected nodes and their source IP addresses is shown. For nodes with
assigned role secondary the latest result of the be-secondary operation is listed. All NSO built-in HA status
information is non-replicated operational data - the result here will differ between nodes connected in a HA
setup.

Administration Guide
75

High Availability
Tail-f HCC Package

Tail-f HCC Package
Overview

The Tail-f HCC package extends the built-in HA functionality by providing virtual IP addresses (VIPs)
that can be used to connect to the NSO HA group primary node. HCC ensures that the VIP addresses are
always bound by the HA group primary and never bound by a secondary. Each time a node transitions
between primary and secondary states HCC reacts by binding (primary) or unbinding (secondary) the VIP
addresses.

HCC manages IP addresses at link-layer (OSI layer 2) for Ethernet interfaces, and optionally, also at
network-layer (OSI layer 3) using BGP router advertisements. The layer-2 and layer-3 functions are mostly
independent and this document describes the details of each one separately. However, the layer-3 function
builds on top of the layer-2 function. The layer-2 function is always necessary, otherwise, the Linux kernel
on the primary node would not recognize the VIP address or accept traffic directed to it.

Note Tail-f HCC version 5.x is non-backwards compatible with previous versions of Tail-f HCC and requires
functionality provided by NSO version 5.4 and greater. For more details see the following chapter.

Dependencies
Both the HCC layer-2 VIP and layer-3 BGP functionality depend on iproute2 utilities and awk. An
optional dependency is arping (either from iputils or Thomas Habets arping implementation) which
allows HCC to announce the VIP to MAC mapping to all nodes in the network by sending gratuitous ARP
requests.

The HCC layer-3 BGP functionality depends on the GoBGP daemon version 2.x being installed on each
NSO host that is configured to run HCC in BGP mode.

GoBGP is open source software originally developed by NTT Communications and released under the
Apache License 2.0. GoBGP can be obtained directly from https://osrg.github.io/gobgp/ and is also
packaged for mainstream Linux distributions.

Table 6. Tools Dependencies

Tool Package Required Description

ip iproute2 yes Adds and deletes the virtual IP from the
network interface.

awk mawk or gawk yes Installed with most Linux distributions.

sed sed yes Installed with most Linux distributions.

arping iputils or arping optional Installation recommended. Will reduce
the propagation of changes to the virtual
IP for layer-2 configurations.

gobgpd and gobgp GoBGP 2.x optional Required for layer-3 configurations.
gobgpd is started by the HCC package
and advertises the virtual IP using BGP.
gobgp is used to get advertised routes.

Same as with built-in HA functionality, all NSO instances must be configured to run in HA mode. See the
following instructions on how to enable HA on NSO instances.

Administration Guide
76

https://osrg.github.io/gobgp/

High Availability
Running the HCC Package with NSO as a Non-Root User

Running the HCC Package with NSO as a Non-Root User
GoBGP uses TCP port 179 for its communications and binds to it at startup. As port 179 is considered a
privileged port it is normally required to run gobgpd as root.

When NSO is running as a non-root user the gobgpd command will be executed as the same user as NSO
and will prevent gobgpd from binding to port 179.

There a multiple ways of handle this and two are listed here.

1 Set owner to root and the setuid bit of the gobgpd file. Works on all Linux distributions.

$ sudo chown root /usr/bin/gobgpd
$ sudo chmod u+s /usr/bin/gobgpd

2 Set capability CAP_NET_BIND_SERVICE on the gobgpd file. May not be supported by all Linux
distributions.

$ sudo setcap 'cap_net_bind_service=+ep' /usr/bin/gobgpd

Tail-f HCC Compared with HCC Version 4.x and Older

HA Group Management Decisions
Tail-f HCC 5.x or later does not participate in decisions on which NSO node is primary or secondary.
These decisions are taken by NSO's built-in HA and then pushed as notifications to HCC. The NSO built-
in HA functionality is available in NSO starting with version 5.4, where older NSO versions are not
compatible with the HCC 5.x or later.

Embedded BGP Daemon
HCC 5.x or later operates a GoBGP daemon as a subprocess completely managed by NSO. The old HCC
function pack interacted with an external Quagga BGP daemon using a NED interface.

Automatic Interface Assignment
HCC 5.x or later automatically associates VIP addresses with Linux network interfaces using the ip utility
from the iproute2 package. VIP addresses are also treated as /32 without defining a new subnet. The old
HCC function pack used explicit configuration to associate VIPs with existing addresses on each NSO host
and define IP subnets for VIP addresses.

Upgrading
Since version 5.0, HCC relies on the NSO built-in HA for cluster management and only performs address
or route management in reaction to cluster changes. Therefore, no special measures are necessary if using
HCC when performing an NSO version upgrade or a package upgrade. Instead, you should follow the
standard best practice HA upgrade procedure from the section called “NSO HA Version Upgrade”.

Layer-2

Overview
The purpose of the HCC layer-2 functionality is to ensure that the configured VIP addresses are bound in
the Linux kernel of the NSO primary node only. This ensures that the primary node (and only the primary
node) will accept traffic directed toward the VIP addresses.

Administration Guide
77

High Availability
Layer-2

HCC also notifies the local layer-2 network when VIP addresses are bound by sending Gratuitous ARP
(GARP) packets. Upon receiving the Gratuitous ARP, all the nodes in the network update their ARP tables
with the new mapping so they can continue to send traffic to the non-failed, now primary node.

Operational Details
HCC binds the VIP addresses as additional (alias) addresses on existing Linux network interfaces (e.g.
eth0). The network interface for each VIP is chosen automatically by performing a kernel routing lookup
on the VIP address. That is, the VIP will automatically be associated with the same network interface that
the Linux kernel chooses to send traffic to the VIP.

This means that you can map each VIP onto a particular interface by defining a route for a subnet that
includes the VIP. If no such specific route exists the VIP will automatically be mapped onto the interface
of the default gateway.

Note To check which interface HCC will choose for a particular VIP address simply run for example

admin@paris:~$ ip route get 192.168.123.22

and look at the device dev in the output, for example eth0.

Configuration
The layer-2 functionality is configured by providing a list of IPv4 and/or IPv6 VIP addresses and enabling
HCC. The VIP configuration parameters are found under /hcc:hcc.

Table 7. Global Layer-2 Configuration

Parameters Type Description

enabled boolean If set to 'true', the primary node
in an HA group automatically
binds the set of Virtual IPv[46]
addresses.

vip-address list of inet:ip-address The list of virtual IPv[46]
addresses to bind on the
primary node. The addresses are
automatically unbound when a
node becomes secondary. The
addresses can therefore be used
externally to reliably connect to the
HA group primary node.

Example Configuration
admin@ncs(config)# hcc enabled
admin@ncs(config)# hcc vip 192.168.123.22
admin@ncs(config)# hcc vip 2001:db8::10
admin@ncs(config)# commit

Administration Guide
78

High Availability
Layer-3 BGP

Layer-3 BGP
Overview

The purpose of the HCC layer-3 BGP functionality is to operate a BGP daemon on each NSO node and to
ensure that routes for the VIP addresses are advertised by the BGP daemon on the primary node only.

The layer-3 functionality is an optional add-on to the layer-2 functionality. When enabled, the set of BGP
neighbors must be configured separately for each NSO node. Each NSO node operates an embedded BGP
daemon and maintains connections to peers but only the primary node announces the VIP addresses.

The layer-3 functionality relies on the layer-2 functionality to assign the virtual IP addresses to one of the
host's interfaces. One notable difference in assigning virtual IP addresses when operating in Layer-3 mode
is that the virtual IP addresses are assigned to the loopback interface lo rather than to a specific physical
interface.

Operational Details
HCC operates a GoBGP subprocess as an embedded BGP daemon. The BGP daemon is started,
configured, and monitored by HCC. The HCC YANG model includes basic BGP configuration data and
state data.

Operational data in the YANG model includes the state of the BGP daemon subprocess and the state of
each BGP neighbor connection. The BGP daemon writes log messages directly to NSO where the HCC
module extracts updated operational data and then repeats the BGP daemon log messages into the HCC log
verbatim. You can find these log messages in the developer log (devel.log).

admin@ncs# show hcc
NODE BGPD BGPD
ID PID STATUS ADDRESS STATE CONNECTED

london - - 192.168.30.2 - -
paris 827 running 192.168.31.2 ESTABLISHED true

Note GoBGP must be installed separately and its location provided to HCC as configuration data.

Configuration
The layer-3 BGP functionality is configured as a list of BGP configurations with one list entry per node.
Configurations are separate because each NSO node usually has different BGP neighbors with their own IP
addresses, authentication parameters, etc.

The BGP configuration parameters are found under /hcc:hcc/bgp/node{id}.

Table 8. Per-Node Layer-3 Configuration

Parameters Type Description

node-id string Unique node ID. A reference to /
ncs:high-availability/
ha-node/id.

enabled boolean If set to true this node uses BGP
to announce VIP addresses when
in the HA primary state.

Administration Guide
79

https://osrg.github.io/gobgp/

High Availability
Usage

Parameters Type Description

gobgp-bin-dir string Directory containing gobgp and
gobgpd binaries.

as inet:as-number The BGP Autonomous System
Number for the local BGP
daemon.

router-id inet:ip-address The router-id for the local BGP
daemon.

Each NSO node can connect to a different set of BGP neighbors. For each node, the BGP neighbor list
configuration parameters are found under /hcc:hcc/bgp/node{id}/neighbor{address}.

Table 9. Per-Neighbor BGP Configuration

Parameters Type Description

address inet:ip-address BGP neighbor IP address.

as inet:as-number BGP neighbor Autonomous
System Number.

ttl-min uint8 Optional minimum TTL value for
BGP packets. When configured
enables BGP Generalized TTL
Security Mechanism (GTSM).

password string Optional password to use for BGP
authentication with this neighbor.

enabled boolean If set to true then an outgoing
BGP connection to this neighbor
is established by the HA group
primary node.

Example
admin@ncs(config)# hcc bgp node paris enabled
admin@ncs(config)# hcc bgp node paris as 64512
admin@ncs(config)# hcc bgp node paris router-id 192.168.31.99
admin@ncs(config)# hcc bgp node paris gobgp-bindir /usr/bin
admin@ncs(config)# hcc bgp node paris neighbor 192.168.31.2 as 64514
admin@ncs(config)# ... repeated for each neighbor if more than one ...
 ... repeated for each node ...
admin@ncs(config)# commit

Usage
This chapter describes basic deployment scenarios for HCC. Layer-2 mode is demonstrated first and then
the layer-3 BGP functionality is configured in addition. A reference to container-based examples for the
layer-2 and layer-3 deployment scenarios described here can be found in the NSO example set under
examples.ncs/development-guide/high-availability/hcc

Both scenarios consist of two test nodes: london and paris with a single IPv4 VIP address. For the
layer-2 scenario, the nodes are on the same network. The layer-3 scenario also involves a BGP-enabled
router node as the london and paris nodes are on two different networks.

Administration Guide
80

High Availability
Usage

Layer-2 Deployment
The layer-2 operation is configured by simply defining the VIP addresses and enabling HCC. The HCC
configuration on both nodes should match, otherwise, the primary node's configuration will overwrite the
secondary node configuration when the secondary connects to the primary node.

Table 10. Addresses

Hostname Address Role

paris 192.168.23.99 Paris service node.

london 192.168.23.98 London service node.

vip4 192.168.23.122 NSO primary node IPv4 VIP
address.

Configuring VIPs
admin@ncs(config)# hcc enabled
admin@ncs(config)# hcc vip 192.168.23.122
admin@ncs(config)# commit

Verifying VIP Availability
Once enabled, HCC on the HA group primary node will automatically assign the VIP addresses to
corresponding Linux network interfaces.

root@paris:/var/log/ncs# ip address list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 52:54:00:fa:61:99 brd ff:ff:ff:ff:ff:ff
 inet 192.168.23.99/24 brd 192.168.23.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet 192.168.23.122/32 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fefa:6199/64 scope link
 valid_lft forever preferred_lft forever

On the secondary node HCC will not configure these addresses.

root@london:~# ip address list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 ...
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 ...
 link/ether 52:54:00:fa:61:98 brd ff:ff:ff:ff:ff:ff
 inet 192.168.23.98/24 brd 192.168.23.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fefa:6198/64 scope link
 valid_lft forever preferred_lft forever

Layer-2 Example Implementation
A reference to a container-based example of the layer-2 scenario can be found in the NSO example set. See
the examples.ncs/development-guide/high-availability/hcc/README

Administration Guide
81

High Availability
Usage

Enabling Layer-3 BGP
Layer-3 operation is configured for each NSO HA group node separately. The HCC configuration on both
nodes should match, otherwise, the primary node's configuration will overwrite the configuration on the
secondary node.

Table 11. Addresses

Hostname Address AS Role

paris 192.168.31.99 64512 Paris node

london 192.168.30.98 64513 London node

router 192.168.30.2

192.168.31.2

64514 BGP-enabled router

vip4 192.168.23.122 Primary node IPv4 VIP
address

Configuring BGP for Paris Node
admin@ncs(config)# hcc bgp node paris enabled
admin@ncs(config)# hcc bgp node paris as 64512
admin@ncs(config)# hcc bgp node paris router-id 192.168.31.99
admin@ncs(config)# hcc bgp node paris gobgp-bindir /usr/bin
admin@ncs(config)# hcc bgp node paris neighbor 192.168.31.2 as 64514
admin@ncs(config)# commit

Configuring BGP for London Node
admin@ncs(config)# hcc bgp node london enabled
admin@ncs(config)# hcc bgp node london as 64513
admin@ncs(config)# hcc bgp node london router-id 192.168.30.98
admin@ncs(config)# hcc bgp node london gobgp-bindir /usr/bin
admin@ncs(config)# hcc bgp node london neighbor 192.168.30.2 as 64514
admin@ncs(config)# commit

Check BGP Neighbor Connectivity
Check neighbor connectivity on the paris primary node. Note that its connection to neighbor
192.168.31.2 (router) is ESTABLISHED.

admin@ncs# show hcc
 BGPD BGPD
NODE ID PID STATUS ADDRESS STATE CONNECTED
--
london - - 192.168.30.2 - -
paris 2486 running 192.168.31.2 ESTABLISHED true

Check neighbor connectivity on the london secondary node. Note that the primary node also has an
ESTABLISHED connection to its neighbor 192.168.30.2 (router). The primary and secondary nodes
both maintain their BGP neighbor connections at all times when BGP is enabled, but only the primary
node announces routes for the VIPs.

admin@ncs# show hcc
 BGPD BGPD
NODE ID PID STATUS ADDRESS STATE CONNECTED
--
london 494 running 192.168.30.2 ESTABLISHED true
paris - - 192.168.31.2 - -

Administration Guide
82

High Availability
Data Model

Check Advertised BGP Routes Neighbors
Check the BGP routes received by the router.

admin@ncs# show ip bgp
...
Network Next Hop Metric LocPrf Weight Path
*> 192.168.23.122/32
 192.168.31.99 0 64513 ?

The VIP subnet is routed to the paris host, which is the primary node.

Layer-3 BGP Example Implementation
A reference to a container-based example of the combined layer-2 and layer-3 BGP scenario can be found
in the NSO example set. See the examples.ncs/development-guide/high-availability/
hcc/README

Data Model
Tail-f HCC Model

module tailf-hcc {
 yang-version 1.1;
 namespace "http://cisco.com/pkg/tailf-hcc";
 prefix hcc;

 import ietf-inet-types {
 prefix inet;
 }
 import tailf-common {
 prefix tailf;
 }
 import tailf-ncs {
 prefix ncs;
 }

 organization "Cisco Systems";
 description
 "This module defines Layer-2 and Layer-3 virtual IPv4 and IPv6 address
 (VIP) management for clustered operation.";

 revision 2022-05-20 {
 description
 "Use bias-free language.";
 }

 revision 2020-06-29 {
 description "Released as part of tailf-hcc 5.0.";
 }

 container hcc {
 description "Tail-f HCC package configuration.";
 leaf enabled {
 type boolean;
 default "false";
 description
 "If set to 'true', the primary node in a cluster automatically
 binds the set of Virtual IPv4 and IPv6 addresses.";
 }

 leaf-list vip-address {

Administration Guide
83

High Availability
Data Model

 type inet:ip-address;
 tailf:info "IPv4/IPv6 VIP address list";
 description
 "The list of virtual IPv4 and IPv6 addresses to bind on the primary
 node. The addresses are automatically unbound when a node
 becomes secondary. The addresses can therefore be used externally
 to reliably connect to the primary node in the cluster.";
 }

 action update {
 tailf:actionpoint hcc-action;
 tailf:info "Update VIP routes";
 description
 "Update VIP address configuration in the Linux kernel.
 Generally this is not necessary but can be useful if the VIP
 addresses have been disturbed in some way e.g. if network
 configuration on the host has been completely reset.";
 output {
 leaf status {
 type string;
 }
 }
 }

 container bgp {
 tailf:info "VIP announcement over BGP";
 description
 "Run a local BGP daemon and advertise VIP routes to neighbors.";

 list node {
 key node-id;

 leaf node-id {
 type leafref {
 path "/ncs:high-availability/ncs:ha-node/ncs:id";
 }
 description "Unique NCS node ID";
 mandatory true;
 }

 leaf enabled {
 type boolean;
 default true;
 description
 "If set to 'true' this node uses BGP to announce VIP
 addresses in the primary state.";
 }

 leaf gobgp-bin-dir {
 type string;
 tailf:info "Directory containing gobgp/gobgpd binaries";
 mandatory true;
 description
 "The directory where 'gobgp' and 'gobgpd' binary executables
 have been installed separately.";
 }

 leaf as {
 type inet:as-number;
 mandatory true;
 tailf:info "BGP Autonomous System Number";
 description

Administration Guide
84

High Availability
Data Model

 "The BGP Autonomous System Number for the local BGP daemon.";
 }

 leaf router-id {
 type inet:ip-address;
 mandatory true;
 tailf:info "Local BGP router ID";
 description
 "The router-id for the local BGP daemon.";
 }

 leaf bgpd-pid {
 type uint32;
 config false;
 tailf:callpoint hcc-data;
 tailf:info "PID of BGP daemon process";
 description
 "Unix PID of the local BGP daemon process (when running).";
 }

 leaf bgpd-status {
 type string;
 config false;
 tailf:callpoint hcc-data;
 tailf:info "Status of BGP daemon process";
 description
 "String describing the current status of the local BGP
 daemon process.";
 }

 list neighbor {
 key "address";
 description "BGP neighbor list";
 leaf address {
 type inet:ip-address;
 mandatory true;
 description "BGP neighbor IP address";
 }
 leaf as {
 type inet:as-number;
 mandatory true;
 description "BGP neighbor Autonomous System number";
 }
 leaf ttl-min {
 type uint8;
 description
 "Optional minimum TTL value for BGP packets. When configured
 enables BGP Generalized TTL Security Mechanism (GTSM).";
 }
 leaf password {
 type string;
 tailf:info "Optional BGP MD5 auth password.";
 description
 "Optional password to use for BGP authentication with this
 neighbor.";
 }
 leaf enabled {
 type boolean;
 default "true";
 description
 "If set to 'true' then an outgoing BGP connection to this
 neighbor is established by the cluster primary.";

Administration Guide
85

High Availability
Setup with an External Load Balancer

 }
 leaf state {
 type string;
 config false;
 tailf:callpoint hcc-data;
 tailf:info "State of BGP neighbor connection";
 description
 "String describing the current state of the BGP connection
 from the local BGP daemon to this neighbor.";
 }
 leaf connected {
 type boolean;
 config false;
 tailf:callpoint hcc-data;
 tailf:info "BGP session establishment status";
 description
 "Flag indicating whether the BGP session to this neighbor
 is currently established.";
 }
 }
 }
 }
 }
}

Setup with an External Load Balancer
As an alternative to the HCC package, NSO built-in HA can also be used in conjunction with a load
balancer device in a reverse proxy configuration. Instead of managing the virtual IP address directly as
HCC does, this setup relies on an external load balancer to route traffic to the currently active primary
node.

Administration Guide
86

High Availability
Setup with an External Load Balancer

Figure 12. Load balancer routes connections to the appropriate NSO node

The load balancer uses HTTP health checks to determine which node is currently the active primary. The
example, found in the examples.ncs/development-guide/high-availability/load-
balancer directory, uses HTTP status codes on the health check endpoint to easily distinguish whether
the node is currently primary or not.

In the example, freely available HAProxy software is used as a load balancer to demonstrate the
functionality. It is configured to steer connections on localhost to either the TCP port 2024 (SSH CLI)
and TCP port 8080 (web UI and RESTCONF) to the active node in a 2-node HA cluster. The HAProxy
software is required if you wish to run this example yourself.

Administration Guide
87

High Availability
Setup with an External Load Balancer

Figure 13. Load balancer uses health checks to determine the currently active primary node

You can start all the components in the example by running the make build start command. At the
beginning, the first node n1 is the active primary. Connecting to the localhost port 2024 will establish
connection to this node:

$ make build start
Setting up run directory for nso-node1
 ... make output omitted ...
Waiting for n2 to connect: .
$ ssh -p 2024 admin@localhost
admin@localhost's password: admin

admin connected from 127.0.0.1 using ssh on localhost
admin@n1> switch cli
admin@n1# show high-availability
high-availability enabled
high-availability status mode primary
high-availability status current-id n1
high-availability status assigned-role primary
high-availability status read-only-mode false
ID ADDRESS

n2 127.0.0.1

Then, you can disable the high availability subsystem on n1 to simulate a node failure.

admin@n1# high-availability disable
result NSO Built-in HA disabled
admin@n1# exit
Connection to localhost closed.

Disconnect and wait a few seconds for the build-in HA to perform the fail over to node n2. The time
depends on the high-availability/settings/reconnect-interval and is set quite

Administration Guide
88

High Availability
NB listen addresses on HA primary for Load Balancers

aggressively in this example to make the fail over in about 6 seconds. Reconnect with the SSH client and
observe the connection is now made to the fail-over node which has become the active primary:

$ ssh -p 2024 admin@localhost
admin@localhost's password: admin

admin connected from 127.0.0.1 using ssh on localhost
admin@n2> switch cli
admin@n2# show high-availability
high-availability enabled
high-availability status mode primary
high-availability status current-id n2
high-availability status assigned-role primary
high-availability status read-only-mode false

Finally, shut down the example with the make stop clean command.

NB listen addresses on HA primary for Load Balancers
NSO can be configured for the HA primary to listen on additional ports for the northbound interfaces
NETCONF, RESTCONF, the web server (including JSON-RPC) and the CLI over SSH. Once a different
node transitions to role primary the configured listen addresses are brought up on that node instead.

when the following configuration is added to ncs.conf, then the primary HA node will listen(2) and
bind(2) port 1830 on the wildcard IPv4 and IPv6 addresses.

<netconf-north-bound>
 <transport>
 <ssh>
 <enabled>true</enabled>
 <ip>0.0.0.0</ip>
 <port>830</port>
 <ha-primary-listen>
 <ip>0.0.0.0</ip>
 <port>1830</port>
 </ha-primary-listen>
 <ha-primary-listen>
 <ip>::</ip>
 <port>1830</port>
 </ha-primary-listen>
 </ssh>
 </transport>
</netconf-north-bound>

similar configuration can be added for other NB interfaces, see the ha-primary-listen list under /ncs-config/
{restconf,webui,cli}.

HA framework requirements
If an external HAFW is used, NSO only replicates the CDB data. NSO must be told by the HAFW which
node should be primary and which nodes should be secondaries.

The HA framework must also detect when nodes fail and instruct NSO accordingly. If the primary
node fails, the HAFW must elect one of the remaining secondaries and appoint it the new primary. The
remaining secondaries must also be informed by the HAFW about the new primary situation.

Administration Guide
89

High Availability
Mode of operation

Mode of operation
NSO must be instructed through the ncs.conf configuration file that it should run in HA mode. The
following configuration snippet enables HA mode:

<ha>
 <enabled>true</enabled>
 <ip>0.0.0.0</ip>
 <port>4570</port>
 <extra-listen>
 <ip>::</ip>
 <port>4569</port>
 </extra-listen>
 <tick-timeout>PT20S</tick-timeout>
</ha>

Note Make sure to restart the ncs process in order for the changes to take effect.

The IP address and the port above indicates which IP and which port should be used for the
communication between the HA nodes. extra-listen is an optional list of ip:port pairs which a
HA primary also listens to for secondary connections. For IPv6 addresses, the syntax [ip]:port may be
used. If the ":port" is omitted, port is used. The tick-timeout is a duration indicating how often each
secondary must send a tick message to the primary indicating liveness. If the primary has not received
a tick from a secondary within 3 times the configured tick time, the secondary is considered to be dead.
Similarly, the primary sends tick messages to all the secondaries. If a secondary has not received any tick
messages from the primary within the 3 times the timeout, the secondary will consider the primary dead
and report accordingly.

A HA node can be in one of three states: NONE, SECONDARY or PRIMARY. Initially a node is in the NONE
state. This implies that the node will read its configuration from CDB, stored locally on file. Once the
HA framework has decided whether the node should be a secondary or a primary the HAFW must invoke
either the methods Ha.beSecondary(primary) or Ha.bePrimary()

When a NSO HA node starts, it always starts up in mode NONE. At this point there are no other nodes
connected. Each NSO node reads its configuration data from the locally stored CDB and applications on
or off the node may connect to NSO and read the data they need. Although write operations are allowed in
the NONE state it is highly discouraged to initiate southbound communication unless necessary. A node in
NONE state should only be used to configure NSO itself or to do maintenance such as upgrades. When in
NONE state, some features are disabled, including but not limited to:

• commit queue

NSO scheduler

nano-service side effect queue

This is in order to avoid situations where multiple NSO nodes are trying to perform the same southbound
operation simultaneously.

At some point, the HAFW will command some nodes to become secondary nodes of a named primary
node. When this happens, each secondary node tracks changes and (logically or physically) copies all the
data from the primary. Previous data at the secondary node is overwritten.

Note that the HAFW, by using NSO's start phases, can make sure that NSO does not start its northbound
interfaces (NETCONF, CLI, ...) until the HAFW has decided what type of node it is. Furthermore once a

Administration Guide
90

High Availability
Mode of operation

node has been set to the SECONDARY state, it is not possible to initiate new write transactions towards the
node. It is thus never possible for an agent to write directly into a secondary node. Once a node is returned
either to the NONE state or to the PRIMARY state, write transactions can once again be initiated towards
the node.

The HAFW may command a secondary node to become primary at any time. The secondary node already
has up-to-date data, so it simply stops receiving updates from the previous primary. Presumably, the
HAFW also commands the primary node to become a secondary node, or takes it down or handles the
situation somehow. If it has crashed, the HAFW tells the secondary to become primary, restarts the
necessary services on the previous primary node and gives it an appropriate role, such as secondary. This is
outside the scope of NSO.

Each of the primary and secondary nodes have the same set of all callpoints and validation points locally
on each node. The start sequence has to make sure the corresponding daemons are started before the
HAFW starts directing secondary nodes to the primary, and before replication starts. The associated
callbacks will however only be executed at the primary. If e.g. the validation executing at the primary
needs to read data which is not stored in the configuration and only available on another node, the
validation code must perform any needed RPC calls.

If the order from the HAFW is to become primary, the node will start to listen for incoming secondaries
at the ip:port configured under /ncs-config/ha. The secondaries TCP connect to the primary and
this socket is used by NSO to distribute the replicated data.

If the order is to be a secondary, the node will contact the primary and possibly copy the entire
configuration from the primary. This copy is not performed if the primary and secondary decide that
they have the same version of the CDB database loaded, in which case nothing needs to be copied. This
mechanism is implemented by use of a unique token, the "transaction id" - it contains the node id of the
node that generated it and and a time stamp, but is effectively "opaque".

This transaction id is generated by the cluster primary each time a configuration change is committed,
and all nodes write the same transaction id into their copy of the committed configuration. If the primary
dies, and one of the remaining secondaries is appointed new primary, the other secondaries must be told
to connect to the new primary. They will compare their last transaction id to the one from the newly
appointed primary. If they are the same, no CDB copy occurs. This will be the case unless a configuration
change has sneaked in, since both the new primary and the remaining secondaries will still have the last
transaction id generated by the old primary - the new primary will not generate a new transaction id until
a new configuration change is committed. The same mechanism works if a secondary node is simply
restarted. In fact no cluster reconfiguration will lead to a CDB copy unless the configuration has been
changed in between.

Northbound agents should run on the primary, it is not possible for an agent to commit write operations at
a secondary node.

When an agent commits its CDB data, CDB will stream the committed data out to all registered
secondaries. If a secondary dies during the commit, nothing will happen, the commit will succeed
anyway. When and if the secondary reconnects to the cluster, the secondary will have to copy the entire
configuration. All data on the HA sockets between NSO nodes only go in the direction from the primary to
the secondaries. A secondary which isn't reading its data will eventually lead to a situation with full TCP
buffers at the primary. In principle it is the responsibility of HAFW to discover this situation and notify
the primary NSO about the hanging secondary. However if 3 times the tick timeout is exceeded, NSO will
itself consider the node dead and notify the HAFW. The default value for tick timeout is 20 seconds.

The primary node holds the active copy of the entire configuration data in CDB. All configuration data
has to be stored in CDB for replication to work. At a secondary node, any request to read will be serviced
while write requests will be refused. Thus, CDB subscription code works the same regardless of whether

Administration Guide
91

High Availability
Security aspects

the CDB client is running at the primary or at any of the secondaries. Once a secondary has received the
updates associated to a commit at the primary, all CDB subscribers at the secondary will be duly notified
about any changes using the normal CDB subscription mechanism.

If the system has been setup to subscribe for NETCONF notifications, the secondaries will have all
subscriptions as configured in the system, but the subscription will be idle. All NETCONF notifications are
handled by the primary, and once the notifications get written into stable storage (CDB) at the primary, the
list of received notifications will be replicated to all secondaries.

Security aspects
We specify in ncs.conf which IP address the primary should bind for incoming secondaries. If we
choose the default value 0.0.0.0 it is the responsibility of the application to ensure that connection
requests only arrive from acceptable trusted sources through some means of firewalling.

A cluster is also protected by a token, a secret string only known to the application. The Ha.connect()
method must be given the token. A secondary node that connects to a primary node negotiates with the
primary using a CHAP-2 like protocol, thus both the primary and the secondary are ensured that the other
end has the same token without ever revealing their own token. The token is never sent in clear text over
the network. This mechanism ensures that a connection from a NSO secondary to a primary can only
succeed if they both have the same token.

It is indeed possible to store the token itself in CDB, thus an application can initially read the token from
the local CDB data, and then use that token in . the constructor for the Ha class. In this case it may very
well be a good idea to have the token stored in CDB be of type tailf:aes-256-cfb-128-encrypted-string.

If the actual CDB data that is sent on the wire between cluster nodes is sensitive, and the network is
untrusted, the recommendation is to use IPSec between the nodes. An alternative option is to decide
exactly which configuration data is sensitive and then use the tailf:aes-256-cfb-128-encrypted-string type
for that data. If the configuration data is of type tailf:aes-256-cfb-128-encrypted-string the encrypted data
will be sent on the wire in update messages from the primary to the secondaries.

API
There are two APIs used by the HA framework to control the replication aspects of NSO. First there exists
a synchronous API used to tell NSO what to do, secondly the application may create a notifications socket
and subscribe to HA related events where NSO notifies the application on certain HA related events such
as the loss of the primary etc. The HA related notifications sent by NSO are crucial to how to program the
HA framework.

The HA related classes reside in the com.tailf.ha package. See Javadocs for reference. The HA
notifications related classes reside in the com.tailf.notif package, See Javadocs for reference.

Ticks
The configuration parameter /ncs-cfg/ha/tick-timeout is by default set to 20 seconds. This
means that every 20 seconds each secondary will send a tick message on the socket leading to the primary.
Similarly, the primary will send a tick message every 20 seconds on every secondary socket.

This aliveness detection mechanism is necessary for NSO. If a socket gets closed all is well, NSO will
cleanup and notify the application accordingly using the notifications API. However, if a remote node
freezes, the socket will not get properly closed at the other end. NSO will distribute update data from the
primary to the secondaries. If a remote node is not reading the data, TCP buffer will get full and NSO
will have to start to buffer the data. NSO will buffer data for at most tickTime times 3 time units. If a

Administration Guide
92

High Availability
Relay secondaries

tick has not been received from a remote node within that time, the node will be considered dead. NSO
will report accordingly over the notifications socket and either remove the hanging secondary or, if it is a
secondary that loose contact with the primary, go into the initial NONE state.

If the HAFW can be really trusted, it is possible to set this timeout to PT0S, i.e zero, in which case the
entire dead-node-detection mechanism in NSO is disabled.

Relay secondaries
The normal setup of a NSO HA cluster is to have all secondaries connected directly to the primary. This is
a configuration that is both conceptually simple and reasonably straightforward to manage for the HAFW.
In some scenarios, in particular a cluster with multiple secondaries at a location that is network-wise
distant from the primary, it can however be sub-optimal, since the replicated data will be sent to each
remote secondary individually over a potentially low-bandwidth network connection.

To make this case more efficient, we can instruct a secondary to be a relay for other secondaries, by
invoking the Ha.beRelay() method. This will make the secondary start listening on the IP address and
port configured for HA in ncs.conf, and handle connections from other secondaries in the same manner
as the cluster primary does. The initial CDB copy (if needed) to a new secondary will be done from the
relay secondary, and when the relay secondary receives CDB data for replication from its primary, it will
distribute the data to all its connected secondaries in addition to updating its own CDB copy.

To instruct a node to become a secondary connected to a relay secondary, we use the
Ha.beSecondary() method as usual, but pass the node information for the relay secondary instead of
the node information for the primary. I.e. the "sub-secondary" will in effect consider the relay secondary as
its primary. To instruct a relay secondary to stop being a relay, we can invoke the Ha.beSecondary()
method with the same parameters as in the original call. This is a no-op for a "normal" secondary, but
it will cause a relay secondary to stop listening for secondary connections, and disconnect any already
connected "sub-secondaries".

This setup requires special consideration by the HAFW. Instead of just telling each secondary to connect
to the primary independently, it must setup the secondaries that are intended to be relays, and tell them to
become relays, before telling the "sub-secondaries" to connect to the relay secondaries. Consider the case
of a primary M and a secondary S0 in one location, and two secondaries S1 and S2 in a remote location,
where we want S1 to act as relay for S2. The setup of the cluster then needs to follow this procedure:

1 Tell M to be primary.

2 Tell S0 and S1 to be secondary with M as primary.

3 Tell S1 to be relay.

4 Tell S2 to be secondary with S1 as primary.

Conversely, the handling of network outages and node failures must also take the relay secondary setup
into account. For example, if a relay secondary loses contact with its primary, it will transition to the NONE
state just like any other secondary, and it will then disconnect its "sub-secondaries" which will cause those
to transition to NONE too, since they lost contact with "their" primary. Or if a relay secondary dies in a way
that is detected by its "sub-secondaries", they will also transition to NONE. Thus in the example above, S1
and S2 needs to be handled differently. E.g. if S2 dies, the HAFW probably won't take any action, but if S1
dies, it makes sense to instruct S2 to be a secondary of M instead (and when S1 comes back, perhaps tell
S2 to be a relay and S1 to be a secondary of S2).

Besides the use of Ha.beRelay(), the API is mostly unchanged when using relay secondaries. The HA
event notifications reporting the arrival or the death of a secondary are still generated only by the "real"
cluster primary. If the Ha.HaStatus() method is used towards a relay secondary, it will report the

Administration Guide
93

High Availability
CDB replication

node state as SECONDARY_RELAY rather than just SECONDARY, and the array of nodes will have its
primary as the first element (same as for a "normal" secondary), followed by its "sub-secondaries" (if any).

CDB replication
When HA is enabled in ncs.conf CDB automatically replicates data written on the primary to the
connected secondary nodes. Replication is done on a per-transaction basis to all the secondaries in parallel.
It can be configured to be done asynchronously (best performance) or synchronously in step with the
transaction (most secure). When NSO is in secondary mode the northbound APIs are in read-only mode,
that is the configuration can not be changed on a secondary other than through replication updates from
the primary. It is still possible to read from for example NETCONF or CLI (if they are enabled) on a
secondary. CDB subscriptions works as usual. When NSO is in the NONE state CDB is unlocked and it
behaves as when NSO is not in HA mode at all.

Operational data is always replicated on all secondaries similar to how configuration data is replicated.
Operational data is always replicated asynchronously, regardless of the /ncs-config/cdb/
operational/replication setting.

Administration Guide
94

CHAPTER 8
Rollbacks

• Introduction, page 95

• Configuration, page 95

Introduction
NSO support creating rollback files during the commit of a transaction that allows for rolling back the
introduced changes. Rollbacks does not come without a cost and should be disabled if the functionality
is not going to be used. Enabling rollbacks impact both the time it takes to commit a change and requires
sufficient storage on disk.

Rollback files contain a set of headers and the data required to restore the changes that were made when
the rollback was created. One of the header fields includes a unique rollback id that can be used to address
the rollback file independent of the rollback numbering format.

Use of rollbacks from the supported APIs and the CLI is documented in the documentation for the given
API.

Configuration
NSO is configured through a configuration file - ncs.conf. In that file we have the following items
related to rollbacks:

/ncs-config/rollback/
enabled

If 'true', then a rollback file will be created whenever the running
configuration is modified.

/ncs-config/rollback/
directory

Location where rollback files will be created.

/ncs-config/rollback/
history-size

Number of old rollback files to save.

Administration Guide
95

Rollbacks
Configuration

Administration Guide
96

CHAPTER 9
The AAA infrastructure

• The problem, page 97

• Structure - data models, page 97

• AAA related items in ncs.conf, page 98

• Authentication, page 99

• Restricting the IPC port, page 111

• Group Membership, page 111

• Authorization, page 112

• The AAA cache, page 125

• Populating AAA using CDB, page 125

• Hiding the AAA tree, page 125

The problem
This chapter describes how to use NSO's built-in authentication and authorization mechanisms. Users log
into NSO through the CLI, NETCONF, RESTCONF, SNMP, or via the Web UI. In either case, users need
to be authenticated. That is, a user needs to present credentials, such as a password or a public key in order
to gain access. As an alternative for RESTCONF, users can be authenticated via token validation.

Once a user is authenticated, all operations performed by that user need to be authorized. That is, certain
users may be allowed to perform certain tasks, whereas others are not. This is called authorization. We
differentiate between authorization of commands and authorization of data access.

Structure - data models
The NSO daemon manages device configuration including AAA information. In fact, NSO both manages
AAA information and uses it. The AAA information describes which users may login, what passwords
they have and what they are allowed to do.

This is solved in NSO by requiring a data model to be both loaded and populated with data. NSO uses the
YANG module tailf-aaa.yang for authentication, while ietf-netconf-acm.yang (NACM,
RFC 8341) as augmented by tailf-acm.yang is used for group assignment and authorization.

Administration Guide
97

https://tools.ietf.org/html/rfc8341

The AAA infrastructure
Data model contents

Data model contents
The NACM data model is targeted specifically towards access control for NETCONF operations, and thus
lacks some functionality that is needed in NSO, in particular support for authorization of CLI commands
and the possibility to specify the "context" (NETCONF/CLI/etc) that a given authorization rule should
apply to. This functionality is modeled by augmentation of the NACM model, as defined in the tailf-
acm.yang YANG module.

The ietf-netconf-acm.yang and tailf-acm.yang modules can be found in $NCS_DIR/src/
ncs/yang directory in the release, while tailf-aaa.yang can be found in the $NCS_DIR/src/
ncs/aaa directory.

NACM options related to services are modeled by augmentation of the NACM model, as defined in the
tailf-ncs-acm.yang YANG module. The tailf-ncs-acm.yang can be found in $NCS_DIR/
src/ncs/yang directory in the release.

The complete AAA data model defines a set of users, a set of groups and a set of rules. The data model
must be populated with data that is subsequently used by by NSO itself when it authenticates users and
authorizes user data access. These YANG modules work exactly like all other fxs files loaded into the
system with the exception that NSO itself uses them. The data belongs to the application, but NSO itself is
the user of the data.

Since NSO requires a data model for the AAA information for its operation, it will report an error and fail
to start if these data models can not be found.

AAA related items in ncs.conf
NSO itself is configured through a configuration file - ncs.conf. In that file we have the following items
related to authentication and authorization:

/ncs-config/aaa/ssh-
server-key-dir

If SSH termination is enabled for NETCONF or the CLI, the
NSO built-in SSH server needs to have server keys. These keys
are generated by the NSO install script and by default end up in
$NCS_DIR/etc/ncs/ssh.

It is also possible to use OpenSSH to terminate NETCONF or the
CLI. If OpenSSH is used to terminate SSH traffic, the SSH keys are
not necessary.

/ncs-config/aaa/ssh-
pubkey-authentication

If SSH termination is enabled for NETCONF or the CLI, this item
controls how the NSO SSH daemon locates the user keys for public
key authentication. See the section called “Public Key Login” for
the details.

/ncs-config/aaa/local-
authentication/enabled

The term "local user" refers to a user stored under /aaa/
authentication/users. The alternative is a user unknown to
NSO, typically authenticated by PAM.

By default, NSO first checks local users before trying PAM or
external authentication.

Local authentication is practical in test environments. It is also
useful when we want to have one set of users that are allowed
to login to the host with normal shell access and another set of
users that are only allowed to access the system using the normal
encrypted, fully authenticated, northbound interfaces of NSO.

Administration Guide
98

The AAA infrastructure
Authentication

If we always authenticate users through PAM it may make sense to
set this configurable to false. If we disable local authentication
it implicitly means that we must use either PAM authentication or
"external authentication". It also means that we can leave the entire
data trees under /aaa/authentication/users and, in the
case of "external auth" also /nacm/groups (for NACM) or /
aaa/authentication/groups (for legacy tailf-aaa) empty.

/ncs-config/aaa/pam NSO can authenticate users using PAM (Pluggable Authentication
Modules). PAM is an integral part of most Unix-like systems.

PAM is a complicated - albeit powerful - subsystem. It may be
easier to have all users stored locally on the host, However if we
want to store users in a central location, PAM can be used to access
the remote information. PAM can be configured to perform most
login scenarios including RADIUS and LDAP. One major drawback
with PAM authentication is that there is no easy way to extract the
group information from PAM. PAM authenticates users, it does not
also assign a user to a set of groups.

PAM authentication is thoroughly described later in this chapter.

/ncs-config/aaa/default-
group

If this configuration parameter is defined and if the group of a user
cannot be determined, a logged in user ends up in the given default
group.

/ncs-config/aaa/
external-authentication

NSO can authenticate users using an external executable. This
is further described later in the the section called “External
authentication” section.

/ncs-config/aaa/
external-validation

NSO can authenticate users by validation of tokens using an external
executable. This is very similar to what is further described later
in the the section called “External token validation” section. The
difference is that a token, instead of a username and password, is
input and a username and, optionally, a token is output. This is
currently only supported for RESTCONF.

/ncs-config/aaa/
external-challenge

NSO has support for multi factor authentication by sending
challenges to a user. Challenges may be sent from any of the
external authentication mechanisms but is currently only supported
by JSONRPC and CLI over SSH. This is further described later in
the the section called “External multi factor authentication” section.

Authentication
Depending on northbound management protocol, when a user session is created in NSO, it may or may
not be authenticated. If the session is not yet authenticated, NSO's AAA subsystem is used to perform
authentication and authorization, as described below. If the session already has been authenticated, NSO's
AAA assigns groups to the user as described in the section called “Group Membership”, and performs
authorization, as described in the section called “Authorization”.

The authentication part of the data model can be found in tailf-aaa.yang:

 container authentication {
 tailf:info "User management";
 container users {
 tailf:info "List of local users";
 list user {

Administration Guide
99

The AAA infrastructure
Authentication

 key name;
 leaf name {
 type string;
 tailf:info "Login name of the user";
 }
 leaf uid {
 type int32;
 mandatory true;
 tailf:info "User Identifier";
 }
 leaf gid {
 type int32;
 mandatory true;
 tailf:info "Group Identifier";
 }
 leaf password {
 type passwdStr;
 mandatory true;
 }
 leaf ssh_keydir {
 type string;
 mandatory true;
 tailf:info "Absolute path to directory where user's ssh keys
 may be found";
 }
 leaf homedir {
 type string;
 mandatory true;
 tailf:info "Absolute path to user's home directory";
 }
 }
 }
 }

AAA authentication is used in the following cases:

• When the built-in SSH server is used for NETCONF and CLI sessions.

• For Web UI sessions and REST access.

• When the method Maapi.Authenticate() is used.

NSO's AAA authentication is not used in the following cases:

• When NETCONF uses an external SSH daemon, such as OpenSSH.

In this case, the NETCONF session is initiated using the program netconf-subsys, as described in the
section called “NETCONF Transport Protocols” in Northbound APIs .

• When NETCONF uses TCP, as described in the section called “NETCONF Transport Protocols” in
Northbound APIs , e.g. through the command netconf-console.

• When the CLI uses an external SSH daemon, such as OpenSSH, or a telnet daemon.

In this case, the CLI session is initiated through the command ncs_cli. An important special case here
is when a user has logged in to the host and invokes the command ncs_cli from the shell. In NSO
deployments, it is crucial to consider this case. If non trusted users have shell access to the host, the
NCS_IPC_ACCESS_FILE feature as described in the section called “Restricting access to the IPC
port” must be used.

• When SNMP is used. SNMP has its own authentication mechanisms. See Chapter 4, The NSO SNMP
Agent in Northbound APIs .

• When the method Maapi.startUserSession() is used without a preceding call of
Maapi.authenticate().

Administration Guide
100

The AAA infrastructure
Public Key Login

Public Key Login
When a user logs in over NETCONF or the CLI using the built-in SSH server, with public key login, the
procedure is as follows.

The user presents a username in accordance with the SSH protocol. The SSH server consults the settings
for /ncs-config/aaa/ssh-pubkey-authentication and /ncs-config/aaa/local-
authentication/enabled .

1 If ssh-pubkey-authentication is set to local, and the SSH keys in /aaa/
authentication/users/user{$USER}/ssh_keydir match the keys presented by the user,
authentication succeeds.

2 Otherwise, if ssh-pubkey-authentication is set to system, local-authentication
is enabled, and the SSH keys in /aaa/authentication/users/user{$USER}/
ssh_keydir match the keys presented by the user, authentication succeeds.

3 Otherwise, if ssh-pubkey-authentication is set to system and the user /aaa/
authentication/users/user{$USER} does not exist, but the user does exist in the OS
password database, the keys in the user's $HOME/.ssh directory are checked. If these keys match the
keys presented by the user, authentication succeeds.

4 Otherwise, authentication fails.

In all cases the keys are expected to be stored in a file called authorized_keys (or
authorized_keys2 if authorized_keys does not exist), and in the native OpenSSH format
(i.e. as generated by the OpenSSH ssh-keygen command). If authentication succeeds, the user's group
membership is established as described in the section called “Group Membership”.

This is exactly the same procedure that is used by the OpenSSH server with the exception that the built-in
SSH server also may locate the directory containing the public keys for a specific user by consulting the /
aaa/authentication/users tree.

Setting up Public Key Login
We need to provide a directory where SSH keys are kept for a specific user, and give the absolute path to
this directory for the /aaa/authentication/users/user/ssh_keydir leaf. If public key login
is not desired at all for a user, the value of the ssh_keydir leaf should be set to "", i.e. the empty string.
Similarly, if the directory does not contain any SSH keys, public key logins for that user will be disabled.

The built-in SSH daemon supports DSA, RSA and ED25519 keys. To generate and enable RSA keys of
size 4096 bits for, say, user "bob", the following steps are required.

On the client machine, as user "bob", generate a private/public key pair as:

ssh-keygen -b 4096 -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/bob/.ssh/id_rsa):
Created directory '/home/bob/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/bob/.ssh/id_rsa.
Your public key has been saved in /home/bob/.ssh/id_rsa.pub.
The key fingerprint is:
ce:1b:63:0a:f9:d4:1d:04:7a:1d:98:0c:99:66:57:65 bob@buzz
ls -lt ~/.ssh
total 8
-rw------- 1 bob users 3247 Apr 4 12:28 id_rsa
-rw-r--r-- 1 bob users 738 Apr 4 12:28 id_rsa.pub

Administration Guide
101

The AAA infrastructure
Password Login

Now we need to copy the public key to the target machine where the NETCONF or CLI SSH client runs.

Assume we have the following user entry:

<user>
 <name>bob</name>
 <uid>100</uid>
 <gid>10</gid>
 <password>1feedbabe$nGlMYlZpQ0bzenyFOQI3L1</password>
 <ssh_keydir>/var/system/users/bob/.ssh</ssh_keydir>
 <homedir>/var/system/users/bob</homedir>
</user>

We need to copy the newly generated file id_rsa.pub, which is the public key, to a file on the target
machine called /var/system/users/bob/.ssh/authorized_keys

Note Since the release of OpenSSH 7.0 support of ssh-dss host and user keys is disabled by default. If you
want to continue using these, you may re-enable it using the following options for OpenSSH client:

HostKeyAlgorithms=+ssh-dss
PubkeyAcceptedKeyTypes=+ssh-dss

You may find full instructions at OpenSSH Legacy Options webpage.

Password Login
Password login is triggered in the following cases:

• When a user logs in over NETCONF or the CLI using the built in SSH server, with a password. The
user presents a username and a password in accordance with the SSH protocol.

• When a user logs in using the Web UI. The Web UI asks for a username and password.

• When the method Maapi.authenticate() is used.

In this case, NSO will by default try local authentication, PAM, and external authentication, in that
order, as described below. It is possible to change the order in which these are tried, by modifying the
ncs.conf. parameter /ncs-config/aaa/auth-order. See ncs.conf(5) in Manual Pages for
details.

1 If /aaa/authentication/users/user{$USER} exists and the presented password matches
the encrypted password in /aaa/authentication/users/user{$USER}/password the
user is authenticated.

2 If the password does not match or if the user does not exist in /aaa/authentication/users,
PAM login is attempted, if enabled. See the section called “PAM” for details.

3 If all of the above fails and external authentication is enabled, the configured executable is invoked.
See the section called “External authentication” for details.

If authentication succeeds, the user's group membership is established as described in the section called
“Group Membership”.

PAM
On operating systems supporting PAM, NSO also supports PAM authentication. Using PAM
authentication with NSO can be very convenient since it allows us to have the same set of users and groups
having access to NSO as those that have access to the UNIX/Linux host itself.

Administration Guide
102

https://www.openssh.com/txt/release-7.0
https://www.openssh.com/legacy.html

The AAA infrastructure
External authentication

If we use PAM, we do not have to have any users or any groups configured in the NSO aaa namespace at
all. To configure PAM we typically need to do the following:

1 Remove all users and groups from the aaa initialization XML file.

2 Enable PAM in ncs.conf by adding:

<pam>
 <enabled>true</enabled>
 <service>common-auth</service>
</pam>

to the aaa section in ncs.conf. The service name specifies the PAM service, typically a file in the
directory /etc/pam.d, but may alternatively be an entry in a file /etc/pam.conf, depending on
OS and version. Thus it is possible to have a different login procedure to NSO than to the host itself.

3 If pam is enabled and we want to use pam for login the system may have to run as root. This depends
on how pam is configured locally. However the default "system-auth" will typically require root since
the pam libraries then read /etc/shadow. If we don't want to run NSO as root, the solution here is
to change owner of a helper program called $NCS_DIR/lib/ncs/lib/core/pam/priv/epam
and also set the setuid bit.

cd $NCS_DIR/lib/ncs/lib/core/pam/priv/
chown root:root epam
chmod u+s epam

PAM is the recommended way to authenticate NSO users.

As an example, say that we have user test in /etc/passwd, and furthermore:

grep test /etc/group
operator:x:37:test
admin:x:1001:test

thus, the test user is part of the admin and the operator groups and logging in to NSO as the test user,
through CLI ssh, Web UI, or netconf renders the following in the audit log.

<INFO> 28-Jan-2009::16:05:55.663 buzz ncs[14658]: audit user: test/0 logged
 in over ssh from 127.0.0.1 with authmeth:password
<INFO> 28-Jan-2009::16:05:55.670 buzz ncs[14658]: audit user: test/5 assigned
 to groups: operator,admin
<INFO> 28-Jan-2009::16:05:57.655 buzz ncs[14658]: audit user: test/5 CLI 'exit'

Thus, the test user was found and authenticated from /etc/passwd, and the crucial group assignment of
the test user was done from /etc/group.

If we wish to be able to also manipulate the users, their passwords etc on the device we can write a private
YANG model for that data, store that data in CDB, setup a normal CDB subscriber for that data, and
finally when our private user data is manipulated, our CDB subscriber picks up the changes and changes
the contents of the relevant /etc files.

External authentication
A common situation is when we wish to have all authentication data stored remotely, not locally, for
example on a remote RADIUS or LDAP server. This remote authentication server typically not only stores
the users and their passwords, but also the group information.

If we wish to have not only the users, but also the group information stored on a remote server, the best
option for NSO authentication is to use "external authentication".

Administration Guide
103

The AAA infrastructure
External authentication

If this feature is configured, NSO will invoke the executable configured in /ncs-config/aaa/
external-authentication/executable in ncs.conf , and pass the username and the clear
text password on stdin using the string notation: "[user;password;]\n".

For example if user "bob" attempts to login over SSH using the password "secret", and external
authentication is enabled, NSO will invoke the configured executable and write "[bob;secret;]\n"
on the stdin stream for the executable.

The task of the executable is then to authenticate the user and also establish the username-to-groups
mapping.

For example the executable could be a RADIUS client which utilizes some proprietary vendor attributes to
retrieve the groups of the user from the RADIUS server. If authentication is successful, the program should
write "accept " followed by a space-separated list of groups the user is member of, and additional
information as described below. Again, assuming that Bob's password indeed was "secret", and that Bob is
member of the "admin" and the "lamers" groups, the program should write "accept admin lamers
$uid $gid $supplementary_gids $HOME\n" on its standard output and then exit.

Note There is a general limit of 16000 bytes of output from the "externalauth" program

Thus the format of the output from an "externalauth" program when authentication is successful should be:

"accept $groups $uid $gid $supplementary_gids $HOME\n"

Where

• $groups is a space separated list of the group names the user is a member of.

• $uid is the UNIX integer user id NSO should use as default when executing commands for this user.

• $gid is the UNIX integer group id NSO should use as default when executing commands for this
user.

• $supplementary_gids is a (possibly empty) space separated list of additional UNIX group ids
the user is also a member of.

• $HOME is the directory which should be used as HOME for this user when NSO executes commands
on behalf of this user.

It is further possible for the program to return a token on successful authentication, by using
"accept_token" instead of "accept":

"accept_token $groups $uid $gid $supplementary_gids $HOME $token\n"

Where $token is an arbitrary string. NSO will then, for some northbound interfaces, include this token in
responses.

It is also possible for the program to return additional information on successful authentication, by using
"accept_info" instead of "accept":

"accept_info $groups $uid $gid $supplementary_gids $HOME $info\n"

Where $info is some arbitrary text. NSO will then just append this text to the generated audit log
message (CONFD_EXT_LOGIN).

Yet another possibility is for the program to return a warning that the user's password is about to expire, by
using "accept_warning" instead of "accept":

"accept_warning $groups $uid $gid $supplementary_gids $HOME $warning\n"

Administration Guide
104

The AAA infrastructure
External token validation

Where $warning is an appropriate warning message. The message will be processed by NSO according
to the setting of /ncs-config/aaa/expiration-warning in ncs.conf.

There is also support for token variations of "accept_info" and "accept_warning" namely
"accept_token_info" and "accept_token_warning". Both "accept_token_info" and
"accept_token_warning" expects the external program to output exactly the same as described
above with the addition of a token after $HOME:

"accept_token_info $groups $uid $gid $supplementary_gids $HOME $token
$info\n"

"accept_token_warning $groups $uid $gid $supplementary_gids $HOME
$token $warning\n"

If authentication failed, the program should write "reject" or "abort", possibly followed by a
reason for the rejection, and a trailing newline. For example "reject Bad password\n" or just
"abort\n". The difference between "reject" and "abort" is that with "reject", NSO will try
subsequent mechanisms configured for /ncs-config/aaa/auth-order in ncs.conf (if any),
while with "abort", the authentication fails immediately. Thus "abort" can prevent subsequent
mechanisms from being tried, but when external authentication is the last mechanism (as in the default
order), it has the same effect as "reject".

Supported by some nortbound APIs, such as JSONRPC and CLI over SSH, the external authentication
may also choose to issue a challenge:

"challenge $challenge-id $challenge-prompt\n"

Note The challenge-prompt may be multi line, why it must be base64 encoded

For more information on multi factor authentication, see the

the section called “External multi factor authentication” section.

When external authentication is used, the group list returned by the external program is prepended by any
possible group information stored locally under the /aaa tree. Hence when we use external authentication
it is indeed possible to have the entire /aaa/authentication tree empty. The group assignment
performed by the external program will still be valid and the relevant groups will be used by NSO when
the authorization rules are checked.

External token validation
When username, password authentication is not feasible, authentication by token validation is possible.
Currently only RESTCONF supports this mode of authentication. It shares all properties of external
authentication, but instead of a username and password, it takes a token as input. The output is also almost
the same, the only difference is that it is also expected to output a username.

If this feature is configured, NSO will invoke the executable configured in /ncs-config/aaa/
external-validation/executable in ncs.conf , and pass the token on stdin using the
string notation: "[token;]\n".

For example if user "bob" attempts to login over RESTCONF using the token "topsecret", and external
validation is enabled, NSO will invoke the configured executable and write "[topsecret;]\n" on the
stdin stream for the executable.

The task of the executable is then to validate the token, thereby authenticating the user and also establish
the username and username-to-groups mapping.

Administration Guide
105

The AAA infrastructure
External token validation

For example the executable could be a FUSION client which utilizes some proprietary vendor attributes to
retrieve the username and groups of the user from the FUSION server. If token validation is successful, the
program should write "accept " followed by a space-separated list of groups the user is member of, and
additional information as described below. Again, assuming that Bob's token indeed was "topsecret", and
that Bob is member of the "admin" and the "lamers" groups, the program should write "accept admin
lamers $uid $gid $supplementary_gids $HOME $USER\n" on its standard output and
then exit.

Note There is a general limit of 16000 bytes of output from the "externalvalidation" program

Thus the format of the output from an "externalvalidation" program when token validation authentication
is successful should be:

"accept $groups $uid $gid $supplementary_gids $HOME $USER\n"

Where

• $groups is a space separated list of the group names the user is a member of.

• $uid is the UNIX integer user id NSO should use as default when executing commands for this user.

• $gid is the UNIX integer group id NSO should use as default when executing commands for this
user.

• $supplementary_gids is a (possibly empty) space separated list of additional UNIX group ids
the user is also a member of.

• $HOME is the directory which should be used as HOME for this user when NSO executes commands
on behalf of this user.

• $USER is the user derived from mapping the token.

It is further possible for the program to return a new token on successful token validation authentication,
by using "accept_token" instead of "accept":

"accept_token $groups $uid $gid $supplementary_gids $HOME $USER $token
\n"

Where $token is an arbitrary string. NSO will then, for some northbound interfaces, include this token in
responses.

It is also possible for the program to return additional information on successful token validation
authentication, by using "accept_info" instead of "accept":

"accept_info $groups $uid $gid $supplementary_gids $HOME $USER $info\n"

Where $info is some arbitrary text. NSO will then just append this text to the generated audit log
message (CONFD_EXT_LOGIN).

Yet another possibility is for the program to return a warning that the user's password is about to expire, by
using "accept_warning" instead of "accept":

"accept_warning $groups $uid $gid $supplementary_gids $HOME $USER
$warning\n"

Where $warning is an appropriate warning message. The message will be processed by NSO according
to the setting of /ncs-config/aaa/expiration-warning in ncs.conf.

There is also support for token variations of "accept_info" and "accept_warning" namely
"accept_token_info" and "accept_token_warning". Both "accept_token_info" and

Administration Guide
106

The AAA infrastructure
External multi factor authentication

"accept_token_warning" expects the external program to output exactly the same as described
above with the addition of a token after $USER:

"accept_token_info $groups $uid $gid $supplementary_gids $HOME $USER
$token $info\n"

"accept_token_warning $groups $uid $gid $supplementary_gids $HOME $USER
$token $warning\n"

If token validation authentication failed, the program should write "reject" or "abort", possibly
followed by a reason for the rejection, and a trailing newline. For example "reject Bad password
\n" or just "abort\n". The difference between "reject" and "abort" is that with "reject",
NSO will try subsequent mechanisms configured for /ncs-config/aaa/validation-order
in ncs.conf (if any), while with "abort", the token validation authentication fails immediately.
Thus "abort" can prevent subsequent mechanisms from being tried. Currently the only available token
validation authentication mechanism is the external one.

Supported by some nortbound APIs, such as JSONRPC and CLI over SSH, the external validation may
also choose to issue a challenge:

"challenge $challenge-id $challenge-prompt\n"

Note The challenge-prompt may be multi line, why it must be base64 encoded

For more information on multi factor authentication, see the

the section called “External multi factor authentication” section.

External multi factor authentication
When username, password or token authentication is not enough, a challenge may be sent from any of
the external authentication mechanisms to the user. A challenge consists of a challenge id and a base64
encoded challenge prompt, and a user is supposed to send a response to the challenge. Currently only
JSONRPC and CLI over SSH supports multi factor authentication. Responses to challenges of multi factor
authentication has the same output as the token authentication mechanism.

If this feature is configured, NSO will invoke the executable configured in /ncs-config/aaa/
external-challenge/executable in ncs.conf , and pass the challenge id and response on
stdin using the string notation: "[challenge-id;response;]\n".

For example a user "bob" has received a challenge from external authentication, external validation or
external challenge and then attempts to login over JSONRPC with a response to the challenge using
challenge id:"22efa",response:"ae457b". The external challenge mechanism is enabled, NSO will invoke
the configured executable and write "[22efa;ae457b;]\n" on the stdin stream for the executable.

The task of the executable is then to validate the challenge id, response combination, thereby
authenticating the user and also establish the username and username-to-groups mapping.

For example the executable could be a RADIUS client which utilizes some proprietary vendor attributes
to retrieve the username and groups of the user from the RADIUS server. If challenge id, response
validation is successful, the program should write "accept " followed by a space-separated list of
groups the user is member of, and additional information as described below. Again, assuming that
Bob's challenge id, response combination indeed was "22efa", "ae457b" and that Bob is member of the
"admin" and the "lamers" groups, the program should write "accept admin lamers $uid $gid
$supplementary_gids $HOME $USER\n" on its standard output and then exit.

Administration Guide
107

The AAA infrastructure
External multi factor authentication

Note There is a general limit of 16000 bytes of output from the "externalchallenge" program

Thus the format of the output from an "externalchallenge" program when challenge based authentication is
successful should be:

"accept $groups $uid $gid $supplementary_gids $HOME $USER\n"

Where

• $groups is a space separated list of the group names the user is a member of.

• $uid is the UNIX integer user id NSO should use as default when executing commands for this user.

• $gid is the UNIX integer group id NSO should use as default when executing commands for this
user.

• $supplementary_gids is a (possibly empty) space separated list of additional UNIX group ids
the user is also a member of.

• $HOME is the directory which should be used as HOME for this user when NSO executes commands
on behalf of this user.

• $USER is the user derived from mapping the challenge id, response.

It is further possible for the program to return a token on successful authentication, by using
"accept_token" instead of "accept":

"accept_token $groups $uid $gid $supplementary_gids $HOME $USER $token
\n"

Where $token is an arbitrary string. NSO will then, for some northbound interfaces, include this token in
responses.

It is also possible for the program to return additional information on successful authentication, by using
"accept_info" instead of "accept":

"accept_info $groups $uid $gid $supplementary_gids $HOME $USER $info\n"

Where $info is some arbitrary text. NSO will then just append this text to the generated audit log
message (CONFD_EXT_LOGIN).

Yet another possibility is for the program to return a warning that the user's password is about to expire, by
using "accept_warning" instead of "accept":

"accept_warning $groups $uid $gid $supplementary_gids $HOME $USER
$warning\n"

Where $warning is an appropriate warning message. The message will be processed by NSO according
to the setting of /ncs-config/aaa/expiration-warning in ncs.conf.

There is also support for token variations of "accept_info" and "accept_warning" namely
"accept_token_info" and "accept_token_warning". Both "accept_token_info" and
"accept_token_warning" expects the external program to output exactly the same as described
above with the addition of a token after $USER:

"accept_token_info $groups $uid $gid $supplementary_gids $HOME $USER
$token $info\n"

"accept_token_warning $groups $uid $gid $supplementary_gids $HOME $USER
$token $warning\n"

Administration Guide
108

The AAA infrastructure
Package authentication

If authentication failed, the program should write "reject" or "abort", possibly followed by a reason
for the rejection, and a trailing newline. For example "reject Bad challenge response\n" or
just "abort\n". The difference between "reject" and "abort" is that with "reject", NSO will
try subsequent mechanisms configured for /ncs-config/aaa/challenge-order in ncs.conf
(if any), while with "abort", the challenge response authentication fails immediately. Thus "abort"
can prevent subsequent mechanisms from being tried. Currently the only available challenge response
authentication mechanism is the external one.

Supported by some nortbound APIs, such as JSONRPC and CLI over SSH, the external challenge may
also choose to issue a new challenge:

"challenge $challenge-id $challenge-prompt\n"

Note The challenge-prompt may be multi line, why it must be base64 encoded

Package authentication
The Package Authentication functionality allows for packages to handle the NSO authentication in a
customized fashion. Authentication data can e.g. be stored remotely, and a script in the package is used to
communicate with the remote system.

Authentication packages are NSO packages with the required content of an executable file scripts/
authenticate. This executable basically follows the same API, and limitations, as the external auth
script, but with a different input format and some additional functionality. Other than these requirements, it
is possible to customize the package arbitrarily.

Note Package authentication is currently only supported for Single Sign-On (see Chapter 4, Single Sign-On in
Web UI).

Package authentication is enabled by setting the ncs.conf options /ncs-config/aaa/package-
authentication/enabled to true, and adding the package by name in the /ncs-config/aaa/
package-authentication/packages list.

If this feature is configured in ncs.conf, NSO will for each configured package invoke script/
authenticate, and pass username, password, original HTTP request (i.e. the resource requiring
authentication, redirecting to /sso), HTTP request, HTTP headers, HTTP body, client source
IP, client source port, northbound API context, and protocol on stdin using the string notation:
"[user;password;orig_request;request;headers;body;src-ip;src-
port;ctx;proto;]\n".

Note The fields user, password, orig_request, request, headers, body are all base64 encoded.

For example if an unauthenticated user attempts to start a single sign-on process over
northbound HTTP based APIs with the cisco-nso-saml2-auth package, package authentication
is enabled and configured with packages, and also single sign-on is enabled, NSO will, for
each configured package, invoke the executable scripts/authenticate and write
"[;;;R0VUIC9zc28vc2FtbC9sb2dpbi8gSFRUUC8xLjE=;;;127.0.0.1;59226;webui;https;]\n".
on the stdin stream for the executable.

Administration Guide
109

The AAA infrastructure
Package authentication

For clarity, the base64 decoded contents sent to stdin presented: "[;;;GET /sso/saml/login/
HTTP/1.1;;;127.0.0.1;54321;webui;https;]\n".

The task of the package is then to authenticate the user and also establish the username-to-groups mapping.

For example the package could support a SAMLv2 authentication protocol which communicates with an
Identity Provider (IdP) for authentication. If authentication is successful, the program should write either
"accept ", or "accept_username ", depending on if the authentication is started with username
or if an external entity handles the entire authentication and supplies the username for a successful
authentication. (SAMLv2 uses accept_username, since the IdP handles the entire authentication.) The
"accept_username " is followed by a username and then followed by a space-separated list of groups
the user is member of, and additional information as described below. If authentication is successful
and the authenticated user Bob is member of the groups "admin" and "wheel", the program should write
"accept_username bob admin wheel 1000 1000 100 /home/bob\n" on its standard
output and then exit.

Note There is a general limit of 16000 bytes of output from the "packageauth" program.

Thus the format of the output from a "packageauth" program when authentication is successful should be
either the same as from "externalauth" (see the section called “External authentication”) or the following:

"accept_username $USER $groups $uid $gid $supplementary_gids $HOME\n"

Where

• $USER is the user derived during the execution of the "packageauth" program.

• $groups is a space separated list of the group names the user is a member of.

• $uid is the UNIX integer user id NSO should use as default when executing commands for this user.

• $gid is the UNIX integer group id NSO should use as default when executing commands for this
user.

• $supplementary_gids is a (possibly empty) space separated list of additional UNIX group ids
the user is also a member of.

• $HOME is the directory which should be used as HOME for this user when NSO executes commands
on behalf of this user.

In addition to the "externalauth" API, the authentication packages can also return the following responses:

• unknown 'reason' - (reason being plain-text) if they can't handle authentication for the
supplied input.

• redirect 'url' - (url being base64 encoded) for an HTTP redirect.

• content 'content-type' 'content' - (content-type being plain-text mime-type and
content being base64 encoded) to relay supplied content.

It is also possible for the program to return additional information on successful authentication, by using
"accept_info" instead of "accept":

"accept_info $groups $uid $gid $supplementary_gids $HOME $info\n"

Where $info is some arbitrary text. NSO will then just append this text to the generated audit log
message (NCS_PACKAGE_AUTH_SUCCESS).

Yet another possibility is for the program to return a warning that the user's password is about to expire, by
using "accept_warning" instead of "accept":

Administration Guide
110

The AAA infrastructure
Restricting the IPC port

"accept_warning $groups $uid $gid $supplementary_gids $HOME $warning\n"

Where $warning is an appropriate warning message. The message will be processed by NSO according
to the setting of /ncs-config/aaa/expiration-warning in ncs.conf.

If authentication fails, the program should write "reject" or "abort", possibly followed by a
reason for the rejection, and a trailing newline. For example "reject 'Bad password'\n" or just
"abort\n". The difference between "reject" and "abort" is that with "reject", NSO will try
subsequent mechanisms configured for /ncs-config/aaa/auth-order, and packages configured
for /ncs-config/aaa/package-authentication/packages in ncs.conf (if any), while
with "abort", the authentication fails immediately. Thus "abort" can prevent subsequent mechanisms
from being tried, but when external authentication is the last mechanism (as in the default order), it has the
same effect as "reject".

When package authentication is used, the group list returned by the package executable is prepended by
any possible group information stored locally under the /aaa tree. Hence when package authentication is
used, it is indeed possible to have the entire /aaa/authentication tree empty. The group assignment
performed by the external program will still be valid and the relevant groups will be used by NSO when
the authorization rules are checked.

Restricting the IPC port
NSO listens for client connections on the NSO IPC port. See /ncs-config/ncs-ipc-address/ip
in ncs.conf. Access to this port is by default not authenticated. That means that all users with shell access
to the host, can connect to this port. So NSO deployment ends up in either of two cases, untrusted users
have, or have not shell access to the host(s) where NSO is deployed. If all shell users on the deployment
host(s) are trusted, no further action is required, however if untrusted users do have shell access to the
hosts, access to the IPC port must be restricted, see the section called “Restricting access to the IPC port”.

If IPC port access is not used, an untrusted shell user can simply invoke:

bob> ncs_cli --user admin

to impersonate as the admin user, or invoke

bob> ncs_load > all.xml

to retrieve the entire configuration.

Group Membership
Once a user is authenticated, group membership must be established. A single user can be a member of
several groups. Group membership is used by the authorization rules to decide which operations a certain
user is allowed to perform. Thus the NSO AAA authorization model is entirely group based. This is also
sometimes referred to as role based authorization.

All groups are stored under /nacm/groups, and each group contains a number of usernames. The
ietf-netconf-acm.yang model defines a group entry:

list group {
 key name;

 description
 "One NACM Group Entry. This list will only contain
 configured entries, not any entries learned from
 any transport protocols.";

 leaf name {

Administration Guide
111

The AAA infrastructure
Authorization

 type group-name-type;
 description
 "Group name associated with this entry.";
 }

 leaf-list user-name {
 type user-name-type;
 description
 "Each entry identifies the username of
 a member of the group associated with
 this entry.";
 }
}

The tailf-acm.yang model augments this with a gid leaf:

augment /nacm:nacm/nacm:groups/nacm:group {
 leaf gid {
 type int32;
 description
 "This leaf associates a numerical group ID with the group.
 When a OS command is executed on behalf of a user,
 supplementary group IDs are assigned based on 'gid' values
 for the groups that the use is a member of.";
 }
}

A valid group entry could thus look like:

<group>
 <name>admin</name>
 <user-name>bob</user-name>
 <user-name>joe</user-name>
 <gid xmlns="http://tail-f.com/yang/acm">99</gid>
</group>

The above XML data would then mean that users bob and joe are members of the admin group. The
users need not necessarily exist as actual users under /aaa/authentication/users in order to
belong to a group. If for example PAM authentication is used, it does not make sense to have all users
listed under /aaa/authentication/users.

By default, the user is assigned to groups by using any groups provided by the northbound transport (e.g.
via the ncs_cli or netconf-subsys programs), by consulting data under /nacm/groups, by consulting
the /etc/group file, and by using any additional groups supplied by the authentication method. If
/nacm/enable-external-groups is set to "false", only the data under /nacm/groups is
consulted.

The resulting group assignment is the union of these methods, if it is non-empty. Otherwise, the default
group is used, if configured (/ncs-config/aaa/default-group in ncs.conf).

A user entry has a UNIX uid and UNIX gid assigned to it. Groups may have optional group ids. When a
user is logged in, and NSO tries to execute commands on behalf of that user, the uid/gid for the command
execution is taken from the user entry. Furthermore, UNIX supplementary group ids are assigned
according to the gids in the groups where the user is a member.

Authorization
Once a user is authenticated and group membership is established, when the user starts to perform various
actions, each action must be authorized. Normally the authorization is done based on rules configured in
the AAA data model as described in this section.

Administration Guide
112

The AAA infrastructure
Command authorization

The authorization procedure first checks the value of /nacm/enable-nacm. This leaf has a default of
true, but if it is set to false, all access is permitted. Otherwise, the next step is to traverse the rule-
list list:

list rule-list {
 key "name";
 ordered-by user;
 description
 "An ordered collection of access control rules.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule-list.";
 }
 leaf-list group {
 type union {
 type matchall-string-type;
 type group-name-type;
 }
 description
 "List of administrative groups that will be
 assigned the associated access rights
 defined by the 'rule' list.

 The string '*' indicates that all groups apply to the
 entry.";
 }

 // ...
}

If the group leaf-list in a rule-list entry matches any of the user's groups, the cmdrule list entries
are examined for command authorization, while the rule entries are examined for rpc, notification, and
data authorization.

Command authorization
The tailf-acm.yang module augments the rule-list entry in ietf-netconf-acm.yang with
a cmdrule list:

augment /nacm:nacm/nacm:rule-list {

 list cmdrule {
 key "name";
 ordered-by user;
 description
 "One command access control rule. Command rules control access
 to CLI commands and Web UI functions.

 Rules are processed in user-defined order until a match is
 found. A rule matches if 'context', 'command', and
 'access-operations' match the request. If a rule
 matches, the 'action' leaf determines if access is granted
 or not.";

 leaf name {
 type string {
 length "1..max";

Administration Guide
113

The AAA infrastructure
Command authorization

 }
 description
 "Arbitrary name assigned to the rule.";
 }

 leaf context {
 type union {
 type nacm:matchall-string-type;
 type string;
 }
 default "*";
 description
 "This leaf matches if it has the value '*' or if its value
 identifies the agent that is requesting access, i.e. 'cli'
 for CLI or 'webui' for Web UI.";
 }

 leaf command {
 type string;
 default "*";
 description
 "Space-separated tokens representing the command. Refer
 to the Tail-f AAA documentation for further details.";
 }

 leaf access-operations {
 type union {
 type nacm:matchall-string-type;
 type nacm:access-operations-type;
 }
 default "*";
 description
 "Access operations associated with this rule.

 This leaf matches if it has the value '*' or if the
 bit corresponding to the requested operation is set.";
 }

 leaf action {
 type nacm:action-type;
 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule is determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf log-if-permit {
 type empty;
 description
 "If this leaf is present, access granted due to this rule
 is logged in the developer log. Otherwise, only denied
 access is logged. Mainly intended for debugging of rules.";
 }

 leaf comment {
 type string;
 description
 "A textual description of the access rule.";
 }

Administration Guide
114

The AAA infrastructure
Command authorization

 }
}

Each rule has seven leafs. The first is the name list key, the following three leafs are matching leafs.
When NSO tries to run a command it tries to match the command towards the matching leafs and if all of
context, command, and access-operations match, the fifth field, i.e. the action, is applied.

name name is the name of the rule. The rules are checked in order, with the ordering
given by the the YANG ordered-by user semantics, i.e. independent of
the key values.

context context is either of the strings cli, webui, or * for a command rule. This
means that we can differentiate authorization rules for which access method is
used. Thus if command access is attempted through the CLI the context will be
the string cli whereas for operations via the Web UI, the context will be the
string webui.

command This is the actual command getting executed. If the rule applies to one or
several CLI commands, the string is a space separated list of CLI command
tokens, for example request system reboot. If the command applies
to Web UI operations, it is a space separated string similar to a CLI string. A
string which consists of just "*" matches any command.

In general, we do not recommend using command rules to protect the
configuration. Use rules for data access as described in the next section to
control access to different parts of the data. Command rules should be used
only for CLI commands and Web UI operations that cannot be expressed as
data rules.

The individual tokens can be POSIX extended regular expressions. Each
regular expression is implicitly anchored, i.e. an "^" is prepended and a "$" is
appended to the regular expression.

access-operations access-operations is used to match the operation that NSO tries to
perform. It must be one or both of the "read" and "exec" values from the
access-operations-type bits type definition in ietf-netconf-
acm.yang, or "*" to match any operation.

action If all of the previous fields match, the rule as a whole matches and the value of
action will be taken. I.e. if a match is found, a decision is made whether to
permit or deny the request in its entirety. If action is permit, the request
is permitted, if action is deny, the request is denied and an entry written to
the developer log.

log-if-permit If this leaf is present, an entry is written to the developer log for a matching
request also when action is permit. This is very useful when debugging
command rules.

comment An optional textual description of the rule.

For the rule processing to be written to the devel log, the /ncs-config/logs/developer-log-
level entry in ncs.conf must be set to trace.

If no matching rule is found in any of the cmdrule lists in any rule-list entry that matches the user's
groups, this augmentation from tailf-acm.yang is relevant:

augment /nacm:nacm {
 leaf cmd-read-default {
 type nacm:action-type;
 default "permit";
 description

Administration Guide
115

The AAA infrastructure
Rpc, notification, and data authorization

 "Controls whether command read access is granted
 if no appropriate cmdrule is found for a
 particular command read request.";
 }

 leaf cmd-exec-default {
 type nacm:action-type;
 default "permit";
 description
 "Controls whether command exec access is granted
 if no appropriate cmdrule is found for a
 particular command exec request.";
 }

 leaf log-if-default-permit {
 type empty;
 description
 "If this leaf is present, access granted due to one of
 /nacm/read-default, /nacm/write-default, or /nacm/exec-default
 /nacm/cmd-read-default, or /nacm/cmd-exec-default
 being set to 'permit' is logged in the developer log.
 Otherwise, only denied access is logged. Mainly intended
 for debugging of rules.";
 }
}

• If "read" access is requested, the value of /nacm/cmd-read-default determines whether access
is permitted or denied.

• If "exec" access is requested, the value of /nacm/cmd-exec-default determines whether access
is permitted or denied.

If access is permitted due to one of these default leafs, the /nacm/log-if-default-permithas the
same effect as the log-if-permit leaf for the cmdrule lists.

Rpc, notification, and data authorization
The rules in the rule list are used to control access to rpc operations, notifications, and data nodes
defined in YANG models. Access to invocation of actions (tailf:action) is controlled with the same
method as access to data nodes, with a request for "exec" access. ietf-netconf-acm.yang defines a
rule entry as:

list rule {
 key "name";
 ordered-by user;
 description
 "One access control rule.

 Rules are processed in user-defined order until a match is
 found. A rule matches if 'module-name', 'rule-type', and
 'access-operations' match the request. If a rule
 matches, the 'action' leaf determines if access is granted
 or not.";

 leaf name {
 type string {
 length "1..max";
 }
 description
 "Arbitrary name assigned to the rule.";
 }

Administration Guide
116

The AAA infrastructure
Rpc, notification, and data authorization

 leaf module-name {
 type union {
 type matchall-string-type;
 type string;
 }
 default "*";
 description
 "Name of the module associated with this rule.

 This leaf matches if it has the value '*' or if the
 object being accessed is defined in the module with the
 specified module name.";
 }
 choice rule-type {
 description
 "This choice matches if all leafs present in the rule
 match the request. If no leafs are present, the
 choice matches all requests.";
 case protocol-operation {
 leaf rpc-name {
 type union {
 type matchall-string-type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if
 its value equals the requested protocol operation
 name.";
 }
 }
 case notification {
 leaf notification-name {
 type union {
 type matchall-string-type;
 type string;
 }
 description
 "This leaf matches if it has the value '*' or if its
 value equals the requested notification name.";
 }
 }
 case data-node {
 leaf path {
 type node-instance-identifier;
 mandatory true;
 description
 "Data Node Instance Identifier associated with the
 data node controlled by this rule.

 Configuration data or state data instance
 identifiers start with a top-level data node. A
 complete instance identifier is required for this
 type of path value.

 The special value '/' refers to all possible
 data-store contents.";
 }
 }
 }

 leaf access-operations {
 type union {

Administration Guide
117

The AAA infrastructure
Rpc, notification, and data authorization

 type matchall-string-type;
 type access-operations-type;
 }
 default "*";
 description
 "Access operations associated with this rule.

 This leaf matches if it has the value '*' or if the
 bit corresponding to the requested operation is set.";
 }

 leaf action {
 type action-type;
 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule is determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf comment {
 type string;
 description
 "A textual description of the access rule.";
 }
}

tailf-acm augments this with two additional leafs:

augment /nacm:nacm/nacm:rule-list/nacm:rule {

 leaf context {
 type union {
 type nacm:matchall-string-type;
 type string;
 }
 default "*";
 description
 "This leaf matches if it has the value '*' or if its value
 identifies the agent that is requesting access, e.g. 'netconf'
 for NETCONF, 'cli' for CLI, or 'webui' for Web UI.";

 }

 leaf log-if-permit {
 type empty;
 description
 "If this leaf is present, access granted due to this rule
 is logged in the developer log. Otherwise, only denied
 access is logged. Mainly intended for debugging of rules.";
 }
}

Similar to the command access check, whenever a user through some agent tries to access an rpc, a
notification, a data item, or an action, access is checked. For a rule to match, three or four leafs must match
and when a match is found, the corresponding action is taken.

We have the following leafs in the rule list entry.

Administration Guide
118

The AAA infrastructure
Rpc, notification, and data authorization

name name is the name of the rule. The rules are checked in order,
with the ordering given by the the YANG ordered-by user
semantics, i.e. independent of the key values.

module-name The module-name string is the name of the YANG module where
the node being accessed is defined. The special value * (i.e. the
default) matches all modules.

Note Since the elements of the path to a given node may be defined in
different YANG modules when augmentation is used, rules which
have a value other than * for the module-name leaf may require
that additional processing is done before a decision to permit or
deny or the access can be taken. Thus if an XPath that completely
identifies the nodes that the rule should apply to is given for the
path leaf (see below), it may be best to leave the module-name
leaf unset.

rpc-name / notification-name / path This is a choice between three possible leafs that are used for
matching, in addition to the module-name:

rpc-name

The name of a rpc operation, or "*" to match any rpc.

notification-name

The name of a notification, or "*" to match any notification.

path

A restricted XPath expression leading down into the populated
XML tree. A rule with a path specified matches if it is equal
to or shorter than the checked path. Several types of paths are
allowed.

1 Tagpaths that are not containing any keys. For example /
ncs/live-device/live-status.

2 Instantiated key: as in /devices/
device[name="x1"]/config/interface matches
the interface configuration for managed device "x1" It's
possible to have partially instantiated paths only containing
some keys instantiated - i.e combinations of tagpaths and
keypaths. Assuming a deeper tree, the path /devices/
device/config/interface[name="eth0"]
matches the "eth0" interface configuration on all managed
devices.

3 Wild card at end as in: /services/web-site/* does
not match the web site service instances, but rather all
children of the web site service instances.

Thus the path in a rule is matched against the path in the
attempted data access. If the attempted access has a path that is
equal to or longer than the rule path - we have a match.

If none of the leafs rpc-name, notification-name, or path
are set, the rule matches for any rpc, notification, data, or action
access.

Administration Guide
119

The AAA infrastructure
Rpc, notification, and data authorization

context context is either of the strings cli, netconf, webui, snmp, or
* for a data rule. Furthermore, when we initiate user sessions from
MAAPI, we can choose any string we want.

Similarly to command rules we can differentiate access depending
on which agent is used to gain access.

access-operations access-operations is used to match the operation that
NSO tries to perform. It must be one or more of the "create",
"read", "update", "delete" and "exec" values from the access-
operations-type bits type definition in ietf-netconf-
acm.yang, or "*" to match any operation.

action This leaf has the same characteristics as the action leaf for
command access.

log-if-permit This leaf has the same characteristics as the log-if-permit leaf
for command access.

comment An optional textual description of the rule.

If no matching rule is found in any of the rule lists in any rule-list entry that matches the user's
groups, the data model node for which access is requested is examined for presence of the NACM
extensions:

• If the nacm:default-deny-all extension is specified for the data model node, access is denied.

• If the nacm:default-deny-write extension is specified for the data model node, and "create",
"update", or "delete" access is requested, access is denied.

If examination of the NACM extensions did not result in access being denied, the value (permit or
deny) of the relevant default leaf is examined:

• If "read" access is requested, the value of /nacm/read-default determines whether access is
permitted or denied.

• If "create", "update", or "delete" access is requested, the value of /nacm/write-default
determines whether access is permitted or denied.

• If "exec" access is requested, the value of /nacm/exec-default determines whether access is
permitted or denied.

If access is permitted due to one of these default leafs, this augmentation from tailf-acm.yang is
relevant:

augment /nacm:nacm {
 ...
 leaf log-if-default-permit {
 type empty;
 description
 "If this leaf is present, access granted due to one of
 /nacm/read-default, /nacm/write-default, /nacm/exec-default
 /nacm/cmd-read-default, or /nacm/cmd-exec-default
 being set to 'permit' is logged in the developer log.
 Otherwise, only denied access is logged. Mainly intended
 for debugging of rules.";
 }
}

I.e. it has the same effect as the log-if-permit leaf for the rule lists, but for the case where the value
of one of the default leafs permits the access.

Administration Guide
120

The AAA infrastructure
NACM Rules and Services

When NSO executes a command, the command rules in the authorization database are searched, The
rules are tried in order, as described above. When a rule matches the operation (command) that NSO is
attempting, the action of the matching rule is applied - whether permit or deny.

When actual data access is attempted, the data rules are searched. E.g. when a user attempts to execute
delete aaa in the CLI, the user needs delete access to the entire tree /aaa.

Another example is if a CLI user writes show configuration aaa TAB it suffices to have read
access to at least one item below /aaa for the CLI to perform the TAB completion. If no rule matches or
an explicit deny rule is found, the CLI will not TAB complete.

Yet another example is if a user tries to execute delete aaa authentication users, we need to
perform a check on the paths /aaa and /aaa/authentication before attempting to delete the sub
tree. Say that we have a rule for path /aaa/authentication/users which is an permit rule and
we have a subsequent rule for path /aaa which is a deny rule. With this rule set the user should indeed
be allowed to delete the entire /aaa/authentication/users tree but not the /aaa tree nor the /
aaa/authentication tree.

We have two variations on how the rules are processed. The easy case is when we actually try to read or
write an item in the configuration database. The execution goes like:

foreach rule {
 if (match(rule, path)) {
 return rule.action;
 }
}

The second case is when we execute TAB completion in the CLI. This is more complicated. The execution
goes like:

rules = select_rules_that_may_match(rules, path);
if (any_rule_is_permit(rules))
 return permit;
else
 return deny;

The idea being that as we traverse (through TAB) down the XML tree, as long as there is at least one rule
that can possibly match later, once we have more data, we must continue.

For example assume we have:

1 "/system/config/foo" --> permit

2 "/system/config" --> deny

If we in the CLI stand at "/system/config" and hit TAB we want the CLI to show foo as a
completion, but none of the other nodes that exist under /system/config. Whereas if we try to execute
delete /system/config the request must be rejected.

NACM Rules and Services
By design NACM rules are ignored for changes done by services - FASTMAP, Reactive FASTMAP,
or Nano services. The reasoning behind this is that a service package can be seen as a controlled way to
provide limited access to devices for a user group that is not allowed to apply arbitrary changes on the
devices.

However, there are NSO installations where this behavior is not desired, and NSO administrators want
to enforce NACM rules even on changes done by services. For this purpose, the leaf called /nacm/
enforce-nacm-on-services is provided. By default, it is set to false.

Administration Guide
121

The AAA infrastructure
Authorization Examples

Note however that currently, even with this leaf set to true, the post-actions for nano-services are run in a
user session without any access checks.

Authorization Examples
Assume that we have two groups, admin and oper. We want admin to be able to see and and edit the
XML tree rooted at /aaa, but we do not want users that are members of the oper group to even see the
/aaa tree. We would have the following rule-list and rule entries. Note, here we use the XML data from
tailf-aaa.yang to exemplify. The examples apply to all data, for all data models loaded into the
system.

<rule-list>
 <name>admin</name>
 <group>admin</group>
 <rule>
 <name>tailf-aaa</name>
 <module-name>tailf-aaa</module-name>
 <path>/</path>
 <access-operations>read create update delete</access-operations>
 <action>permit</action>
 </rule>
</rule-list>
<rule-list>
 <name>oper</name>
 <group>oper</group>
 <rule>
 <name>tailf-aaa</name>
 <module-name>tailf-aaa</module-name>
 <path>/</path>
 <access-operations>read create update delete</access-operations>
 <action>deny</action>
 </rule>
</rule-list>

If we do not want the members of oper to be able to execute the NETCONF operation edit-config,
we define the following rule-list and rule entries:

<rule-list>
 <name>oper</name>
 <group>oper</group>
 <rule>
 <name>edit-config</name>
 <rpc-name>edit-config</rpc-name>
 <context xmlns="http://tail-f.com/yang/acm">netconf</context>
 <access-operations>exec</access-operations>
 <action>deny</action>
 </rule>
</rule-list>

To spell it out, the above defines four elements to match. If NSO tries to perform a netconf operation,
which is the operation edit-config, and the user which runs the command is member of the oper
group, and finally it is an exec (execute) operation, we have a match. If so, the action is deny.

The path leaf can be used to specify explicit paths into the XML tree using XPath syntax. For example
the following:

<rule-list>
 <name>admin</name>
 <group>admin</group>
 <rule>

Administration Guide
122

The AAA infrastructure
Authorization Examples

 <name>bob-password</name>
 <path>/aaa/authentication/users/user[name='bob']/password</path>
 <context xmlns="http://tail-f.com/yang/acm">cli</context>
 <access-operations>read update</access-operations>
 <action>permit</action>
 </rule>
</rule-list>

Explicitly allows the admin group to change the password for precisely the bob user when the user is
using the CLI. Had path been /aaa/authentication/users/user/password the rule would
apply to all password elements for all users. Since the path leaf completely identifies the nodes that the
rule applies to, we do not need to give tailf-aaa for the module-name leaf.

NSO applies variable substitution, whereby the username of the logged in user can be used in a path.
Thus:

<rule-list>
 <name>admin</name>
 <group>admin</group>
 <rule>
 <name>user-password</name>
 <path>/aaa/authentication/users/user[name='$USER']/password</path>
 <context xmlns="http://tail-f.com/yang/acm">cli</context>
 <access-operations>read update</access-operations>
 <action>permit</action>
 </rule>
</rule-list>

The above rule allows all users that are part of the admin group to change their own passwords only.

A member of oper is able to execute NETCONF operation action if that member has exec access
on NETCONF RPC action operation, read access on all instances in the hierarchy of data nodes that
identifies the specific action in the datastore, and exec access on the specific action. For example an
action is defined as below.

container test {
 action double {
 input {
 leaf number {
 type uint32;
 }
 }
 output {
 leaf result {
 type uint32;
 }
 }
 }
}

To be able to execute double action through NETCONF RPC, the members of oper need the following
rule-list and rule-entries.

<rule-list>
 <name>oper</name>
 <group>oper</group>

 <rule>
 <name>allow-netconf-rpc-action</name>
 <rpc-name>action</rpc-name>
 <context xmlns="http://tail-f.com/yang/acm">netconf</context>

Administration Guide
123

The AAA infrastructure
Authorization Examples

 <access-operations>exec</access-operations>
 <action>permit</action>
 </rule>
 <rule>
 <name>allow-read-test</name>
 <path>/test</path>
 <access-operations>read</access-operations>
 <action>permit</action>
 </rule>
 <rule>
 <name>allow-exec-double</name>
 <path>/test/double</path>
 <access-operations>exec</access-operations>
 <action>permit</action>
 </rule>
</rule-list>

Or, a simpler rule set as the following.

<rule-list>
 <name>oper</name>
 <group>oper</group>

 <rule>
 <name>allow-netconf-rpc-action</name>
 <rpc-name>action</rpc-name>
 <context xmlns="http://tail-f.com/yang/acm">netconf</context>
 <access-operations>exec</access-operations>
 <action>permit</action>
 </rule>
 <rule>
 <name>allow-exec-double</name>
 <path>/test</path>
 <access-operations>read exec</access-operations>
 <action>permit</action>
 </rule>
</rule-list>

Finally if we wish members of the oper group to never be able to execute the request system
reboot command, also available as a reboot NETCONF rpc, we have:

<rule-list>
 <name>oper</name>
 <group>oper</group>

 <cmdrule xmlns="http://tail-f.com/yang/acm">
 <name>request-system-reboot</name>
 <context>cli</context>
 <command>request system reboot</command>
 <access-operations>exec</access-operations>
 <action>deny</action>
 </cmdrule>

 <!-- The following rule is required since the user can -->
 <!-- do "edit system" -->

 <cmdrule xmlns="http://tail-f.com/yang/acm">
 <name>request-reboot</name>
 <context>cli</context>
 <command>request reboot</command>
 <access-operations>exec</access-operations>
 <action>deny</action>
 </cmdrule>

Administration Guide
124

The AAA infrastructure
The AAA cache

 <rule>
 <name>netconf-reboot</name>
 <rpc-name>reboot</rpc-name>
 <context xmlns="http://tail-f.com/yang/acm">netconf</context>
 <access-operations>exec</access-operations>
 <action>deny</action>
 </rule>

</rule-list>

Debugging the AAA rules can be hard. The best way to debug rules that behave unexpectedly is to add
the log-if-permit leaf to some or all of the rules that have action permit. Whenever such a rule
triggers a permit action, an entry is written to the developer log.

Finally it is worth mentioning that when a user session is initially created it will gather the authorization
rules that are relevant for that user session and keep these rules for the life of the user session. Thus when
we update the AAA rules in e.g. the CLI the update will not apply to the current session - only to future
user sessions.

The AAA cache
NSO's AAA subsystem will cache the AAA information in order to speed up the authorization process.
This cache must be updated whenever there is a change to the AAA information. The mechanism for this
update depends on how the AAA information is stored, as described in the following two sections.

Populating AAA using CDB
In order to start NSO, the data models for AAA must be loaded. The defaults in the case that no actual data
is loaded for these models allow all read and exec access, while write access is denied. Access may still
be further restricted by the NACM extensions, though - e.g. the /nacm container has nacm:default-
deny-all, meaning that not even read access is allowed if no data is loaded.

NSO ships with a decent initialization document for the AAA database. The file is called
aaa_init.xml and is by default copied to the CDB directory by the NSO install scripts. The file defines
two users, admin and oper with passwords set to admin and oper respectively.

Normally the AAA data will be stored as configuration in CDB. This allows for changes to be made
through NSO's transaction-based configuration management. In this case the AAA cache will be updated
automatically when changes are made to the AAA data. If changing the AAA data via NSO's configuration
management is not possible or desirable, it is alternatively possible to use the CDB operational data
store for AAA data. In this case the AAA cache can be updated either explicitly e.g. by using the
maapi_aaa_reload() function, see the confd_lib_maapi(3) in Manual Pages manual page, or by
triggering a subscription notification by using the "subscription lock" when updating the CDB operational
data store, see Chapter 9, Using CDB in Development Guide.

Hiding the AAA tree
Some applications may not want to expose the AAA data to end users in the CLI or the Web UI. Two
reasonable approaches exist here and both rely on the tailf:export statement. If a module has
tailf:export none it will be invisible to all agents. We can then either use a transform whereby we
define another AAA model and write a transform program which maps our AAA data to the data which
must exist in tailf-aaa.yang and ietf-netconf-acm.yang. This way we can choose to export
and and expose an entirely different AAA model.

Administration Guide
125

The AAA infrastructure
Hiding the AAA tree

Yet another very easy way out, is to define a set of static AAA rules whereby a set of fixed users and fixed
groups have fixed access to our configuration data. Possibly the only field we wish to manipulate is the
password field.

Administration Guide
126

CHAPTER 10
Upgrade

Upgrading the NSO software gives you access to new features and product improvements. Unfortunately,
every change presents some risk, and upgrades are no exception.

To minimize the risk and make the upgrade process as painless as possible, this section describes the
recommended procedures and practices to follow during an upgrade.

As usual, sufficient preparation avoids many pitfalls and makes the process more straightforward and less
stressful.

• Preparing for Upgrade, page 127

• Single Instance Upgrade, page 129

• Recover from Failed Upgrade, page 130

• NSO HA Version Upgrade, page 131

• Package Upgrade, page 134

• Patch Management, page 137

Preparing for Upgrade
There are multiple aspects that you should consider before starting with the actual upgrade procedure.
While the development team tries to provide as much compatibility between software releases as possible,
they cannot always avoid all incompatible changes. For example, when a deviation from an RFC standard
is found and resolved, it may break clients that depend on the non-standard behavior. For this reason, a
distinction is made between maintenance and a major NSO upgrade.

A maintenance NSO upgrade is within the same branch, i.e., when the first two version numbers stay the
same (x.y in the x.y.z NSO version). An example is upgrading from version 5.6.1 to 5.6.2. In the case of a
maintenance upgrade, the NSO release contains only corrections and minor enhancements, minimizing the
changes. It includes binary compatibility for packages, so there is no need to recompile the .fxs files for a
maintenance upgrade.

Correspondingly, when the first or second number in the version changes, that is called a full or major
upgrade. For example, upgrading version 5.6.1 to 5.7 is a major, non-maintenance upgrade. Due to new
features, packages must be recompiled, and some incompatibilities could manifest.

In addition to the above, a package upgrade is when you replace a package with a newer version, such as
a NED or a service package. Sometimes, when package changes are not too big, it is possible to supply
the new packages as part of the NSO upgrade, but this approach brings additional complexity. Instead,

Administration Guide
127

Upgrade
Preparing for Upgrade

package upgrade and NSO upgrade should in general, be performed as separate actions and are covered as
such.

To avoid surprises during any upgrade, first ensure the following:

• Hosts have sufficient disk space, as some additional space is required for an upgrade.

• The software is compatible with the target OS. However, sometimes a newer version of Java or
system libraries, such as glibc, may be required.

• All the required NEDs and custom packages are compatible with the target NSO version.

• Existing packages have been compiled for the new version and are available to you during the
upgrade.

• Check whether the existing ncs.conf file can be used as-is or needs updating. For example,
stronger encryption algorithms may require you to configure additional keying material.

• Review the CHANGES file for information on what has changed.

• If upgrading from a no longer supported software version, verify that the upgrade can be performed
directly. In situations where the currently installed version is very old, you may have to upgrade to
one or more intermediate versions before upgrading to the target version.

In case it turns out any of the packages are incompatible or cannot be recompiled, you will need to contact
the package developers for an updated or recompiled version. For an official Cisco-supplied package, it is
recommended that you always obtain a pre-compiled version if it is available for the target NSO release,
instead of compiling the package yourself.

Additional preparation steps may be required based on the upgrade and the actual setup, such as when
using the Layered Service Architecture (LSA) feature. In particular, for a major NSO upgrade in a multi-
version LSA cluster, ensure that the new version supports the other cluster members and follow the
additional steps outlined in Chapter 3, Deploying LSA in Layered Service Architecture.

If you use the High Availability (HA) feature, the upgrade consists of multiple steps on different nodes.
To avoid mistakes, you are encouraged to script the process, for which you will need to set up and verify
access to all NSO instances with either ssh, nct, or some other remote management command. For the
reference example we use in this chapter, see examples.ncs/development-guide/high-
availability/hcc. The management station uses shell and Python scripts that use ssh to access the
Linux shell and NSO CLI and Python Requests for NSO RESTCONF interface access.

Likewise, NSO 5.3 added support for 256-bit AES encrypted strings, requiring the AES256CFB128
key in the ncs.conf configuration. You can generate one with the openssl rand -hex 32 or a similar
command. Alternatively, if you use an external command to provide keys, ensure that it includes a value
for an AES256CFB128_KEY in the output.

Finally, regardless of the upgrade type, ensure that you have a working backup and can easily restore the
previous configuration if needed, as described in the section called “Backup and restore”.

Administration Guide
128

Upgrade
Single Instance Upgrade

Caution The ncs-backup (and consequently the nct backup) command does not back up the /opt/ncs/
packages folder. If you make any file changes, back them up separately.

However, the best practice is not to modify packages in the /opt/ncs/packages folder. Instead, if an
upgrade requires package recompilation, separate package folders (or files) should be used, one for each
NSO version.

Single Instance Upgrade
The upgrade of a single NSO instance requires the following steps:

1 Create a backup.

2 Perform a system install of the new version.

3 Stop the old NSO server process.

4 Update the /opt/ncs/current symbolic link.

5 If required, update the ncs.conf configuration file.

6 Update the packages in /var/opt/ncs/packages/ if recompilation is needed.

7 Start the NSO server process, instructing it to reload the packages.

The following steps suppose that you are upgrading to the 5.7 release. They pertain to a system install of
NSO, and you must perform them with Super User privileges. As a best practice, always create a backup
before trying to upgrade.

ncs-backup

For the upgrade itself, you must first download to the host and install the new NSO release.

sh nso-5.7.linux.x86_64.installer.bin --system-install

Then, you stop the currently running server with the help of the init.d script or an equivalent command
relevant to your system.

/etc/init.d/ncs stop
Stopping ncs: .

Next, you update the symbolic link for the currently selected version to point to the newly installed one,
5.7 in this case.

cd /opt/ncs
rm -f current
ln -s ncs-5.7 current

While seldom necessary, at this point, you would also update the /etc/ncs/ncs.conf file.

Now, ensure that the /var/opt/ncs/packages/ directory has appropriate packages for the new
version. It should be possible to continue using the same packages for a maintenance upgrade. But for a
major upgrade, you must normally rebuild the packages or use pre-built ones for the new version. You
must ensure this directory contains the exact same version of each existing package, compiled for the new
release, and nothing else.

As a best practice, the available packages are kept in /opt/ncs/packages/ and /var/opt/ncs/
packages/ only contains symbolic links. In this case, to identify the release for which they were
compiled, the package file names all start with the corresponding NSO version. Then, you only need to
rearrange the symbolic links in the /var/opt/ncs/packages/ directory.

Administration Guide
129

Upgrade
Recover from Failed Upgrade

cd /var/opt/ncs/packages/
rm -f *
for pkg in /opt/ncs/packages/ncs-5.7-*; do ln -s $pkg; done

Please note that the above package naming scheme is neither required nor enforced. If your package
filesystem names differ from it, you will need to adjust the preceding command accordingly.

Finally, you start the new version of the NSO server with the package reload flag set.

/etc/init.d/ncs start-with-package-reload
Starting ncs: ...

NSO will perform the necessary data upgrade automatically. However, this process may fail if you have
changed or removed any packages. In that case, ensure that the correct versions of all packages are present
in /var/opt/ncs/packages/ and retry the preceding command.

Also, note that with many packages or data entries in the CDB, this process could take more than 90
seconds and result in the following error message:

Starting ncs (via systemctl): Job for ncs.service failed
because a timeout was exceeded. See "systemctl status
ncs.service" and "journalctl -xe" for details. [FAILED]

The above error does not imply that NSO failed to start, just that it took longer than 90 seconds. Therefore,
it is recommended you wait some additional time before verifying.

Recover from Failed Upgrade
It is imperative you have a working copy of data available from which you can restore. That is why you
must always create a backup before starting an upgrade. Only a backup guarantees that you can rerun the
upgrade or back out of it, should it be necessary.

The same steps can also be used to restore data on a new, similar host if the OS of the initial host becomes
corrupted beyond repair.

First, stop the NSO process if it is running.

/etc/init.d/ncs stop
Stopping ncs: .

Verify and, if necessary, revert the symbolic link in /opt/ncs/ to point to the initial NSO release.

cd /opt/ncs
ls -l current
ln -s ncs-VERSION current

In the exceptional case where the initial version installation was removed or damaged, you will need to re-
install it first and redo the step above.

Verify if the correct (initial) version of NSO is being used.

ncs --version

Next, restore the backup.

ncs-backup --restore

Finally, start the NSO server and verify the restore was successful.

/etc/init.d/ncs start

Administration Guide
130

Upgrade
NSO HA Version Upgrade

Starting ncs: .

NSO HA Version Upgrade
Upgrading NSO in a highly available (HA) setup is a staged process. It entails running various commands
across multiple NSO instances at different times.

The procedure is almost the same for a maintenance and major NSO upgrade. The difference is that a
major upgrade requires the replacement of packages with recompiled ones. Still, a maintenance upgrade is
often perceived as easier because there are fewer changes in the product.

The stages of the upgrade are:

1 First enable read-only mode on the designated primary, and then on the secondary that is enabled for
fail-over.

2 Take a full backup on all nodes.

3 If using a 3-node setup, disconnect the 3rd, non-fail-over secondary by disabling HA on this node.

4 Disconnect the HA pair by disabling HA on the designated primary, temporarily promoting the
designated secondary to provide the read-only service (and advertise the shared virtual IP address if it
is used).

5 Upgrade the designated primary.

6 Disable HA on the designated secondary node, to allow designated primary to become actual primary
in the next step.

7 Activate HA on the designated primary, which will assume its assigned (primary) role to provide the
full service (and again advertise the shared IP if used). However, at this point, the system is without
HA.

8 Upgrade the designated secondary node.

9 Activate HA on the designated secondary, which will assume its assigned (secondary) role, connecting
HA again.

10 Verify that HA is operational and has converged.

11 Upgrade the 3rd, non-fail-over secondary if it is used, and verify it successfully re-joins the HA cluster.

Enabling the read-only mode on both nodes is required to ensure the subsequent backup captures the full
system state, as well as making sure the failover-primary does not start taking writes when it is promoted
later on.

Disabling the non-fail-over secondary in a 3-node setup right after taking backup is necessary when using
the built-in HA rule-based algorithm (enabled by default in NSO 5.8 and later). Without it, the node might
connect to the failover-primary when the fail over happens, which disables read-only mode.

While not strictly necessary, explicitly promoting the designated secondary after disabling HA on
the primary ensures a fast fail over, avoiding the automatic reconnection attempts. If using a shared
IP solution, such as the Tail-f HCC, this makes sure the shared VIP comes back up on the designated
secondary as soon as possible. In addition, some older NSO versions do not reset the read-only mode upon
disabling HA if they are not an acting primary.

Another important thing to note is that all packages used in the upgrade must match the NSO release. If
they do not, the upgrade will fail.

In the case of a major upgrade, you must recompile the packages for the new version. It is highly
recommended that you use pre-compiled packages and do not compile them during this upgrade
procedure since the compilation can prove nontrivial, and the production hosts may lack all the required
(development) tooling. You should use a naming scheme to distinguish between packages compiled for

Administration Guide
131

Upgrade
NSO HA Version Upgrade

different NSO versions. A good option is for package file names to start with the ncs-MAJORVERSION-
prefix for a given major NSO version. This ensures multiple packages can co-exist in the /opt/ncs/
packages folder, and the NSO version they can be used with becomes obvious.

The following is a transcript of a sample upgrade procedure, showing the commands for each step
described above, in a 2-node HA setup, with nodes in their initial designated state. The procedure ensures
that is also the case at the end.

<switch to designated primary CLI>
admin@ncs# show high-availability status mode
high-availability status mode primary
admin@ncs# high-availability read-only mode true

<switch to designated secondary CLI>
admin@ncs# show high-availability status mode
high-availability status mode secondary
admin@ncs# high-availability read-only mode true

<switch to designated primary shell>
ncs-backup

<switch to designated secondary shell>
ncs-backup

<switch to designated primary CLI>
admin@ncs# high-availability disable

<switch to designated secondary CLI>
admin@ncs# high-availability be-primary

<switch to designated primary shell>
<upgrade node>
/etc/init.d/ncs restart-with-package-reload

<switch to designated secondary CLI>
admin@ncs# high-availability disable

<switch to designated primary CLI>
admin@ncs# high-availability enable

<switch to designated secondary shell>
<upgrade node>
/etc/init.d/ncs restart-with-package-reload

<switch to designated secondary CLI>
admin@ncs# high-availability enable

Scripting is a recommended way to upgrade the NSO version of an HA cluster. The following example
script shows the required commands and can serve as a basis for your own customized upgrade script.
In particular, the script requires a specific package naming convention above, and you may need
to tailor it to your environment. In addition, it expects the new release version and the designated
primary and secondary node addresses as the arguments. The recompiled packages are read from the
packages-MAJORVERSION/ directory.

For the below example script we configured our primary and secondary nodes with their nominal roles that
they assume at startup and when HA is enabled. Automatic failover is also enabled so that the secondary
will assume the primary role if the primary node goes down.

Example 14. Configuration on Both Nodes

<config xmlns="http://tail-f.com/ns/config/1.0">

Administration Guide
132

Upgrade
NSO HA Version Upgrade

 <high-availability xmlns="http://tail-f.com/ns/ncs">
 <ha-node>
 <id>n1</id>
 <nominal-role>primary</nominal-role>
 </ha-node>
 <ha-node>
 <id>n2</id>
 <nominal-role>secondary</nominal-role>
 <failover-primary>true</failover-primary>
 </ha-node>
 <settings>
 <enable-failover>true</enable-failover>
 <start-up>
 <assume-nominal-role>true</assume-nominal-role>
 <join-ha>true</join-ha>
 </start-up>
 </settings>
 </high-availability>
</config>

Example 15. Script for HA Major Upgrade (with Packages)

#!/bin/bash
set -ex

vsn=$1
primary=$2
secondary=$3
installer_file=nso-${vsn}.linux.x86_64.installer.bin
pkg_vsn=$(echo $vsn | sed -e 's/^\([0-9]\+\.[0-9]\+\).*/\1/')
pkg_dir="packages-${pkg_vsn}"

function on_primary() { ssh $primary "$@" ; }
function on_secondary() { ssh $secondary "$@" ; }
function on_primary_cli() { ssh -p 2024 $primary "$@" ; }
function on_secondary_cli() { ssh -p 2024 $secondary "$@" ; }

function upgrade_nso() {
 target=$1
 scp $installer_file $target:
 ssh $target "sh $installer_file --system-install --non-interactive"
 ssh $target "rm -f /opt/ncs/current && \
 ln -s /opt/ncs/ncs-${vsn} /opt/ncs/current"
}
function upgrade_packages() {
 target=$1
 do_pkgs=$(ls "${pkg_dir}/" || echo "")
 if [-n "${do_pkgs}"] ; then
 cd ${pkg_dir}
 ssh $target 'rm -rf /var/opt/ncs/packages/*'
 for p in ncs-${pkg_vsn}-*.gz; do
 scp $p $target:/opt/ncs/packages/
 ssh $target "ln -s /opt/ncs/packages/$p /var/opt/ncs/packages/"
 done
 cd -
 fi
}

Perform the actual procedure

on_primary_cli 'request high-availability read-only mode true'
on_secondary_cli 'request high-availability read-only mode true'

Administration Guide
133

Upgrade
Package Upgrade

on_primary 'ncs-backup'
on_secondary 'ncs-backup'

on_primary_cli 'request high-availability disable'
on_secondary_cli 'request high-availability be-primary'
upgrade_nso $primary
upgrade_packages $primary
on_primary '/etc/init.d/ncs restart-with-package-reload'

on_secondary_cli 'request high-availability disable'
on_primary_cli 'request high-availability enable'
upgrade_nso $secondary
upgrade_packages $secondary
on_secondary '/etc/init.d/ncs restart-with-package-reload'

on_secondary_cli 'request high-availability enable'

Once the script completes, it is paramount that you manually verify the outcome. First, check that the HA
is enabled by using the show high-availability command on the CLI of each node. Then connect to the
designated secondaries and ensure they have the complete latest copy of the data, synchronized from the
primaries.

After the primary node is upgraded and restarted, the read-only mode is automatically disabled. This
allows the primary node to start processing writes, minimizing downtime. However, there is no HA.
Should the primary fail at this point or you need to revert to a pre-upgrade backup, the new writes would
be lost. To avoid this scenario, again enable read-only mode on the primary after re-enabling HA. Then
disable read-only mode only after successfully upgrading and reconnecting the secondary.

To further reduce time spent upgrading, you can customize the script to install the new NSO release and
copy packages beforehand. Then, you only need to switch the symbolic links and restart the NSO process
to use the new version.

You can use the same script for a maintenance upgrade as-is, with an empty
packages-MAJORVERSION directory, or remove the upgrade_packages calls from the script.

Example implementations that use scripts to upgrade a 2- and 3-node setup using CLI/MAAPI or
RESTCONF are available in the NSO example set under examples.ncs/development-guide/
high-availability.

We have been using a two node HCC layer 2 upgrade reference example elsewhere in the documentation
to demonstrate installing NSO and adding the initial configuration. The upgrade-l2 example referenced
in examples.ncs/development-guide/high-availability/hcc implements shell and
Python scripted steps to upgrade the NSO version using ssh to the Linux shell and the NSO CLI or Python
Requests RESTCONF for accessing the paris and london nodes. See the example for details.

If you do not wish to automate the upgrade process, you will need to follow the instructions from the
section called “Single Instance Upgrade” and transfer the required files to each host manually. Additional
information on HA is available in Chapter 7, High Availability. However, you can run the high-
availability actions from the preceding script on the NSO CLI as-is. In this case, please take special
care on which host you perform each command, as it can be easy to mix them up.

Package Upgrade
Package upgrades are frequent and routine in development but require the same care as NSO upgrades
in the production environment. The reason is that the new packages may contain an updated YANG
model, resulting in a data upgrade process similar to a version upgrade. So, if a package is removed or

Administration Guide
134

Upgrade
Package Upgrade

uninstalled and a replacement is not provided, package-specific data, such as service instance data, will
also be removed.

In a single-node environment, the procedure is straightforward. Create a backup with the ncs-backup
command and ensure the new package is compiled for the current NSO version and available under the /
opt/ncs/packages directory. Then either manually rearrange the symbolic links in the /var/opt/
ncs/packages directory or use the software packages install command in the NSO CLI. Finally,
invoke the packages reload command. For example:

ncs-backup
INFO Backup /var/opt/ncs/backups/ncs-5.7@2022-01-21T10:34:42.backup.gz created
successfully
ls /opt/ncs/packages
ncs-5.7-router-nc-1.0 ncs-5.7-router-nc-1.0.2
ncs_cli -C
admin@ncs# software packages install package router-nc-1.0.2 replace-existing
installed ncs-5.7-router-nc-1.0.2
admin@ncs# packages reload

>>> System upgrade is starting.
>>> Sessions in configure mode must exit to operational mode.
>>> No configuration changes can be performed until upgrade has completed.
>>> System upgrade has completed successfully.
reload-result {
 package router-nc-1.0.2
 result true
}

On the other hand, upgrading packages in an HA setup is an error-prone process. Thus, NSO provides an
action, packages ha sync and-reload, to minimize such complexity. This action loads new data models
into NSO instead of restarting the server process. As a result, it is considerably more efficient, and the time
difference to upgrade can be considerable if the amount of data in CDB is huge.

Note If the only change in the packages is addition of new NED packages, the and-add can replace and-
reload command for an even more optimized and less intrusive update. See the section called “Adding
NED Packages” for details.

The action executes on the primary node. First, it syncs the physical packages found in the load paths on
the primary node to the secondary nodes as tar archive files, regardless if the packages were initially added
as directories or tar archives. Then, it performs the upgrade on all nodes in one go. The action does not
perform the sync and the upgrade on the node with none role.

The packages ha sync action distributes new packages to the secondary nodes. If a package already exists
on the secondary node, it will replace it with the one on the primary node. Deleting a package on the
primary node will also delete it on the secondary node.

It is crucial to ensure that the load path configuration is identical on both primary and secondary nodes.
Otherwise, the distribution will not start, and the action output will contain detailed error information.

Using the and-reload parameter with the action starts the upgrade once packages are copied over. The
action sets the primary node to read-only mode. After the upgrade is successfully completed, the node is
set back to its previous mode.

If the parameter and-reload is also supplied with the wait-commit-queue-empty parameter, it
will wait for the commit queue to become empty on the primary node and prevent other queue items to be
added while the queue is being drained.

Administration Guide
135

Upgrade
Package Upgrade

Using the wait-commit-queue-empty parameter is the recommended approach, as it minimizes the
risk of upgrade failing due to commit queue items still relying on the old schema.

Example 16. Package Upgrade Procedure

primary@node1# software packages list
package {
 name dummy-1.0.tar.gz
 loaded
}
primary@node1# software packages fetch package-from-file \
$MY_PACKAGE_STORE/dummy-1.1.tar.gz
primary@node1# software packages install package dummy-1.1 replace-existing
primary@node1# packages ha sync and-reload { wait-commit-queue-empty }

The packages ha sync and-reload command has the following known limitations and side effects:

• The primary node is set to read-only mode before the upgrade starts, and it is set back to its
previous mode if the upgrade is successfully upgraded. However, the node will always be in read-
write mode if an error occurs during the upgrade. It is up to the user to set the node back to the desired
mode by using the high-availability read-only mode command.

• As a best practice, you should create a backup of all nodes before upgrading. This action creates no
backups, you must do that explicitly.

Example implementations that use scripts to upgrade a 2- and 3-node setup using CLI/MAAPI or
RESTCONF are available in the NSO example set under examples.ncs/development-guide/
high-availability.

We have been using a two-node HCC layer 2 upgrade reference example elsewhere in the documentation
to demonstrate installing NSO and adding the initial configuration. The upgrade-l2 example referenced
in examples.ncs/development-guide/high-availability/hcc implements shell
and Python scripted steps to upgrade the primary paris package versions and sync the packages to the
secondary london using ssh to the Linux shell and the NSO CLI or Python Requests RESTCONF for
accessing the paris and london nodes. See the example for details.

In some cases, NSO may warn when the upgrade looks "suspicious." For more information on this, please
see the section called “Loading Packages”. If you understand the implications and are willing to risk losing
data, use the force option with packages reload or set the NCS_RELOAD_PACKAGES environment
variable to force when restarting NSO. It will force NSO to ignore warnings and proceed with the
upgrade. In general, this is not recommended.

In addition, you must take special care of NED upgrades because services depend on them. For example,
since NSO 5 introduced the CDM feature, which allows loading multiple versions of a NED, a major NED
upgrade requires a procedure involving the migrate action.

When a NED contains nontrivial YANG model changes, that is called a major NED upgrade. The NED
ID changes, and the first or second number in the NED version changes since NEDs follow the same
versioning scheme as NSO. In this case, you cannot simply replace the package, as you would for a
maintenance or patch NED release. Instead, you must load (add) the new NED package alongside the old
one and perform the migration.

Migration uses the /ncs:devices/device/migrate action to change the ned-id of a single device
or a group of devices. It does not affect the actual network device, except possibly reading from it. So, the
migration does not have to be performed as part of the package upgrade procedure described above but can
be done later, during normal operations. The details are described in the section called “NED Migration”.
Once the migration is complete, you can remove the old NED by performing another package upgrade,

Administration Guide
136

Upgrade
Patch Management

where you “deinstall” the old NED package. It can be done straight after the migration or as part of the
next upgrade cycle.

Patch Management
NSO can install emergency patches during runtime. These are delivered in the form of .beam files. You
must copy the files into the /opt/ncs/current/lib/ncs/patches/ folder and load them with the
ncs-state patches load-modules command.

Administration Guide
137

Upgrade
Patch Management

Administration Guide
138

CHAPTER 11
Deployment Example

This chapter shows a series of examples in the typical order of deployment. A reference to the container-
based example for the HCC layer-2 upgrade deployment scenario described here can be found in the NSO
example set under examples.ncs/development-guide/high-availability/hcc. We will
be describing a typical deployment and cover the following topics:

• Installation of NSO on all hosts

• Initial configuration of NSO on all hosts

• Upgrade of NSO on all hosts

• Upgrade of NSO packages/NEDs on all hosts

• Monitoring the installation

• Metric - counters, gauges and rate of change gauges

• Troubleshooting, backups, and disaster recovery

• Security considerations

We will be using a high availability setup as an example deployment. See Chapter 7, High Availability,
for HA details. The deployment consists of two hosts, a paris node and a london node, managed by a
"manager" node. The paris and london nodes are an NSO HA pair.

Figure 17. The Deployment Network

Thus the two NSO hosts, paris and london, make up one HA pair, one primary and one secondary. We
will describe the HA setup in detail later in this chapter.

Administration Guide
139

Deployment Example
Initial NSO Installation

Optionally the services on the paris and london nodes can be split up into a layered cluster with resource
and customer-facing service (RFS and CFS) nodes when the amount of managed devices and instantiated
services increase beyond what can fit on a single on a single NSO host.

Avoid the complexity introduced by clustering if the expected number of managed devices and services
is less than 20k. Instead equip the NSO hosts with sufficient RAM. Installation, performance, bug search,
observation, and maintenance become harder with layered services clustering. See Chapter 1, LSA
Overview in Layered Service Architecture, for more information on the Layered Service Architecture
(LSA) design approach.

HA, on the other hand, is usually not optional for a deployment. Data resides in CDB, a RAM database
with a disk-based journal for persistence. One possibility to run NSO without the HA component could be
to use a fault-tolerant filesystem, such as CEPH. Provisioning data then survive a disk crash on the NSO
host, but failover would require manual intervention. As we shall see, the NSO built-in HA can be set up
not to require manual intervention.

In this chapter, we will describe a HA setup, and you will have to decide for your deployment whether HA
is needed.

• Initial NSO Installation, page 140

• Initial NSO Configuration, page 143

• Log Management, page 148

• Monitoring the Installation, page 150

• Metric - Counters, Gauges and Rate of Change Gauges, page 150

• Security Considerations, page 151

Initial NSO Installation
We will perform an NSO system installation on two NSO container nodes. To read more about the system
installation, see the section called “System Install Steps” in Getting Started.

In this container-based example, a Dockerfile enable us to easily install NSO on multiple hosts, here
containers. For installations on multiple physical or virtual machine hosts, nct can be a helpful tool. nct
is shipped together with NSO, documented by nct(1) in Manual Pages , and will not be described here.
Instead, we will use a shell script to setup our containers, a Dockerfile, and run the demo with a shell
script, and, as an alternative, a simple Python script that implements SSH and RESTCONF clients.

• We set up an admin user on the two NSO hosts with only sudo rights to run the ip command.

The operations towards the two hosts do not require root privileges. Only the Tail-f HCC server, when
setting Layer 2 VIP routes using the ip command, requires root privileges.

The SSH client uses a pre-shared key, while the RESTCONF client uses Token authentication.

NSO users authenticate through Linux PAM.

• For this example, we create two packages using ncs-make-package, dummy and inert. A third
package, Tail-f HCC, provides VIPs that point to the current HA primary node. The packages are
compressed into a tar.gz format for easier distribution but that is not a requirement.

Administration Guide
140

Deployment Example
Initial NSO Installation

Note While this deployment example uses containers, it is intended as a generic deployment guide. For details
on running NSO in a container, such as Docker, see the Chapter 13, Running NSO in Containers.

For this example, we use a minimal Debian Linux distribution for hosting NSO with the following added
Debian packages:

• NSO's basic dependency requirements are fulfilled by adding the Java Runtime Environment (JRE),
OpenSSH server, and make Debian packages.

• The setcap program from the libcap2-bin package is needed when installing NSO for a non-
root user.

• The OpenSSH server is used for shell access and secure copy to the NSO Linux host, which we
will use for NSO version upgrade purposes, while we use the NSO built-in SSH server for CLI and
NETCONF access to NSO.

• We add the Python Debian package for running our inert NSO service package.

• As no application runs Java, we do not need to install JDK or Ant. JRE is sufficient.

• To fulfill the Tail-f HCC server dependencies, we add the iproute2 utilities, awk, , arping, and
sudo Debian packages. See the section called “Dependencies” the HCC chapter for details on HCC
dependencies.

• We add the nano command/package and the arp command from the net-tools Debian package
for demo purposes.

We perform the steps in the list below as root. Docker will build container images, i.e., create the
installation, as root. This enables us to not even set up a password for user access or root access.

The admin user will only need root access for running the ip when Tail-f HCC adds the Layer 2 VIP
address to an interface on the primary node.

The initialization steps performed with root privileges for the paris and london nodes that make up the HA
group:

• The required services and authentication needs to be configured taking security requirements
into account. We are here using Linux PAM, which is recommended for authenticating users.
However, it is possible to store users in the NSO CDB database and use local authentication only or in
combination with PAM.

We create the ncsadmin and ncsoper Linux user groups, create and add the admin and oper Linux
users to their respective groups, and perform a system installation of NSO that runs NSO as the admin
user.

The admin user is granted access to running the ip from the vipctl script as root using the sudo
command required by the Tail-f HCC package.

The cmdwrapper NSO program gets access to run the scripts executed by the /generate_token
action for generating RESTCONF authentication tokens as the current NSO user.

For the read-only oper user, we set up password authentication for use with NSO only, intended for
WebUI access.

SSH key and token authentication are used for NSO CLI, NETCONF, and RESTCONF
authentication.

Password authentication will still be denied for all users to the Linux SSH shell, while the oper user is
denied access to the Linux shell altogether.

Administration Guide
141

Deployment Example
Initial NSO Installation

The root user is not authorized to access anything through the NSO northbound interfaces, only
through the Linux shell.

• The NSO installer, HCC package, application YANG models, scripts for generating and
authenticating RESTCONF tokens, Makefile, and a script for running the demo are all copied to the
paris and london containers.

admin user permissions are set for the NSO directories + files created by the system install, for the
root, admin, and oper home directories, and for the application files.

• The configuration for encrypted strings is generated during installation. The keys are stored in the file
/etc/ncs/ncs.crypto_keys and should be copied from one of the hosts to the other host(s) in
the HA group.

This is done by default as we use Docker containers where the NSO installation is cached and shared
by the paris and london container nodes. In YANG parlance, this is all YANG data modeled with
the types tailf:des3-cbc-encrypted-string, tailf:aes-cfb-128-encrypted-
string or tailf:aes-256-cfb-128-encrypted-string.

Note The ncs.crypto_keys file is highly sensitive. The file contains the encryption keys for all
CDB data that is encrypted on disk. This often include passwords for various entities, such as login
credentials to managed devices.

• The token used with the built-in high availability is generated and distributed from the paris node to
the other HA group nodes, i.e., the london, so it matches between the nodes.

Note In an NSO system install setup, not only the shared token needs to match between the HA group
nodes, the configuration for encrypted-strings, default stored in /etc/ncs/ncs.crypto_keys, need to
match between the nodes in the HA group too.

The token configured on the secondary node is overwritten with the encrypted token of type
aes-256-cfb-128-encrypted-string from the primary node when the secondary node
connects to the primary. If there is a mismatch between the encrypted-string configuration on the
nodes, NSO will not decrypt the HA token to match the token presented. As a result, the primary node
denies the secondary node access the next time the HA connection needs to reestablish with a "Token
mismatch, secondary is not allowed" error.

• The SSH servers are configured to allow only SSH public key authentication (no password). The
oper user can use password authentication with the WebUI, but has read-only NSO access, except for
executing the generate-token RPC action for RESTCONF authentication use.

The oper user cannot access the Linux shell, while the root user has zero authorization with NSO.

The admin user can access both the Linux shell and NSO CLI using public key authentication.

New keys for all users are distributed to the HA group nodes and the manager node when the HA
group is initialized.

The OpenSSH server and the NSO built-in SSH server use the same private and public key pairs
located under ~/.ssh/id_ed25519, while the manager public key is stored in the ~/.ssh/
authorized_keys file for both servers.

• Host keys are generated and shared between the NSO built-in SSH and OpenSSH servers for
authenticating the server to the client as we want to avoid using the host keys that come with NSO,
and in this case, the container build where keys are stored in the build cache.

Administration Guide
142

Deployment Example
Initial NSO Configuration

The HA group nodes share SSH host keys under /etc/ssh/ssh_host_ed25519_key so
that the SSH client(s), here the manager, do not need to keep track of which node the VIP address
currently points to.

The host keys, just like the keys used for client authentication, are generated each time the HA group
nodes are initialized. The host keys are distributed to the manager and nodes in the HA group before
the NSO built-in SSH and OpenSSH servers are started on the nodes.

• As we run NSO in containers, we have set the environment variables pointing to the system install
directories in the Dockerfile.

The environment variables have been copied to a .pam_environment file for the root and admin
users to set the required environment variables when those users log in via SSH. We, therefore, use
the ncs command to start NSO and do not use the /etc/init.d/ncs and /etc/profile.d
scripts.

As part of the NSO system install, the Debian/Ubuntu start script was installed, and can be
customized if we would like to use it to start NSO. The available NSO ncs script variants are can be
found under /opt/ncs/current/src/ncs/package-skeletons/etc. Perhaps the scripts
provide what you need, can be used as a starting point, or will, as for this demo, only be used for
stopping NSO.

• The OpenSSH sshd daemon is started before we are done with the initialization part in root context.

Initial NSO Configuration
To complete the initialization on the paris and london nodes before the manager takes over, running as the
admin user:

• The initial NSO configuration, ncs.conf, needs to be updated and in sync (identical) on the nodes.

• The initial AAA configuration needs to be updated and in sync (identical) on the nodes.

• The initial built-in HA and VIP configuration needs to be updated and in sync (identical) on the
nodes.

• Global settings may need to be updated.

• Packages are installed.

• We set the NSO smart licensing token.

The ncs.conf Configuration
• The NSO IPC port is configured in ncs.conf to only listen to localhost 127.0.0.1 connections

which is the default setting.

By default, the clients connecting to the NSO IPC port are considered trusted, i.e., no authentication
is required, and we rely on the use of 127.0.0.1 with the /ncs-config/ncs-ipc-address/ IP
address in ncs.conf to prevent remote access. See the section called “Security Considerations” for
more details.

• We edit the default ncs.conf under /ncs-config/aaa/pam to enable PAM to authenticate
users as recommended. All remote access to NSO must now be done using host privileges.

Depending on your Linux distro, you may have to change /ncs-config/aaa/pam/service.
The default value is common-auth. Check the file /etc/pam.d/common-auth and make sure
it fits your needs.

Alternatively, or as a complement to the PAM authentication, it is possible to store users in the NSO
CDB database or externally authenticated. See the section called “Authentication” for details.

Administration Guide
143

Deployment Example
The ncs.conf Configuration

• We enable RESTCONF token authentication under /ncs-config/aaa/external-
validation to use a token_auth.sh script that we uploaded earlier together with a
generate_token.sh script.

The scripts allow users to generate a token for RESTCONF authentication through, for example, the
NSO CLI and NETCONF interfaces that use SSH authentication or the Web interface.

The token provided to the user is added to a simple YANG list of tokens where the list key is the
username.

The token list is stored in the NSO CDB operational data store and is only accessible from the node's
local MAAPI and CDB APIs.

See upgrade-l2/app/yang/token.yang in the reference demo example.

• The NSO web server HTTPS interface is enabled under /ncs-config/webui.

Note The SSL certificates that get generated by NSO are self-signed.

 $ openssl x509 -in /etc/ncs/ssl/cert/host.cert -text -noout
 Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number: 2 (0x2)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, O=Internet Widgits Pty Ltd, CN=John Smith
 Validity
 Not Before: Dec 18 11:17:50 2015 GMT
 Not After : Dec 15 11:17:50 2025 GMT
 Subject: C=US, ST=California, O=Internet Widgits Pty Ltd
 Subject Public Key Info:

Thus, if this is a production environment, and the JSON-RPC and RESTCONF interfaces using the
web server are used not solely for internal purposes, the self-signed certificate must be replaced
with a properly signed certificate. See ncs.conf(5) in Manual Pages under /ncs-config/
webui/transport/ssl/cert-file and /ncs-config/restconf/transport/ssl/
certFile for more details.

Disable /ncs-config/webui/cgi unless needed.

• We enable the NSO SSH CLI login under /ncs-config/cli/ssh/enabled.

The NSO CLI style is set to C-style, the CLI prompt is modified to include the host name under /
ncs-config/cli/prompt. See ncs.conf(5) in Manual Pages for details.

 <prompt1>\u@nso-\H> </prompt1>
 <prompt2>\u@nso-\H% </prompt2>

 <c-prompt1>\u@nso-\H# </c-prompt1>
 <c-prompt2>\u@nso-\H(\m)# </c-prompt2>

• The NSO HA is enabled under /ncs-config/ha/enabled.

Depending on your provisioning applications, you may want to turn /ncs-config/rollback/
enabled off.

Rollbacks do not work that well with reactive-fastmap applications. If your application is a classical
NSO provisioning, the recommendation is to enable rollbacks. Otherwise not. See ncs.conf(5) in
Manual Pages for details

Administration Guide
144

Deployment Example
The aaa_init.xml Configuration

The aaa_init.xml Configuration
Set up AAA using aaa_init.xml. As we saw in the previous sections, in addition to the Linux root
user, we created the admin and oper users and the ncsadmin and ncsoper Linux user groups.

We enabled NSO to have PAM authenticate the users using pre-shared SSH keys without a passphrase for
NSO CLI and NETCONF login, added password authentication for the oper user intended for NSO WebUI
login, and token authentication for RESTCONF login.

The default AAA initialization file shipped with NSO resides under /var/opt/ncs/cdb/
aaa_init.xml. If we are not happy with that, this is a good point in time to modify the initialization
data for AAA.

The NSO daemon is still not running, and we have no existing CDB files. The default AAA configuration
in the aaa_init.xml is restrictive and ok, so that we will keep it for this demo with only a minor
modification.

Reviewing the aaa_init.xml file, we see that two groups are referred to in the NACM rule list, the
ncsadmin and ncsoper groups that we created Linux user groups for in a previous section.

The NSO authorization system is group based; thus, for the rules to apply to a specific user, the user must
be a member of the group to which the restrictions apply. PAM performs the authentication, while the
NSO NACM rules do authorization.

• By adding the admin user to the ncsadmin group and the oper user to the limited ncsoper group will
ensure that the two users get properly authorized with NSO.

• By not adding the root user to any group results in zero access as no NACM rule will match, and the
default is to deny access.

• The one addition we make is to allow the oper user to execute the generate-token RPC for
RESTCONF authentication using the token instead of basic user password authentication.

The recommended practice for clients that need to store passwords for authentication, here the
manager station node, is to store them in a read-only file.

 <rule-list>
 <name>oper</name>
 <group>ncsoper</group>
 <rule>
 <name>generate-token</name>
 <rpc-name>generate-token</rpc-name>
 <action>permit</action>
 </rule>
 ...

The NSO NACM functionality is based on the Network Configuration Access Control Model IETF RFC
8341 with NSO extensions augmented by tailf-acm.yang. See Chapter 9, The AAA infrastructure, for
more details.

Henceforth we will log into the different NSO hosts using the Linux user login credentials. This scheme
has many advantages, mainly because all audit logs on the NSO hosts will show who did what and when.
Therefore, the common bad practice of having a shared admin Linux user and NSO local user with a
shared password is not recommended.

The High-Availability and VIP Configuration
This example sets up one HA pair, where we are using the built-in HA and the HCC package to manage
virtual IP addresses. See the the section called “NSO built-in HA” and the section called “Tail-f HCC
Package” for details.

Administration Guide
145

https://datatracker.ietf.org/doc/html/rfc8341

Deployment Example
The High-Availability and VIP Configuration

Next, we will show a simple standard configuration of the built-in HA and HCC package and focus on
issues when managing and upgrading an HA cluster.

The built-in HA and HCC packages provide us with three features:

• All CDB data becomes replicated from the primary to the secondary node.

• If the primary fails, the secondary takes over and starts to act as primary. I.e., the NSO built-in HA is
configured to handle failover automatically.

• At failover, tailf-hcc sets up a virtual alias IP address on the primary node only and uses gratuitous
ARP packets to update all nodes in the network with the new mapping to the primary node.

Nodes in other networks can be updated using the HCC layer-3 BGP functionality or a load
balancer. See the NSO example set under examples.ncs/development-guide/high-
availability/hcc for a reference to upgrading an HCC layer 2 enabled system.

Following the built-in HA documentation, we have the same HA configuration on the paris and london
nodes.

We add the HA and HCC configuration to a ha_init.xml file loaded by NSO from the CDB directory
when NSO is started.

We use the token that was shared between the HA group nodes earlier.

<config xmlns="http://tail-f.com/ns/config/1.0">
 <high-availability xmlns="http://tail-f.com/ns/ncs">
 <token>SHARED SECRET TOKEN HERE</token>
 <ha-node>
 <id>paris</id>
 <address>192.168.23.99</address>
 <nominal-role>primary</nominal-role>
 </ha-node>
 <ha-node>
 <id>london</id>
 <address>192.168.23.98</address>
 <nominal-role>secondary</nominal-role>
 <failover-primary>true</failover-primary>
 </ha-node>
 <settings>
 <start-up>
 <assume-nominal-role>true</assume-nominal-role>
 <join-ha>true</join-ha>
 </start-up>
 <enable-failover>true</enable-failover>
 <reconnect-interval>5</reconnect-interval>
 <reconnect-attempts>3</reconnect-attempts>
 </settings>
 </high-availability>
 <hcc xmlns="http://cisco.com/pkg/tailf-hcc">
 <enabled>true</enabled>
 <vip-address>192.168.23.122</vip-address>
 </hcc>
</config>

The paris node is given the primary role while the london node initializes to a secondary role.

Automatic failover from a primary node failure is enabled. We must take action for secondary node
failures as the primary node will assume the none role when the secondary node connection is lost.

NSO generates ha-primary-down and ha-secondary-down alarms to allow the application to detect and
take action. For example, if the link to the secondary node is lost and the primary node assumes the role

Administration Guide
146

Deployment Example
Global Settings and Timeouts

none, we can set the node back to primary and have the secondary node to reconnect once the issue is
resolved.

The Tail-f HCC package is enabled with a VIP address and uses Layer 2 functionality. HCC always sets
the VIP address on the primary node's matching interface and broadcasts a gratuitous ARP to announce the
VIP to MAC mapping to the entire network. Here the manager node is located on the same network as the
paris and london nodes.

After NSO started on both nodes and the initial configuration loaded, the last piece of the HA puzzle
enables the node's built-in HA. To do so, we can, for example, execute the C-style CLI command high-
availability enable on the two service nodes. Or, as we have each node do in this example, over MAAPI
using the ncs_cmd tool

$ ncs_cmd -u admin -g ncsadmin -o -c 'maction "/high-availability/enable"'

Global Settings and Timeouts
Depending on your installation, e.g., the size and speed of the managed devices and the characteristics of
your service applications, some default values of NSO may have to be tweaked. In particular, some of the
timeouts.

• Device timeouts. NSO has connect, read, and write timeouts for traffic between NSO and the
managed devices. The default value is 20 seconds for all. Some devices/nodes are slow to commit,
while some are sometimes slow to deliver their full configuration. Adjust timeouts under /
devices/global-settings accordingly.

• Service code timeouts. Some service applications can sometimes be slow. Adjusting the /services/
global-settings/service-callback-timeout configuration might be applicable depending on the
applications. However, best practice is to change the timeout per service from the service code using
the Java ServiceContext.setTimeout method or the Python data_set_timeout method.

There are quite a few different global settings for NSO. The two mentioned above usually need to be
changed.

Initial Package Setup
• Next, we need to add the application packages. We generate the demo applications and RESTCONF

authentication packages for this demo on both nodes.

While we usually copy the application packages to the NSO hosts, we here, for demo purposes,
generate the dummy 1.0 + 1.1, inert 1.0, and token 1.0 packages from the YANG models and
scripts we copied earlier to the paris and london nodes.

The application packages are added to the local package-store directory on both nodes before we
initially copy the ones we use to the ${NCS_RUN_DIR}/packages directory.

admin@paris:/app/package-store$ ncs-make-package --service-skeleton template \
--dest token-1.0 --no-test --root-container tokens token
admin@paris:/app/package-store$ cp ../yang/token.yang \
token-1.0/src/yang/token.yang
admin@paris:/app/package-store$ make -C token-1.0/src clean all
admin@paris:/app/package-store$ tar cvfz token-1.0.tar.gz token-1.0
...

We now start NSO on both nodes from the admin user and run the /high-availability/enable action to
enable the HA group nodes with their nominal roles where paris is primary and london secondary.

admin@paris:/app/package-store$ ncs --cd ${NCS_RUN_DIR} \

Administration Guide
147

Deployment Example
Cisco Smart Licensing

--heart -c ${NCS_CONFIG_DIR}/ncs.conf
admin@paris:/app/package-store$ ncs_cmd -u admin -g ncsadmin -o \
-c 'maction "/high-availability/enable"'
admin@london:/app/package-store$ ncs --cd ${NCS_RUN_DIR} --heart \
-c ${NCS_CONFIG_DIR}/ncs.conf
admin@london:/app/package-store$ ncs_cmd -u admin -g ncsadmin -o \
-c 'maction "/high-availability/enable"'

Note When installing new packages in run-time, after starting NSO, we can use the software packages
commands.

For example, if we, instead of copying the token-1.0 package above to the ${NCS_RUN_DIR}/
packages directory before starting NSO, installed the token-1.0 package after starting NSO using
the NSO CLI:

admin@nso-paris# software packages fetch package-from-file \
/path/to/package-store/token-1.0.tar.gz
admin@nso-paris# software packages install package token-1.0
admin@nso-paris# software packages list
package {
 name token-1.0.tar.gz
 loaded
}
...

• The packages that are actually running will reside under /var/opt/ncs/state/packages-
in-use.cur

Cisco Smart Licensing
NSO uses Cisco Smart Licensing, described in detail in Chapter 3, Cisco Smart Licensing. After we have
registered your NSO instance(s), and received a token, by following step 1-6 as described in the Create a
License Registration Token section of Chapter 3, Cisco Smart Licensing, we need to enter a token from
our Cisco Smart Software Manager account on each host. We can use the same token for all instances and
script entering the token as part of the initial NSO configuration or from the management station:

admin@nso-paris# license smart register idtoken YzY2Yj...
admin@nso-london# license smart register idtoken YzY2Yj...

Note The Cisco Smart Licensing CLI command is present only in the Cisco Style CLI, which is the default CLI
for this setup.

Verifying the Initial NSO Configuration
For ways to verify the initial configuration using the NSO CLI or RESTCONF interfaces, as mentioned
earlier in this chapter, a reference to the container-based example for the layer-2 upgrade deployment
scenario described here can be found in the NSO example set under examples.ncs/development-
guide/high-availability/hcc.

Log Management
You already covered some of the logging settings that can be set in ncs.conf. All ncs.conf settings are
described in the man page for ncs.conf.

Administration Guide
148

Deployment Example
Log Rotate

 $ man ncs.conf

Log Rotate
The NSO system install that you have performed on your two hosts also installs good defaults for
logrotate. Inspect /etc/logrotate.d/ncs and ensure that the settings are what you want. Note: The
NSO error logs, i.e., the files /var/log/ncs/ncserr.log* are internally rotated by NSO and MUST
not be rotated by logrotate.

Syslog
The upgrade-l2 example, see reference from examples.ncs/development-guide/high-
availability/hcc, integrates with rsyslog to log the ncs, developer, audit, netconf, snmp, and webui-
access logs to syslog with facility set to daemon in ncs.conf. rsyslogd on the london and paris nodes
is configured to write the daemon facility logs to /var/log/daemon.log, and forward the daemon
facility logs with severity info or higher to the manager node's /var/log/daemon.log syslog.

NED Logs
NED logs are a crucial tool for debugging NSO installations. These logs are very verbose and are for
debugging only. Do not have these logs enabled in production.

Note that everything, including potentially sensitive data, is logged. No filtering is done. The NED trace
logs are controlled through the CLI under: /device/global-settings/trace. It's also possible to
control the NED trace on a per device basis under /devices/device[name='x']/trace.

There are three different settings for trace output. For various historical reasons, the setting that makes the
most sense depends on the device type.

• For all CLI NEDs, you want to use the raw setting.

• For all ConfD-based NETCONF devices, you want to use the pretty setting. This is because ConfD
sends the NETCONF XML unformatted, pretty means that you get the XML formatted.

• For Juniper devices, you want to use the raw setting. Juniper sometimes sends broken XML that
cannot be formatted appropriately. However their XML payload is already indented and formatted.

• For generic NED devices - depending on the level of trace support in the NED itself, you want either
pretty or raw.

• For SNMP-based devices, you want the pretty setting.

Thus, it is usually not good enough to control the NED trace from /devices/global-settings/
trace.

Python Logs
While there is a global log for, for example, compilation errors in /var/log/ncs/ncs-python-
vm.log, logs from user application packages are written to separate files for each package, and the log
file naming is ncs-python-vm-pkg_name.log /var/log/ncs/ncs-java-vm.log. The level of
logging from Python code is controlled per Python package basis. See the section called “Debugging of
Python packages” in Development Guide for more details.

Java Logs
User application Java logs are written to /var/log/ncs/ncs-java-vm.log. The level of logging
from Java code is controlled per Java package. See the section called “Logging” in Development Guide for
more details.

Administration Guide
149

Deployment Example
Internal NSO Log

Internal NSO Log
The internal NSO log resides at /var/log/ncs/ncserr.*. The log is written in a binary format. To
view the internal error log, run the following command:

 $ ncs --printlog /var/log/ncs/ncserr.log.1

Monitoring the Installation
All large-scale deployments employ monitoring systems. There are plenty of good tools to choose from,
open source and commercial. All good monitoring tools can script (using various protocols) what should
be monitored. Using the NSO RESTCONF interface is ideal for this. It is also recommended to set up
a special read-only Linux user without shell access for this, like the oper user we set up earlier in this
chapter. The nct check command can be used as a reference on what should be monitored. See nct-
check(1) in Manual Pages for details.

Alarms
The RESTCONF can be used to view the NSO alarm table and subscribe to alarm notifications. NSO
alarms are not events. Whenever an NSO alarm is created, a RESTCONF and SNMP trap is also sent,
assuming that you have a RESTCONF client registered with the alarm stream or configured a proper
SNMP target. Some alarms, like the ha-secondary-down, require operator invention. Thus, a monitoring
tool should also GET the NSO alarm list.

$ curl -ik -H "X-Auth-Token: TsZTNwJZoYWBYhOPuOaMC6l41CyX1+oDaasYqQZqqok=" \
https://paris:8888/restconf/data/tailf-ncs-alarms:alarms

Or subscribe to the ncs-alarms RESTCONF Notification stream.

Metric - Counters, Gauges and Rate of Change Gauges
NSO metric has different contexts all containing different counters, gauges and rate of changes gauges.
There is a sysadmin, a developer and a debug context. Note that only the sysadmin context is enabled by
default, as it is designed to be lightweight. Consult the YANG module tailf-ncs-metric.yang to
learn the details of the different contexts.

Counters
You may read counters by e.g. CLI, as in this example

admin@ncs> show metric sysadmin counter session cli-total
metric sysadmin counter session cli-total 1

Gauges
You may read gauges by e.g. CLI, as in this example

admin@ncs> show metric sysadmin gauge session cli-open
metric sysadmin gauge session cli-open 1

Rate of change gauges
You may read rate of change gauges by e.g. CLI, as in this example

admin@ncs> show metric sysadmin gauge-rate session cli-open
NAME RATE

Administration Guide
150

Deployment Example
Security Considerations

1m 0.0
5m 0.2
15m 0.066

Security Considerations
The AAA setup described so far in this deployment document is the recommended AAA setup. To
reiterate:

• Have all users that need access to NSO authenticated through Linux PAM. This may then be through
/etc/passwd. Avoid storing users in CDB.

• Given the default NACM authorization rules, you should have three different types of users on the
system.

• Users with shell access are members of the ncsadmin Linux group and are considered fully
trusted. This is because they have full access to the system.

• Users without shell access that are members of the ncsadmin Linux group have full access
to the network. They have access to the NSO SSH shell and can execute some RESTCONF
calls etc. However, they cannot manipulate backups and perform system upgrades. If you have
provisioning systems north of NSO, it is recommended to assign a user of this type for those
operations.

• Users without shell access that are members of ncsoper Linux group have read-only access to the
network. They can access the NSO SSH shell, execute arbitrary RESTCONF calls etc. However,
they cannot manipulate backups and perform system upgrades.

If you have more fine-grained authorization requirements than read-write and read-only, additional Linux
groups can be created, and the NACM rules can be updated accordingly. See the section called “The
aaa_init.xml Configuration” from earlier in this chapter on how the reference example implements
users, groups, and NACM rules to achieve the above.

For a detailed discussion of the configuration of authorization rules through NACM, see Chapter 9, The
AAA infrastructure, particularly the section called “Authorization”.

A considerably more complex scenario is when users require shell access to the host but are either
untrusted or should not have any access to NSO at all. NSO listens to a so-called IPC port, configured
through /ncs-config/ncs-ipc-address. For security, this port is typically limited to local
connections and defaults to 127.0.0.1:4569. The purpose of the port is to multiplex several different access
methods to NSO.

The main security related point to make here is that no AAA checks at all are done on this port. If you have
access to the port, you also have complete access to all of NSO.

To drive this point home, when you invoke the ncs_cli command, a small C program that connects to the
port and tells NSO who you are, NSO assumes that authentication is already performed. There is even a
documented flag --noaaa, which tells NSO to skip all NACM rule checks for this session.

You must protect the port to prevent untrusted Linux shell users from accessing the NSO instance using
this method. This is done by using a file in the Linux file system. The file /etc/ncs/ipc_access gets
created and populated with random data at install time. Enable /ncs-config/ncs-ipc-access-
check/enabled in ncs.conf and ensure that trusted users can read the /etc/ncs/ipc_access file
for example by changing group access to the file.

 $ cat /etc/ncs/ipc_access
 cat: /etc/ncs/ipc_access: Permission denied
 $ sudo chown root:ncsadmin /etc/ncs/ipc_access

Administration Guide
151

Deployment Example
Security Considerations

 $ sudo chmod g+r /etc/ncs/ipc_access
 $ ls -lat /etc/ncs/ipc_access
 $ cat /etc/ncs/ipc_access

Administration Guide
152

CHAPTER 12
Administration

• User Management, page 153

• Packages, page 154

• Configuring NSO, page 157

• Monitoring NSO, page 157

• Backup and Restore, page 157

User Management
Users are configured at the path aaa authentication users

admin@ncs(config)# show full-configuration aaa authentication users user
aaa authentication users user admin
 uid 1000
 gid 1000
 password 1GNwimSPV$E82za8AaDxukAi8Ya8eSR.
 ssh_keydir /var/ncs/homes/admin/.ssh
 homedir /var/ncs/homes/admin
!
aaa authentication users user oper
 uid 1000
 gid 1000
 password 1yOstEhXy$nYKOQgslCPyv9metoQALA.
 ssh_keydir /var/ncs/homes/oper/.ssh
 homedir /var/ncs/homes/oper
!...

Access control, including group memberships, is managed using the NACM model (RFC 6536).

admin@ncs(config)# show full-configuration nacm
nacm write-default permit
nacm groups group admin
 user-name [admin private]
!
nacm groups group oper
 user-name [oper public]
!
nacm rule-list admin
 group [admin]
 rule any-access
 action permit
 !

Administration Guide
153

Administration
Packages

!
nacm rule-list any-group
 group [*]
 rule tailf-aaa-authentication
 module-name tailf-aaa
 path /aaa/authentication/users/user[name='$USER']
 access-operations read,update
 action permit
 !

So, adding a user includes the following steps:

Step 1 Create the user: admin@ncs(config)# aaa authentication users user <user-name>

Step 2 Add the user to a NACM group: admin@ncs(config)# nacm groups <group-name> admin user-name <user-
name>

Step 3 Verify/change access rules.

It is likely that the new user also needs access to work with device configuration. The mapping from NSO
users and corresponding device authentication is configured in authgroups.

admin@ncs(config)# show full-configuration devices authgroups
devices authgroups group default
 umap admin
 remote-name admin
 remote-password 4wIo7Yd068FRwhYYI0d4IDw==
 !
 umap oper
 remote-name oper
 remote-password 4zp4zerM68FRwhYYI0d4IDw==
 !
!

So the user needs to be added here as well. If the last step is forgotten you will see the following error:

jim@ncs(config)# devices device c0 config ios:snmp-server community fee
jim@ncs(config-config)# commit
Aborted: Resource authgroup for jim doesn't exist

Packages
NSO Packages contain data-models and code for a specific function. It might be a NED for a specific
device, a service application like MPLS VPN, a WebUI customization package etc. Packages can be
added, removed and upgrade in run-time. A common task is to add a package to NSO in order to support a
new device-type, or upgrade an existing package when the device is upgraded.

(We assume you have the example up and running from previous section). Current installed packages can
be viewed with the following command:

admin@ncs# show packages
packages package cisco-ios
 package-version 3.0
 description "NED package for Cisco IOS"
 ncs-min-version [3.0.2]
 directory ./state/packages-in-use/1/cisco-ios
 component upgrade-ned-id
 upgrade java-class-name com.tailf.packages.ned.ios.UpgradeNedId

Administration Guide
154

Administration
Adding and upgrading a package

 component cisco-ios
 ned cli ned-id cisco-ios
 ned cli java-class-name com.tailf.packages.ned.ios.IOSNedCli
 ned device vendor Cisco
NAME VALUE

show-tag interface

 oper-status up

So the above command shows that NSO currently have one package, the NED for Cisco IOS.

NSO reads global configuration parameters from ncs.conf. More on NSO configuration later in this
guide. By default it tells NSO to look for packages in a packages directory where NSO was started. So
in this specific example:

$ pwd
.../examples.ncs/getting-started/using-ncs/1-simulated-cisco-ios
$ ls packages/
cisco-ios
$ ls packages/cisco-ios
doc
load-dir
netsim
package-meta-data.xml
private-jar
shared-jar
src

As seen above a package is a defined file structure with data-models, code and documentation. NSO comes
with a couple of ready-made packages: $NCS_DIR/packages/. Also there is a library of packages
available from Tail-f especially for supporting specific devices.

Adding and upgrading a package
Assume you would like to add support for Nexus devices into the example. Nexus devices have different
data-models and another CLI flavor. There is a package for that in $NCS_DIR/packages/neds/
nexus.

We can keep NSO running all the time, but we will stop the network simulator to add the nexus devices to
the simulator.

$ ncs-netsim stop

Add the nexus package to the NSO runtime directory by creating a symbolic link:

$ cd $NCS_DIR/examples.ncs/getting-started/using-ncs/1-simulated-cisco-ios/packages
$ ln -s $NCS_DIR/packages/neds/cisco-nx
$ ls -l
... cisco-nx -> .../packages/neds/cisco-nx

The package is now in place, but until we tell NSO for look for package changes nothing happens:

 admin@ncs# show packages packages package
 cisco-ios ... admin@ncs# packages reload

>>> System upgrade is starting.
>>> Sessions in configure mode must exit to operational mode.
>>> No configuration changes can be performed until upgrade has
completed.

Administration Guide
155

Administration
Simulating the new device

>>> System upgrade has completed successfully.
reload-result {
 package cisco-ios
 result true
}
reload-result {
 package cisco-nx
 result true
}

So after the packages reload operation NSO also knows about nexus devices. The reload operation also
takes any changes to existing packages into account. The datastore is automatically upgraded to cater for
any changes like added attributes to existing configuration data.

Simulating the new device
$ ncs-netsim add-to-network cisco-nx 2 n
$ ncs-netsim list
ncs-netsim list for /Users/stefan/work/ncs-3.2.1/examples.ncs/getting-started/using-ncs/1-simulated-cisco-ios/netsim

name=c0 ...
name=c1 ...
name=c2 ...
name=n0 ...
name=n1 ...

$ ncs-netsim start
DEVICE c0 OK STARTED
DEVICE c1 OK STARTED
DEVICE c2 OK STARTED
DEVICE n0 OK STARTED
DEVICE n1 OK STARTED
$ ncs-netsim cli-c n0
n0#show running-config
no feature ssh
no feature telnet
fex 101
 pinning max-links 1
!
fex 102
 pinning max-links 1
!
nexus:vlan 1
!
...

Adding the new devices to NSO
We can now add these Nexus devices to NSO according to the below sequence:

admin@ncs(config)# devices device n0 device-type cli ned-id cisco-nx
admin@ncs(config-device-n0)# port 10025
admin@ncs(config-device-n0)# address 127.0.0.1
admin@ncs(config-device-n0)# authgroup default
admin@ncs(config-device-n0)# state admin-state unlocked
admin@ncs(config-device-n0)# commit
admin@ncs(config-device-n0)# top
admin@ncs(config)# devices device n0 sync-from
result true

Administration Guide
156

Administration
Configuring NSO

Configuring NSO
ncs.conf

The configuration file ncs.conf is read at startup and can be reloaded. Below follows an example with
the most common settings. It is included here as an example and should be self-explanatory. See man
ncs.conf for more information. Important configuration settings:

• load-path: where NSO should look for compiled YANG files, such as data-models for NEDs or
Services.

• db-dir: the directory on disk which CDB use for its storage and any temporary files being used. It is
also the directory where CDB searches for initialization files. This should be local disc and not NFS
mounted for performance reasons.

• Various log settings

• AAA configuration

• Rollback file directory and history length.

• Enabling north-bound interfaces like REST, WebUI

• Enabling of High-Availability mode

Run-time configuration
There are also configuration parameters that are more related to how NSO behaves when talking to the
devices. These resides in devices global-settings.

admin@ncs(config)# devices global-settings
Possible completions:
 backlog-auto-run Auto-run the backlog at successful connection
 backlog-enabled Backlog requests to non-responding devices
 commit-queue
 commit-retries Retry commits on transient errors
 connect-timeout Timeout in seconds for new connections
 ned-settings Control which device capabilities NCS uses
 out-of-sync-commit-behaviour Specifies the behaviour of a commit operation involving a device that is out of sync with NCS.
 read-timeout Timeout in seconds used when reading data
 report-multiple-errors By default, when the NCS device manager commits data southbound and when there are errors, we only
 report the first error to the operator, this flag makes NCS report all errors reported by managed
 devices
 trace Trace the southbound communication to devices
 trace-dir The directory where trace files are stored
 write-timeout Timeout in seconds used when writing
 data

Monitoring NSO
Use the command ncs --status to get runtime information on NSO.

Backup and Restore
All parts of the NSO installation, can be backed up and restored with standard file system backup
procedures.

The most convenient way to do backup and restore is to use the ncs-backup command. In that case the
following procedure is used.

Administration Guide
157

Administration
Backup

Backup
NSO Backup backs up the database (CDB) files, state files, config files and rollback files from the
installation directory.

• To take a complete backup (for disaster recovery), use

ncs-backup

The backup will be stored in Run Directory /var/opt/ncs/backups/ncs-
VERSION@DATETIME.backup

For more information on backup, refer to ncs-backup(1) in Manual Pages .

NSO Restore
NSO Restore is performed if you would like to switch back to a previous good state or restore a backup.

Note It is always advisable to stop NSO before performing Restore.

• First stop NSO if NSO is not stopped yet.

/etc/init.d/ncs stop

Then take the backup

ncs-backup --restore

Select the backup to be restored from the available list of backups. The configuration and database
with run-time state files are restored in /etc/ncs and /var/opt/ncs.

• Start NSO.

/etc/init.d/ncs start

Administration Guide
158

CHAPTER 13
Running NSO in Containers

• Introduction, page 159

• Getting Started, page 159

• Administration, page 161

Introduction
NSO can be deployed to run in your production environment using a container, such as Docker. Cisco
offers a pre-built, Red Hat UBI-based NSO image that you can readily use without needing to build the
image environment. The Red Hat UBI is an Open Container Initiative (OCI)-compliant image that is freely
distributable and independent of platform and technical dependencies.

Note This guide uses Docker as an example to use the NSO image, but you may choose another container
runtime.

Running NSO in a container offers a number of benefits that you would generally expect from a
containerized approach, such as ease of use and convenient distribution.

More specifically, a containerized NSO approach allows you to:

• Run a container image of a specific version of NSO and your packages which can then be distributed
as one unit.

• Deploy and distribute the same version across your production environment.

Getting Started
The Red Hat UBI-based NSO image is a pre-built production-ready image based on NSO System Install
in Getting Started that you can run according to your deployment needs. Use the pre-built image as the
base image in the container file (e.g., Dockerfile) and mount your own packages on top, such as NEDs and
service packages, to run a final image for your production environment.

Consult the Installation guide in Getting Started for information concerning installing NSO on a Docker
host, building NSO packages, and more.

System Requirements
To run the image, make sure that your system meets the following requirements:

Administration Guide
159

https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://opencontainers.org/faq/

Running NSO in Containers
Running the Image

• An x86_64 system running Linux (recommended) or macOS.

• A container platform. Docker is the recommended platform for running NSO.

Note Docker on Mac uses a Linux VM to run the Docker engine, which is compatible with the normal Docker
images built for Linux. You do not need to recompile your NSO images when moving between a Linux
machine and Docker on Mac as they both essentially run Docker on Linux.

Running the Image
The following steps serve as general guidelines to run the NSO image. The CLI examples are applicable
specifically to Docker. If you are running a non-Docker container, you basically need to fetch the NSO
image, load/run the image with packages and networking, and finally log in to NSO CLI to run commands.

Step 1 - Fetch the Image
Start by downloading the NSO base image:

Step 1 Go to Cisco's official Software Download site.

Step 2 Search for the product "Network Services Orchestrator" and select the desired version from the list.

Step 3 The image is delivered as a signed package (e.g., nso-6.1.container-image-
prod.linux.x86_64.signed.bin). Download it to your local disk.

Note The signed archive file has the pattern nso-VERSION.container-image-prod.OS.ARCH.signed.bin,
where, VERSION is the image's NSO version, OS is the operating system, and ARCH is the CPU architecture (only
x86_64 is supported currently).

Step 4 Extract the image and other files from the signed package.

sh nso-6.1.container-image-prod.linux.x86_64.signed.bin

Step 2 - Run the Image
Next, load the image and run it:

Step 1 Start the container engine.

Step 2 Navigate to the directory where you extracted the base image and load it. This will restore the image and its tag.

docker load -i nso-6.1.container-image-prod.linux.x86_64.tar.gz

Step 3 Start a container from the image. Supply additional arguments to mount the packages/the ncs.conf as separate
volumes (-v flag), and publish ports for networking (-p flag) as needed. The container starts NSO using the /run-
nso.sh script. To understand how the ncs.conf file is used, see the section called “ncs.conf File Configuration
and Preference”.

docker run -itd --name cisco-nso -v /data/nso:/nso -v /data/nso-logs:/log
-v /data/packages:var/opt/ncs/packages/ --net=host
-e ADMIN_USERNAME=admin -e ADMIN_PASSWORD=admin cisco-nso-prod:6.1

Loading the packages by mounting the default load path nso/run/packages as a volume is the preferred way of
loading the packages, but you can also load the packages by copying them manually into the nso/run/packages

Administration Guide
160

https://docs.docker.com/get-docker/
https://software.cisco.com/download/home
https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Running NSO in Containers
Administration

directory. For optimal performance in your production environment, it is always recommended to mount the packages
as a separate named volume instead of a bind mount on the host.

Note The default load path is configured in the ncs.conf file as $NCS_RUN_DIR/packages, where
$NCS_RUN_DIR expands to /nso/run in the container. To find the load path, check the ncs.conf file in the /
etc/ncs/ directory.

<load-path>
<dir>${NCS_RUN_DIR}/packages</dir>
<dir>${NCS_DIR}/etc/ncs</dir>
...
</load-path>

With the production image, use a shared volume to persist data across restarts. If remote (Syslog) logging is used,
there is little need to persist logs. If local logging is used, then persistent logging is recommended.

Note NSO starts a cron job to handle logrotate of NSO logs by default. i.e., the CRON_ENABLE and
LOGROTATE_ENABLE variables are set to true using the /etc/logrotate.conf configuration. See the /
etc/ncs/post-ncs-start.d/10-cron-logrotate.sh script. To set how often the cron job runs, use the
crontab file.

Step 3 - Log in to NSO CLI
Finally, log in to the NSO CLI:

Step 1 Open an interactive shell on the running container.

docker exec -it cisco-nso bash

Step 2 Log in to NSO CLI.

/# ncs_cli -u admin
admin@ncs>

Note You can also use docker exec -it cisco-nso ncs_cli -u admin to access the CLI from the host's terminal.

Administration
This section covers the necessary administrative information.

ncs.conf File Configuration and Preference
If the ncs.conf file is edited after startup, it can be reloaded using MAAPI reload_config().
Example: $ ncs_cmd -c "reload".

The run-nso.sh script runs a check at startup to determine which ncs.conf file to use. The order of
preference is as below:

Administration Guide
161

Running NSO in Containers
Admin User Creation

• The ncs.conf file specified in the Dockerfile (i.e., ENV $NCS_CONFIG_DIR /etc/ncs/) is
used as the first preference.

• The second preference is to use the ncs.conf file mounted in the /nso/etc/ run directory.

• If no ncs.conf file is found at either /etc/ncs or /nso/etc, the default ncs.conf file
provided with the NSO image in /defaults is used.

Admin User Creation
An admin user can be created on startup by the run script in the container. There are three environment
variables that control the addition of an admin user:

• ADMIN_USERNAME: Username of the admin user to add, default is admin.

• ADMIN_PASSWORD: Password of the admin user to add.

• ADMIN_SSHKEY: Private SSH key of the admin user to add.

As ADMIN_USERNAME already has a default value, only ADMIN_PASSWORD, or ADMIN_SSHKEY need
to be set in order to create an admin user. For example:

docker run -itd --name cisco-nso -e ADMIN_PASSWORD=admin cisco-nso-prod:6.1

This can be useful when starting up a container in CI for testing or development purposes. It is typically
not required in a production environment where there is a permanent CDB that already contains the
required user accounts.

Note Note that this only adds a user. If you are using a permanent volume for CDB, etc., and starting the NSO
container multiple times with different ADMIN_PASSWORD, then the last run will effectively overwrite the
older password. However, if you change ADMIN_USERNAME between invocations, then you will create
multiple users. An admin user account created during the last run of NSO will not be removed just because
ADMIN_USERNAME is set to a different value.

Note The default ncs.conf file performs authentication using only the Linux PAM, with local authentication
disabled. For the ADMIN_USERNAME, ADMIN_PASSWORD, and ADMIN_SSHKEY variables to take
effect, NSO's local authentication, in /ncs-conf/aaa/local-authentication, needs to be
enabled. Alternatively, you can create a local Linux admin user that is authenticated by NSO using Linux
PAM.

Exposed Ports
The following TCP ports are open by default.

• SSH: Port 22.

• HTTP: Port 80.

• HTTPS: Port 443.

• NETCONF: Port 830.

• NETCONF call-home: Port 4334.

• RESTCONF: Port 8888.

Administration Guide
162

Running NSO in Containers
Backup and Restore

Resolving Port Conflict
The container is configured to expose SSH on port 22. If an SSH server is run on the VM, there will be
a conflict when configuring the NSO CLI to use the same port. To avoid port conflict, configure NSO to
listen on a different port (e.g., 2024) in ncs.conf and then expose it with the docker run command
using the -p or --expose flags, as docker run -p 2024. If you instead only want to expose the port to the
localhost interface, run the command as docker run -p 127.0.0.1:2024:2024.

Note For logs, shared volumes are used. The /log folder inside the container contains the logs. Outside the
container, you can access the logs in the /data/nso-logs directory, provided that the volume is
configured.

Backup and Restore
The backup behavior of running NSO in vs. outside the container is largely the same, except that when
running NSO in a container, the SSH and SSL certificates are not included in the backup produced by
the ncs-backup script. This is different from running NSO outside a container where the default
configuration path /etc/ncs is used to store the SSH and SSL certificates, i.e., /etc/ncs/ssh for
SSH and /etc/ncs/ssl for SSL.

Take a Backup

To take a backup:

• Run the ncs-backup command. The backup file is written to /nso/run/backups.

docker exec -it cisco-nso ncs-backup

Restore a Backup
To restore a backup, NSO must not be running. As you likely only have access to the ncs-backup tool,
the volume containing CDB, and other run-time data from inside of the NSO container, this poses a slight
challenge. Additionally, shutting down NSO will terminate the NSO container.

To restore a backup:

Step 1 Shut down the NSO container and start a new one with the same persistent shared volume mounted but with a
different command. Instead of running the /run-nso.sh, which is the normal command of the NSO container, run
a command that keeps the container alive but also does not start NSO, for example read DUMMY (it is a bash builtin
command so you still have to run bash). A full Docker command would look like this:

docker run -itd --name cisco-nso -v /data/nso:/nso -v /data/nso-logs:/log
cisco-nso-prod:6.1 bash -lc 'read DUMMY'

Step 2 You now have the NSO container running but without NSO itself. Open a shell in the container with:

docker exec -it cisco-nso bash -l

Step 3 Run the ncs-backup restore command, for example:

docker exec -it cisco-nso ncs-backup-restore

Or, if you want to automate the whole process slightly, you could do it all using docker exec and non-interactively:

Administration Guide
163

Running NSO in Containers
SSH Host Key

docker exec -it cisco-nso bash -lc 'ncs-backup
restore /nso/run/backups/ncs-6.1.0@2023-03-07T14:41:02.backup.gz
--non-interactively'

Step 4 Restoring an NSO backup should move the current run directory (/nso/run to /nso/run.old) and restore the
run directory from the backup to the main run directory (/nso/run). After this is done, shut down your temporary
container and start the regular NSO container again as usual.

SSH Host Key
NSO looks for the SSH host key in the /nso/ssh directory. The filename differs depending on the
configured host key algorithm. With Docker, NSO uses the ED25519 algorithm. If no SSH host key exists,
one is generated. As the SSH key is stored in the /nso directory, which is typically a persistent shared
volume in a production setup, it remains the same after restarts or upgrades of NSO.

HTTPS TLS Certificate
NSO expects to find a TLS certificate and key at /nso/ssl/cert/host.cert and /nso/ssl/
cert/host.key respectively. Since the /nso path is usually on persistent shared volume for
production setups, the certificate remains the same across restarts or upgrades.

If no certificate is present, one will be generated. It is a self-signed certificate valid for 30 days making
it possible to use both in development and staging environments. It is not meant for production. You
should replace it with a properly signed certificate for production and it is encouraged to do so even for
test and staging environments. Simply generate one and place it at the provided path, for example using the
following, which is the command used to generate the temporary self-signed certificate:

openssl req -new -newkey rsa:4096 -x509 -sha256 -days 30 -nodes \
-out /nso/ssl/cert/host.cert -keyout /nso/ssl/cert/host.key \
-subj "/C=SE/ST=NA/L=/O=NSO/OU=WebUI/CN=Mr. Self-Signed"

NSO Upgrade
This section describes how to upgrade your NSO to run a newer NSO version in container. The overall
upgrade process is outlined in the steps below. In the example below, NSO is to be upgraded from version
6.0 to 6.1.

To upgrade your NSO version:

Step 1 Start a container with the docker run command. In the example below, it mounts the /nso directory in the container
to /data/nso on the host machine running the container. This also makes all the CDB files available on the host in
the /data/nso/run/cdb directory. At this point, the /cdb directory is empty.

docker run -itd -—name cisco-nso -v /data/nso:/nso cisco-nso-prod:6.0

Step 2 Perform a backup, either by running the docker exec command (make sure that the backup is placed somewhere we
have mounted) or by creating a tarball of /data/nso on the host machine.

docker exec -it cisco-nso ncs backup

Step 3 Stop the NSO by issuing the following command, or by stopping the container itself which will run the ncs stop
command automatically.

docker exec -it cisco-nso ncs stop

Step 4 Remove the old NSO

docker rm -f cisco-nso

Administration Guide
164

Running NSO in Containers
YANG Model Changes (destructive)

Step 5 Start a new container and mount the /nso directory in the container to /data/nso on the host machine. This time
the /cdb folder is not empty, so instead of starting a fresh NSO, an upgrade will be performed.

docker run -itd --name cisco-nso -v /data/nso:/nso cisco-nso-prod:6.1

At this point, you only have one container that is running the desired version 6.1 and you do not need to
uninstall the old NSO.

YANG Model Changes (destructive)
The database in NSO, called CDB, uses YANG models as the schema for the database. It is only possible
to store data in CDB according to the YANG models that define the schema.

If the YANG models are changed, particularly if the nodes are removed or renamed (rename is the removal
of one leaf and an addition of another), any data in CDB for those leaves will also be removed. NSO
normally warns about this when you attempt to load new packages, for example, request packages reload
command refuses to reload the packages if the nodes in the YANG model have disappeared. You would
then have to add the force argument, e.g., request packages reload force.

Health Check
The production base image comes with a basic Docker health check. It uses ncs_cmd to get the state that
NCS is currently in. Only the result status is observed to check if ncs_cmd was able to communicate with
the ncs process. The result indicates if the ncs process is responding to IPC requests.

Note The default --health-start-period duration in health check is set to 60 seconds. NSO
will report an unhealthy state if it takes more than 60 seconds to start up. To resolve this, set the --
health-start-period duration value to a relatively higher value, such as 600 seconds, or
however long you expect NSO will take to start up.

To disable the health check, use the --no-healthcheck command.

Administration Guide
165

Running NSO in Containers
Health Check

Administration Guide
166

	Administration Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. NSO System Management
	Introduction
	Configuring NSO
	Overview
	Configuration file
	Dynamic configuration
	tailf-ncs.yang

	Built-in or external SSH server

	Starting NSO
	Licensing NSO
	Monitoring NSO
	NSO status
	Monitoring the NSO daemon
	Logging
	syslog
	Log messages and formats
	Trace ID

	Backup and restore
	Backup
	NSO Restore

	Disaster management
	NSO fails to start
	NSO failure after startup
	Transaction commit failure

	Troubleshooting
	Installation Problems
	Error messages during installation

	Problems Starting NSO
	NSO terminating with GLIBC error

	Problems Running Examples
	The 'netconf-console' program fails

	Problems Using and Developing Services
	General Troubleshooting Strategies

	Chapter 3. Cisco Smart Licensing
	Introduction
	Smart Accounts and Virtual Accounts
	Request a Smart Account
	Adding users to a Smart Account
	Create a License Registration Token
	Notes on Configuring Smart Licensing

	Validation and Troubleshooting
	Available Show Commands
	Available Show Commands

	Chapter 4. NSO Alarms
	Overview
	Alarm type structure
	Alarm type descriptions

	Chapter 5. NSO Packages
	Package Overview
	Loading Packages
	Redeploying Packages
	Adding NED Packages
	NED Migration
	Managing Packages
	Package repositories
	Actions

	Chapter 6. Advanced Topics
	Locks
	Global locks
	Transaction locks
	Northbound agents and global locks
	External data providers
	CDB
	Lock impact on user sessions

	Compaction
	Automatic Compaction
	Manual Compaction
	Delayed Compaction

	IPC ports
	Restricting access to the IPC port

	Restart strategies for service manager
	Security issues
	Running NSO as a non privileged user
	Using IPv6 on northbound interfaces

	Chapter 7. High Availability
	Introduction to NSO High Availability
	NSO built-in HA
	Prerequisites
	HA Member configuration
	HA Roles
	Failover
	Startup
	Actions
	Status Check

	Tail-f HCC Package
	Overview
	Dependencies
	Running the HCC Package with NSO as a Non-Root User
	Tail-f HCC Compared with HCC Version 4.x and Older
	HA Group Management Decisions
	Embedded BGP Daemon
	Automatic Interface Assignment

	Upgrading
	Layer-2
	Overview
	Operational Details
	Configuration
	Example Configuration

	Layer-3 BGP
	Overview
	Operational Details
	Configuration
	Example

	Usage
	Layer-2 Deployment
	Configuring VIPs
	Verifying VIP Availability
	Layer-2 Example Implementation

	Enabling Layer-3 BGP
	Configuring BGP for Paris Node
	Configuring BGP for London Node
	Check BGP Neighbor Connectivity
	Check Advertised BGP Routes Neighbors
	Layer-3 BGP Example Implementation

	Data Model
	Tail-f HCC Model

	Setup with an External Load Balancer
	NB listen addresses on HA primary for Load Balancers
	HA framework requirements
	Mode of operation
	Security aspects
	API
	Ticks
	Relay secondaries
	CDB replication

	Chapter 8. Rollbacks
	Introduction
	Configuration

	Chapter 9. The AAA infrastructure
	The problem
	Structure - data models
	Data model contents

	AAA related items in ncs.conf
	Authentication
	Public Key Login
	Setting up Public Key Login

	Password Login
	PAM
	External authentication
	External token validation
	External multi factor authentication
	Package authentication

	Restricting the IPC port
	Group Membership
	Authorization
	Command authorization
	Rpc, notification, and data authorization
	NACM Rules and Services
	Authorization Examples

	The AAA cache
	Populating AAA using CDB
	Hiding the AAA tree

	Chapter 10. Upgrade
	Preparing for Upgrade
	Single Instance Upgrade
	Recover from Failed Upgrade
	NSO HA Version Upgrade
	Package Upgrade
	Patch Management

	Chapter 11. Deployment Example
	Initial NSO Installation
	Initial NSO Configuration
	The ncs.conf Configuration
	The aaa_init.xml Configuration
	The High-Availability and VIP Configuration
	Global Settings and Timeouts
	Initial Package Setup
	Cisco Smart Licensing
	Verifying the Initial NSO Configuration

	Log Management
	Log Rotate
	Syslog
	NED Logs
	Python Logs
	Java Logs
	Internal NSO Log

	Monitoring the Installation
	Alarms

	Metric - Counters, Gauges and Rate of Change Gauges
	Counters
	Gauges
	Rate of change gauges

	Security Considerations

	Chapter 12. Administration
	User Management
	Packages
	Adding and upgrading a package
	Simulating the new device
	Adding the new devices to NSO

	Configuring NSO
	ncs.conf
	Run-time configuration

	Monitoring NSO
	Backup and Restore
	Backup
	NSO Restore

	Chapter 13. Running NSO in Containers
	Introduction
	Getting Started
	System Requirements
	Running the Image
	Step 1 - Fetch the Image
	Step 2 - Run the Image
	Step 3 - Log in to NSO CLI

	Administration
	ncs.conf File Configuration and Preference
	Admin User Creation
	Exposed Ports
	Resolving Port Conflict

	Backup and Restore
	Take a Backup
	Restore a Backup

	SSH Host Key
	HTTPS TLS Certificate
	NSO Upgrade
	YANG Model Changes (destructive)
	Health Check

