
NSO “Continuous Integration”,
“Continuous Delivery”

NSO Developer Days 2017
(c) 2017 Cisco. Cisco Public.

Srilakshmi Kanda, Test Engineer

Overview

DevOps is a Software development
method that stresses communication,
collaboration and integration between
software developers and operations team
thereby

q Enable rapid evolution of products or
services

q Reduce risk, improve quality across
portfolio and reduce costs

DevOps

DevOps = { New mindset + New
tool sets + New skills }

Ø Plan and Measure
Ø Continuous Business Planning

Ø Develop and Test
Ø Collaborative Development and Continuous

Integration / Testing

Ø Release and Deploy
Ø Continuous Release and Deployment

Ø Monitor and Optimize
Ø Continuous Monitoring

DevOps Life Cycle

DEV OPS

Continuous Feedback

Continuous Integration, Delivery, Deployment
Continuous Integration is a software development practice where members of a
team integrate their work frequently; usually each person integrates at least daily –
leading to multiple integrations per day. -- Martin Fowler

C
on

tin
uo

us

Continuous Delivery is a software development discipline where you build software
in such a way that the software can be released to production at anytime.
--Martin Fowler

Continuous Deployment is a third term that’s sometimes confused with Continuous
Delivery. Where Continuous Delivery provides a process to create frequent releases
but not necessarily deploy them. Continuous Deployment means that every change
you make automatically gets deployed through the deployment pipeline.

Why CI and CD ?
Ø To encourage a culture of incremental development
Ø To ensure our system is working all the time. To ensure that the build is always in a “green”

state.
Ø To improve the visibility of the current state of the build. (failed, successful, etc.)
Ø To establish greater confidence in software product from the development team.
Ø To reduce risks.
Ø To reduce repetitive manual process.
Ø To receive Regular feedback
Ø To Reduce integration pain
Ø To enable concurrent development
Ø To Increase automation

ROI

Prerequisites for CI

Agreement of the team: CI is a practice rather
than a tool and thus requires the team’s input.
•Feedback Mechanism
•It is a Cultural Movement.

An automated build: Automating the compilation,
testing and delivering processes. (Create a
comprehensive test suite.)
•Keep the build and test process short
•Standardizing automation.

Version Control: Checking all the project scripts
into a central repository (code, test, configuration)
•Check in regularly to mainline
•Managing your development workspace

Drive some
code with

tests

Ready to
commit

Merge code
and resolve

conflicts
locally

Run tests to
ensure they
pass locally

Commit to
Repo

Build
“GREEN”

Pull code
from repo

Notifies
results to the

team

Monitors the
Repo and
Pull code

Build the
system

Run Unit &
Integration

tests

Release
deployable

artifacts with
build label

CI

Developer

Execution Cycle of CI
(Developer and CI server steps)

NSO Integration and Delivery pipeline

Feature 1

Merge

Pull Request

Feature n

Pass ?
Review

System Tests

Cisco Software
Central

Release

Pull request: All
branches

Pull

Build

Test

Build, Test : All
branches

Pull

Build

Test

Pass ?

Trigger
Pipline

Deliverables

Approve
?

Deploy Performance

Other tests

Scalability

Package

NED Pass ?

Store Publish

Main branches Trigger
Pipline

NSO Integration and Delivery pipeline

CI CD

NSO Integration and Delivery pipeline
- (Developer flow)

Source Code Management

ØGIT is a mature, actively maintained open
source project for distributed version control
system.

ØBitbucket is a combination of Git Server and
Web interface product. It allows users to do
basic GIT operations. It provides integration
with other atlassian products.

Development Workflow
Ø One main branch ”trunk” with a transient number of feature

branches.

Practices
Ø Create a feature branch off of the main branch.
Ø Commit changes to the feature branch.
Ø Create a ”pull request” (PR) targeting the main branch.
Ø Merge PR after it passes CI tests and team review.
Ø Delete feature branch after integration is complete.

NSO Integration and Delivery pipeline
- (Developer flow)

NSO Integration and Delivery pipeline
- (Developer flow)

NSO Integration and Delivery pipeline (CI)
Ø Jenkins is an open

source automation
server. With Jenkins,
organizations can
accelerate the software
development process
through automation.

Ø Jenkins manages and
controls development
lifecycle processes of all
kinds, including build,
document, test, package,
stage, deployment, static
analysis and many more.

Test Infrastructure

Builds and Tests
Ø Parallel execution of test

jobs.
Ø Runs on Docker   containers

and macos servers.
Ø Git read-only caching server

(Gitolite) used for the test
machines.

Ø Nexus Binary Repository
dependencies

NSO Integration and Delivery pipeline (CI)

Artifacts

Ø ~2500 test cases are
run on ~120 jenkins
jobs.

Ø If not paralallelized,
execution of the full
pipeline takes ~48
hours.

Ø Test execution time for
full test pipeline is ~2
hours.

Team Responsibilites

Ø Check in frequently
Ø Don’t check in broken code
Ø Don’t check in untested

code
Ø Don’t check in when the

build is broken
Ø Don’t go home after

checking in until the system
builds

Many teams develop rituals
around these policies, meaning
the teams effectively manage
themselves.

NSO Integration and Delivery pipeline
- (Dashboards)

Feedback Mechanism:
ü Results displayed on a dashboard

for better visibility.
ü Performance degradation is

clearly visible.

NSO Integration and Delivery pipeline (CI/CD)
- (Dashboards)

Deployment Tests

Ø Executed nightly.
Ø Failed upgrade versions

visible on the dashboards.

Performance Test
• Executed nightly.
• Performance degradation is

visible.

NSO Integration and Delivery pipeline (CI/CD)
- (Dashboards)

Deliverables

Deploy

NSO Integration and Delivery pipeline (CD)
Delivery Management

Ø Automated upload of deliverables from Jenkins to
Cisco Software Central.

Ø Custom script using Python
Ø ~300 deliverables (NSO, NEDs and Packages)

published every month. This needs to be as
automated as possible not to burden with
unnecessary workload.

Ø With the amount of different software we need to
publish (~300 a month) this needs to be as
automated to as a high degree as possible to not
burden is with unnecessary workload.

NSO Integration and Delivery pipeline

Feature 1

Merge

Pull Request

Feature n

Pass ?
Review

System Tests

Cisco Software
Central

Release

Pull request: All
branches

Pull

Build

Test

Build, Test : All
branches

Pull

Build

Test

Pass ?

Trigger
Pipline

Deliverables

Approve
?

Deploy Performance

Other tests

Scalability

Package

NED Pass ?

Store Publish

Main branches Trigger
Pipline

Continuous
Development

Continuous
Integration

Continuous
Testing

Continuous
Release

Continuous
Deployment

Continuous
Delivery

Continuous
Monitoring

Continuous
Feedback

DevOps - CI, CD tool kit

LUX

TRAC

GNU	tool	
chain

More test	tools:	mocha,	chai,	
istanbul,	eunit,	proper	

More build tools:
eslint,	webpack,	
babel

More dev tools:	
emacs,	edts,	
java,	react,	
redux,	python,	
vim

DEV OPS

Erlang
common_

test

sensu

Practices Challenges
ü Automate everything: build, test and deployment.

ü Keep absolutely everything in the source code
management system.

ü Commit your code to the repository frequently.

ü Don’t commit directly to the delivery branch; use a
feature branch and PR workflow.

ü Use a CI tool that integrates tightly with your source
code repository.

ü Have small steps (test suites), with clear error
messages.

ü Don’t ignore failing test cases, even on the feature
branches.

ü Automated feedback on the entire process.

Ø Initial setup (Development / Build / QA / Integration
environments)

Ø Setting up a CI server requires that the build, unit
test, and executable packaging processes all be
automated.

Ø Extra cost: hardware & software

Ø Continuous maintenance.

Ø A number of new tools and processes must be
mastered.

Ø Requires mastering a build scripting language, a unit
testing platform, and potentially a setup/install
platform as well.

Ø Coaching developers on value of testing.

Ø Establishing a solid CI practice takes a lot of work
and technical knowledge.

Ø Continuous Integration is relatively easy.
Ø It is all about communication

Ø Continuous Delivery is challenging.
Ø Some things are hard to test automatically
Ø You need dedicated test-writing people / mindset.

Ø Continuous Deployment might not be a best fit for mission critical
applications.

Conclusion

Ø Git https://git-scm.com
Ø Bitbucket https://www.atlassian.com/software/bitbucket/server
Ø Jenkins https://jenkins.io
Ø DevOps https://devops.com
Ø ThoughtWorks https://www.thoughtworks.com/continuous-integration

References

Srilakshmi Kanda
Test Engineer

Thank You

Q&A

Backup Slides

Ø Continuous Release
v Businesses require well-defined release planning and management processes that

drive release roadmaps, project plans and delivery schedules as well as end-to-end
traceability across those processes.

v Challenges – Release Management, Release Coordination, Release Automation.

Ø Continuous Monitoring and Feedback
v Customer Feedback comes in different forms, such as tickets opened by customers,

formal change requests, informal complaints etc. Feedback also comes from
monitoring data. This data comes from the servers running the applications from
development, QA and Production, or from metric tools.

v Challenges – Continuous Test Policing

Continuous Release and Continuous Monitoring

Ø CD = CI + fully automated test suite
Ø Not every change is a release

Ø Manual trigger
Ø Trigger on a key file (version)
Ø Tag releases !

Ø CD – It is all about testing !
Ø Challenges – Release Management, Release Coordination, Release

Automation.

Continuous Integration <> Continuous Delivery

