
Cisco Tail-f
Stockholm, Sweden
2017-09-13

NSO Feature Demo
Leaf-list support for NSO

NSO 4.5

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

New Representation of Yang leaf-lists for NSO
Context/background of why this feature/enhancement has been developed

The new representation simplifies the usage of YANG leaf-lists in service implementation. Many NSO customers are
requesting this.

High level description of feature/enhancement

The internal representation of leaf-lists has changed. Leaf-lists now behave similar to lists in terms of operations, i.e.,
individual elements can now be created and deleted instead of setting/deleting the entire leaf-list as a whole entity.
Attributes can be set on individual leaf-list elements which removes previous limitations on how service code can be
written.

The feature/enhancement resolves the following problem

The lack of possibility to use shared leaf-list elements, which especially has been a problem for using FASTMAP.

Backwards compatible: NO

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Leaf-list illustration

If having leaf-list a { type string; } in the YANG model of the device, suppose there are two service instances s1 and s2 that both
intend to set the same leaf-list element xyz.

Service instances:
• s1
• s2

After s1 and s2 are deployed the configuration of the device is a[xyz].

Old leaf-list implementation:
Deleting s1 removes a[xyz] from the device which is not correct as it still belongs to s2

New leaf-list implementation (Storing attributes on individual leaf-list elements is allowed):
Deleting s1 does not remove a[xyz] from the device as it still belongs to s2

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Leaf-list Java service example
Java service code that uses NavuLeaf.set() or Maapi.setElem() (or the shared version of the same methods) to handle leaf-lists should
be updated to use the new API. The recommended API to use now is NavuLeafList.sharedCreate() or Maapi.sharedCreate(). It is also
possible to delete() a single leaf-list element. The vlan service in this example is the same as in examples.ncs/getting-
started/developing-with-ncs/4-rfs-service, and the following diff illustrates the change that was made to migrate (from red to green
lines)to the new API:

--
unit.leaf("enabled").sharedSet(new ConfBool(true));
unit.leaf("description").sharedSet(
vlan.leaf("description").value());-

Before migration:
ConfValue arp = vlan.leaf("arp").value();
if (arp != null)

unit.leaf("arp").sharedSet(arp);
After migration:

for (ConfValue arpValue : vlan.leafList("arp")) {
unit.leafList("arp").sharedCreate(arpValue);

}
}

} catch (Exception e) {
throw new DpCallbackException("Could not instantiate service", e);

--

For a more details see examples.ncs/getting-started/developing-with-ncs/23-new-leaf-list-upgrade

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Good to know

• Information about leaf-list can be found in the API documentation that is included in the NSO delivery
package

• Service code must be modified in order to get the benefits of the new leaf-list representation

• It is still possible to use the old leaf-list representation (see next page for details)

• diffIterate will report create/delete for leaf-list elements instead of set/delete for the whole leaf-list
(see notes on backwards compatibility).

• Data providers will get invocation of
iterator()/existsOptional()/create()/remove()/numInstances()/moveAfter() data callbacks for leaf-list
elements instead of getElem()/setElem()/remove() for the whole leaf-list (see notes on backwards
compatibility).

• Entries in audit.log will now show individual create and delete for leaf-list elements.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Backward compatibility
Certain operations can be made to run in a backwards compatibility mode, making them behave as
before, i.e., handling leaf-lists as single elements. The flags for controlling this behavior are deprecated,
meaning that they will be removed in a future release.

• For the iteration functions in the CDB and MAAPI APIs, the flag ITER_WANT_LEAF_LIST_AS_LEAF can
be used to get the old behavior, see the JavaDoc for com.tailf.conf.ConfIterateFlags and
com.tailf.conf.DiffIterateFlags.

• For data providers, annotation @DpFlags (leafListAsLeaf = true) can be used to get the old behavior,
see the JavaDoc for com.tailf.dp.annotations.DpFlags.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Limitations

• There is no option to downgrade to a previous version of NSO. See ncs-backup(1) regarding backup.

• CDB Subscribers on slaves cannot use the backwards compatibility flag for iteration

• If transactions on leaf-lists conflict with each other, iteration might produce unexpected results due to
a set/delete on the whole list actually being composed of individual create/delete operations

• It is not possible to see attributes on leaf-list elements in the CLI using | display service-meta-data,
but is is possible by using | display xml

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Recommendation

• Always do a backup before upgrading. See ncs-backup(1)

• We recommend to use the new leaf-list mode for iteration as the backward compatibility mode is
deprecated from the start and will be removed in the future

• Look at examples in
• 4-rfs-service
• 18-simple-service-erlang
• 23-new-leaf-list-upgrade

