
NSO	Performance
How	to	make	sure	your	NSO	system	meets	your	performance	requirements



Agenda

• Introduction,	the	big	picture
• Deep	dive,	the	NSO	transactional	model
• NSO	Deployment	Models

• Commit	Queue
• Layered	Service	Architecture,	LSA	Cluster
• Device	Cluster
• High	Availability	Cluster
• Host	Machines

• NSO	System	Configuration
• NED	and	Devices	Configuration
• Developing	the	service	code

• Putting	the	pieces	together:	typical	system	deployments



Terminology

• Throughput
• Maximum	rate	of	requests	being	processed

• Response	time
• The	time	taken	to	respond	to	a	request

• Scalability
• The	capability	to	manage	a	large	network;	number	of	devices	and	services

• Reliability
• The	capability	to	function	for	a	particular	amount	of	time

Different	characteristics,	different	NSO	knobs



The	Big	Picture:	what	affects	performance?

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	System

Other	provisioning	system

Other	system

“Brown”	devices

Calls	to	external	systems
1

2

3

4

5

6

7

Measurement	is	king



Deep	Dive	–
the	NSO	transactional	model
Important	to	understand	the	characteristics	of	your	platform

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	System

Other	provisioning	system

Other	system

“Brown”	devices

Calls	to	external	systems



Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=true

Commit

Edit:
x=17
y=true

Commit

A	session	is	connected	to	a	
new	(empty)	transaction	
with	the	“Running”	data	
store	as	the	backend.

A	transaction	is	a	change	
set	relative	something	
“Running”.

OK:	The	transaction	was	processed	without	error	
and	all	of	it	has	been	acted	upon.

Fail:	The	transaction	failed	due	to	an	error,	and	
no	part	of	it	has	been	acted	upon.	In	principle	it	
should	not	be	possible	to	observe	a	failed	
transaction	for	an	outside	observer.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=true

A	closer	look	at	the
Commit	Sequence



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=trueLock	Running

Locking,	so	that	no	other	changes	are	under	way	while	we	
are	processing	this	transaction,	is	key	to	a	simple	
programming	model.

On	the	other	hand,	this	constraint	limits	the	maximum	
throughput	(transactions	per	minute)	of	the	system.



The	RFS	Hook	captures	the	changes	for	each	modified	
service	instance	in	a	separate	transaction-in-transaction,	
with	the	operator's	transaction	as	back	end.

Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=trueService	Create

RFS
Hook

Cust. Hook/	
Transform

Service	#1
Create

Service	#2
Create

…

Service	#1
m=3

Service	#2
p="auto"

Undo	#2
delete	p

Undo	#1
delete	m

The	transaction	manager	
computes	the	Undo	
information	for	each	
service	instance,	and	
injects	it	into	the	service	
data.

RFS Pre-
validation



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=trueValidate Service	#1

m=3
<undo	#1>

Service	#2

p="auto"
<undo	#2>

YANG
Validation

Custom
Validation

Validation	has	to	happen	
after	all	transaction	hooks	
have	run.	Transaction	
hooks	can	(and	typically	
do)	update	the	contents	
of	the	transaction,	and	we	
need	to	validate	the	final	
contents	of	the	
transaction,	after	all	
changes	are	done.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=truePrepare	Phase

NED
Manager

Custom
Database

No-trans
NED

Transaction
NED

…

CLI
Device

NETCONF
Device

Send	all	CLI	commands	
to	the	device.	This	will	
validate and	activate
the	new	configuration.	
Did	it	work?

Send	all	NETCONF	
commands	to	the	
device's	candidate	store	
and	validate the	new	
configuration.
Did	it	work?

Service	#1

m=3
<undo	#1>

Service	#2

p="auto"
<undo	#2>

CDB

CDB	writes	down	all	its	
changes	to	the	disk	
journal,	except	the	final	
transaction	complete	
mark.

If	HA	is	enabled,	the	
same	journal	records	
that	are	written	to	disk	
are	sent	to	standby	
nodes.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=trueCommit	or	Abort?

Abort Unlock

Point	of
No	Return

The	moment	of	truth:

If	any	transaction	participant	returns	
failure,	take	the	abort	path.

Otherwise	proceed	with	Commit.

This	is	the	point	of	no	return.	This	is	
when	we	decide	if	the	transaction	went	
through	or	not.	We	will	not	(cannot)	
change	our	minds	after	this.	This	is	
defined	by	standard	transaction	theory.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running
x=17,	y=true,	
z=1.2.3.4

p="auto",	m=3
<undo#1>,	<undo#2>

Commit	Phase

NED
Manager

Custom
Database

No-trans
NED

Transaction
NED

…

CLI
Device

NETCONF
Device

All	CLI	commands	
already	sent	to	the	
device	and	activated.	
Make	persistent,	copy	
to	startup.

Send	commit	command	
to	the	device.	This	will	
activate the	new	
configuration.

Rollback	#4711
x=3

y=false

The	transaction	
manager	updates	
running	and	creates	
rollback	file

CDB
CDB	writes	the	final	
transaction	complete	
mark	to	the	disk	journal.

If	HA	is	enabled,	the	
transaction	complete	
mark	is	also	sent	to	
standby	nodes.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running
x=17,	y=true,	
z=1.2.3.4

p="auto",	m=3
<undo#1>,	<undo#2>

Notify

Kicker
Manager

Custom
Subscribers

Kicker	
client	#1

Kicker	
client	#2

… Subscriber	
seq=50

Subscriber	
seq=75

…

Kickers	and	subscribers	are	informed	about	the	
changes	(they	care	about)	in	the	transaction.	

Kickers	and	subscribers	cannot	reverse	the	
transaction	(we	are	past	the	point	of	no	return).



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running
x=17,	y=true,	
z=1.2.3.4

p="auto",	m=3
<undo#1>,	<undo#2>

Unlock	Running



Deep	Dive	–
Understanding	“device	cost”
Important	to	understand	the	characteristics	of	your	platform

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	System

Other	provisioning	system

Other	system

“Brown”	devices

Calls	to	external	systems



What	is	a	sync-from	really?



Sync-from,	device	has	time-stamp



Sync-from,	device	has	no	time-stamp



Check-sync	device	with	
no	transaction-id/time-stamp



Check-sync	device	has	time-stamp



Example	of	
complete	
sequence

Normal	Commit



Deployment	Models
Commit	Queue
Layered	Service	Architecture,	LSA	Cluster
Device	Cluster
High	Availability	Cluster
Host	Machines

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Other	provisioning	 system

Other	system

“Brown”	devices

Calls	to	external	systems



Default	NSO	transactional	model

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Default
transactional
border



With	Commit	Queue

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Northbound
transactional
border

Southbound
transactional
border

• Throughput	++
• Response	time	+	-
• Scalability	0
• Reliability	+	-

Main	Mechanism	for	throughput
No	impact	on	code

No	ACID	transaction	including	the	network,	“eventual	consistency”
Atomic	and	non-atomic	commit	queue



Commit	queue	behavior
Transactions

SR1 Perform	mapping	logic,	short	time	inside	
lock.	Enqueue QI1	in	Commit	Queue

QI1 One	transaction	for	D1	and	D3, outside	
lock,	 southbound	 diff	calculated	here.

SR2 Perform	mapping	logic,	short	time	inside	
lock.	Enqueue QI2	in	Commit	Queue

QI2 One	transaction	for	D4	and	D5,outside	
lock,	 southbound	 diff	calculated	here.	Runs	
in	parallel	with	QI1

SR3 Perform	mapping	logic,	short	time	inside	
lock.	Enqueue QI3	in	Commit	Queue.

QI3 One	transaction	for	D3	and	D4,	outside	
lock,	 southbound	 diff	calculated	here.	QI3	
is	waiting	for	QI1	and	QI2

QI1	and	QI2	runs	in	parallel

QI3	and	QI4	might	run	in	parallel
(Depending	on	when	QI1	and	QI2	ends)

D1 D2 D3 D4 D5 Devices

Queue Item 1, QI1 Queue Item 2, QI2

Queue Item 3, QI3, 
Waits for QI1 and QI2

Queue Item 4, QI4
Waits for QI1

CDB

Service Request 2, SR2

Service Request 1, SR1

Service Request 3, SR3

Service Request 4, SR4

Write

Device Configuration, 
separate transactions



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running

x=3
y=false
z=1.2.3.4

Transaction
x=17
y=true

Commit	Queue:
Prepare

NED
Manager

CLI
Device

NETCONF
Device

Service	#1

m=3
<undo	#1>

Service	#2

p="auto"
<undo	#2>

Dev.	Changes

p="auto"
Snapshot

This	version	
of	Running

When	commit	queues	
are	enabled,	the	NED	
Manager	prepares	a	
queue	item	for	each	
involved	device.	

Each	queue	item	
consists	of	the	device	
specific	change	set	and	
a	snapshot	handle	to	
enable	reading	from	
Running	as	it	looks	at	
the	time	of	queueing.

Q	Item
#4711	:	1

Q	Item
#4711	:	2

Many	NEDs	need	to	read	more	
than	the	changed	data	in	order	to	

generate	the	appropriate	
commands	on	the	device.

The	snapshot	database	tracks	
what's	on	the	device	now.	
Running	reflects	the	all	the	

committed	data,	including	later	
queue	items.



Trans
Hooks

Validate Prepare Commit Notify UnlockLock

Running
x=17,	y=true,	
z=1.2.3.4

p="auto",	m=3
<undo#1>,	<undo#2>

Commit	Queue:
Commit

NED
Manager

CLI
Device

NETCONF
Device

Dev.	Changes

p="auto"
Snapshot

This	version	
of	Running

The	NED	manager	places	the	queue	
items	on	the	device	queues.

Once	queue	items	are	placed	on	the	
device	queues,	they	are	being	sent	to	
devices	regardless	of	new	transactions	
being	committed,	aborted,	etc.	Each	

queue	item	is	handed	to	the	respective	
NED	for	delivery	to	the	device. #4711 #4711



Execute

Commit	Queue:
Execute

CLI
Device

NETCONF
Device

If	a	device	fails	to	
accept	the	change,	

that	means	the	device	
will	be	marked	as	out	

of	sync.

#4711 #4711

#4716

#4724#4724

NEDNED

Queue	items	are	being	
processed	asynchronously	to	
other	activities	in	the	system.

Commit	queues	will	not	give	
transactional	integrity,	but	

change	sets	coming	from	the	
same	transaction	are	sent	

out	at	roughly	the	same	time	
to	all	participating	devices.

Dev.	Changes

p="auto"
Snapshot

This	version	
of	Running



LSA	Cluster

Lower
NSO (n1)

D1 D2 D3

D1 D2 D3

Lower
NSO (n2) 

D4 D5 D6

D4 D5 D6

Upper
NSO 

n2

Logic +
Dispatching

n1

LogicLogic

Higher Service 
Model

LowerService
Model

Device Model

• Throughput	+
• Response	time	-
• Scalability	+	
• Reliability	+	-

Service	Code	impacted
Split	the	devices	across	NSO	nodes

Parallelism
Always	combined	with	commit	queues	to	gain	performance



Device	Cluster

Device
NSO 

D1 D2 D3

D1 D2 D3

Device
NSO 

D4 D5 D6

D4 D5 D6

Service
NSO 

D1 D2 D5

Mapping 
logic

• Throughput	--
• Response	time	-
• Scalability	+	
• Reliability	+	-

Device	Cluster	was	the	first	scalability	cluster	model	for	NSO
Evolved	to	LSA

Factor	5	of	performance	hit	in	NSO-NSO	communication
Used	to	localize	NSO	close	to	devices



LSA	Cluster	vs	Device	Cluster

Device	Cluster LSA	Cluster
Top	node	has	device	meta-
data.	“Sees”	all	devices.

Top	node	has	no	device	
knowledge

Top	node	does	not	“see”	
the	south	NSO	node.	The	
dispatching	of	device	
operations	is	managed	by	
NSO

Top	node	sees	the	south	
NSO	nodes	as	another	NSO.

Service	code	is	not	
impacted	by	the	
deployment

Service	code	need	to	be	
split	between	the	NSO	
nodes

High	penalty	in	NSO	– NSO	
communication

Much	less	penalty	since	the	
only	communication	is	the	
service	diff.

Tight	coupling	between	all	
NSO	nodes

Loose	coupling	between	
NSO	nodes



High	Availability	Cluster

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Northbound	 System

Asynchronous
Synchronous
Replication

Read-Write
Request

Read
Request

Northbound	 System
• Throughput	(- if	sync)
• Response	time	(- if	sync)
• Scalability		
• Reliability	+	(if	sync)

“Master” “Slave”

“Slowest”	NSO	and	link	latency		will	limit	performance



Host	machine,	some	obvious	statements

• The	host	machine	characteristics	has	huge	impact
• CPU
• Memory
• Local	Disc
• Virtual	or	bare	metal

• Develop	and	test	on	relevant	machine



NSO	System	Configuration

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Other	provisioning	 system

Other	system

“Brown”	devices

Calls	to	external	systems



Performance	impact

• Study	different	configuration	options	for	NSO
• ncs.conf
• Examples

• Trace	files
• Logging
• Rollbacks
• Diffs
• Pre	populate	snap-shot	db
• …



Device	and	NED	Configuration

• NEDs	can	be	configured	for	different	check-sync	
mechanisms
• Hash	or	Transaction	id
• Data	transfer	method	(scp or	show	config)

• Device	behavior
• The	time	for	a	device	to	apply	
the	configuration	can	differ	by
configuration	options

• HA-behaviour takes	time
• Commit	script	on	the	device
• …

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Other	provisioning	 system

Other	system

“Brown”	devices

Calls	to	external	systems



Developing	the	service	code

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Other	provisioning	 system

Other	system

“Brown”	devices

Calls	to	external	systems



The	Create	Method

• CDB	locked
• Measure	and	instrument:	<<	1	second!
• “Avoid”	other	logic	then	service	to	device	mapping
• Watch	out:

• Anything	computational	heavy,	how	does	your	algorithms	scale,	measure	time.	
• Run	performance	tests	for	the	intended	size	of	the	network.
• XPATH	expressions,	tune	the	expression	for	performance
• Validation	code,	check	carefully	that	the	validation	code	scales	to	the	size	of	the	
network.	Again	measure.

• Never	perform	sync-from	in	the	create	method
• If	you	can	make	the	create	method	a	template	and	not	code,	go	for	it.

• Design-time	validation	as	well



The	Create	Method

• “Externalize”	things	that	take	time
• put	these	steps	in	separate	actions
• the	complete	sequence	can	be	combined	in	several	ways

• Use	Reactive	FastMap:	
• the	create	method	releases	quick	and	will	be	triggered	again	when	that	state	is	reached

• Let	the	northbound	system	call	the	actions	+	create	method
• Let	the	northbound	system	pass	in	the	data	rather	then	NSO	calculating	it

• Split	a	“large”	service	into	smaller	services
• Like	touching	many	devices
• To	achieve	small	diff	sets



Brown	Networks

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

Call-pattern	from
north-bound	 system

The	”create”	method

NSO	communication
(LSA,	Cluster,	HA)

NED	Logic

Device	configuration
time

Northbound	 System

Other	provisioning	 system

Other	system

“Brown”	devices

Calls	to	external	systems



Brown	deployments

Many	legacy	system:	The	network	is	the	single	source	of	truth

Provisioning	scripts	read	network	state	to
- allocate	resources,	make	sure	it	isn’t	in	use	already
- performs	pre-checks,	decide	which	config to	create
- avoid	overwriting	local	modifications

When	moving	to	NSO,	this	should	not	translate	to	frequent	sync-from!



Managing	brown	devices

1. Read	state	of	network	using	modelled	stats,	or	exec	commands
2. No	syncing	of	device	configuration	in	the	create	method

• Do	not sync-from	in	the	create	method
• Use	partial sync-from	before	invoking	service
• Only	for	data	that	the	service	reads

• Not data	that	the	service	writes
• Like	allocated	VLANs

3. Commit	with	no-overwrite,	
• Checks	only	device	configuration	that	corresponds	to	the	service,	not	the	complete	
device	configuration.

• Configure	per	transaction,	device	profiles,	or	per	device
4. Partial	sync-from	and	Service check-sync	to	detect	service	changes

Devices	will	be	out-of-sync!
Intended



Overall	flow:	no-overwrite



Deployement Models



One	System,	HA-Cluster

• Commit	queue
• Throughput

• Big	machine,	lots	of	RAM
• Large	networks

• Easy	to	manage
• No	NSO-NSO	
communication	penalty

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB



LSA	Cluster	with	Commit	Queue
• HA	for	each	cluster	node
• Commit	queue	in	all	nodes
• Scale

• Devices	partitioned	in	lower	
NSO	nodes

• Througput
• Parallellism

• Response-time
• Commit	queue	in	top	node

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB NSO

Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB

NSO
Service	Manager

Device	Abstraction

NED NEDNED

Device	Manager
CDB


