
Try Ryeng

Executable Plans and Reactive FastMap
Nano Services

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is FastMap?

1. The ability to monitor and
store a service create config
data.

2. Handle service delete by
removing the stored create
config data.

3. Handle service update as a
delete + create followed by
calculating the actual changes
from latest “create”.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is a service
re-deploy?

Ability to recalculate a service
like an update even though no
service parameters are
changed.
For a normal service this is
expected to be a no-op.

However, if the service code
produces new config these
changes will be set.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is a Reactive
FastMap (RFM)
service?

Reactive FastMap is a design
pattern.

For service scenarios that
include asynchronous
behavior, actions, rpc-calls
etc. that are not allowed in the
FastMap algoritm.

RFM depends heavily on re-
deploys.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• The Service create() is structured in conditional stages. Normally
some service specific operational data governs which stages of the
service code can be executed at any specific time.

• Some outside mechanism is added that can re-deploy the service
when some event/stimuli occurs. Typically this is implemented as a
CDB subscriber. This is also the place where all asynchronous stuff
goes.

Anatomy of a RFM service

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Anatomy of a RFM service in pictures.

NSO

MyService

Device

CdbSubscriber
”re-deploy”

create() {

if (…) {
// set stage 1

} else {
return

}

if (…) {
// set stage 2

} else {
return

}

The create() code
is structured so
that it only sets the
device config that
is allowed up to
the current stage

The CdbSubscriber
reacts on external
events and issues
service re-deploys.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is a RFM
service plan?

Structured operational
data that shows the
progress of a RFM
service.

Answers the question of
when a RFM service is
fully converged.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Consist of one or many plan components which in turn consists of
one or many plan states.

• A plan component must have “ncs:init” as its first state and
“ncs:ready” as its last. It can have any arbitrary number of states in
between.

• A state have a status with a predefined set of values (not-reached,
reached or failed).

• A service must have an “ncs:self” component that shows the overall
progress.

RFM service plan data

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Traditional RFM service with plan data

NSO

MyService

Device

CdbSubscriber
”re-deploy”

create() {

if (…) {
// set stage 1
// write plan data

} else {
return

}

if (…) {
// set stage 2
// write plan data

} else {
return

}

plan
component ”self”

component A

The create() code
also writes the plan
data.
This needs to be
done with care so
that the plan reflects
the actual state of the
service.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Traditional RFM
code example

At least a CDB subscriber and
a service create
implementation is needed.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

A Simple Traditional RFM Service
if (unitVal != null) {

NavuContainer getVid = data.container("request-allocate-vid").
sharedCreate();

try {
vlanVal = operRoot.list("alloc-vlan-data").

elem(serviceKey.toString()).
container("request-allocate-vid").
leaf("vlan-id").value();

}
catch (Exception e) {}

}

System.out.println("vlanVal = " + vlanVal);

ConfPath kp = new ConfPath(vlan.getKeyPath());

NavuList managedDevices = root.container("devices").list("device");

for(NavuContainer deviceContainer : managedDevices.elements()){

NavuContainer ifs = deviceContainer.container("config").
container("r", "sys").container("interfaces");

NavuContainer unit = null;
if (unitVal != null) {

NavuContainer iface =
ifs.list("interface").sharedCreate(

vlan.leaf("iface").value());
iface.leaf("enabled").sharedCreate();
unit = iface.list("unit").sharedCreate(unitVal);
unit.leaf("description").sharedSet(

vlan.leaf("description").value());

}
if (unitVal != null && vlanVal != null) {

unit.leaf("vlan-id").sharedSet(vlanVal);
unit.leaf("enabled").sharedSet(new ConfBool(true));
for (ConfValue arpValue : vlan.leafList("arp")) {

unit.leafList("arp").sharedCreate(arpValue);
}

}

}
} catch (Exception e) {

throw new DpCallbackException("Could not instantiate service", e);
} finally {

try {
operCtx.finishClearTrans();

} catch (Exception ignore) {}
}
return opaque;

}

}

public class AllocVlanServiceRFS {

@ServiceCallback(servicePoint = "alloc-vlanspnt",
callType = ServiceCBType.CREATE)

public Properties create(ServiceContext context,
NavuNode service,
NavuNode root,
Properties opaque) throws DpCallbackException {

try {
NavuList managedDevices = root.

container("devices").list("device");
for (NavuContainer device : managedDevices) {

if (device.list("capability").isEmpty()) {
String mess = "Device %1$s has no known capabilities, " +

"has sync-from been performed?";
String key = device.getKey().elementAt(0).toString();
throw new DpCallbackException(String.format(mess, key));

}
}

} catch (DpCallbackException e) {
throw e;

} catch (Exception e) {
throw new DpCallbackException("Not able to check devices", e);

}

NavuContext operCtx = null;
try {

System.out.println("CREATE()");
operCtx = new NavuContext(root.context().getMaapi());
int th = operCtx.startOperationalTrans(Conf.MODE_READ);
NavuContainer operBase = new NavuContainer(operCtx);
NavuContainer operRoot = operBase.container(allocVlanService.hash);

NavuNode vlan = service;
ConfValue serviceKey = vlan.leaf("name").value();

NavuList dataList = vlan.getParent().getParent().
list("alloc-vlan-data");

NavuContainer data = dataList.sharedCreate(serviceKey);

NavuContainer getUnit = data.container("request-allocate-unit").
sharedCreate();

ConfValue unitVal = null;
try {

unitVal = operRoot.list("alloc-vlan-data").
elem(serviceKey.toString()).
container("request-allocate-unit").
leaf("unit").value();

}
catch (Exception e) {}
System.out.println("unitVal = " + unitVal);

ConfValue vlanVal = null;

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

A Simple Traditional RFM CDB Subscriber
for (Request req : reqs) {

if ((req.op == Operation.CREATE) &&
(req.t == Type.UNIT)) {

int unit = alloc_unit();

System.out.println("SET: " + req.path + "/unit ->" + unit);
wsess.setElem(new ConfBuf(unit+""), req.path + "/unit");

redeploy("/avl:alloc-vlan{%x}/reactive-re-deploy",
req.key, maapi);

}

else if ((req.op == Operation.CREATE) &&
(req.t == Type.VID)) {

int vid = alloc_vid();

System.out.println("SET: " + req.path + "/vln-id ->" + vid);
wsess.setElem(new ConfUInt16(vid), req.path + "/vlan-id");

redeploy("/avl:alloc-vlan{%x}/reactive-re-deploy",
req.key, maapi);

}
else if (req.op == Operation.DELETE) {

try {
ConfValue v = wsess.getElem(req.path + "/unit");
deallocate_unit(v);
wsess.delete(req.path + "/unit");

} catch (Exception e) {
;

}
try {

ConfValue v = wsess.getElem(req.path + "/vlan-id");
deallocate_vid(v);
wsess.delete(req.path + "/vlan-id");

} catch (Exception e) {
;

}
}

}
}

} catch (SocketException e) {
}
catch (Exception e) {

LOGGER.error("",e);
}

}

public void finish() {
safeclose(cdb);
safeclose(wcdb);
try {

maapi.getSocket().close();
} catch (Exception e) {
}

}

public class ConfigCdbSub implements ApplicationComponent {
private static Logger LOGGER = Logger.getLogger(ConfigCdbSub.class);

private CdbSubscription sub = null;
private CdbSession wsess;

public ConfigCdbSub() {
}

@Resource(type=ResourceType.CDB, scope=Scope.CONTEXT,
qualifier="reactive-fm-loop-subscriber")

private Cdb cdb;

@Resource(type=ResourceType.CDB, scope=Scope.CONTEXT,
qualifier="w-reactive-fm-loop")

private Cdb wcdb;

@Resource(type=ResourceType.MAAPI, scope=Scope.INSTANCE,
qualifier="reactive-fm-m")

private Maapi maapi;

public void init() {
try {

wsess = wcdb.startSession(CdbDBType.CDB_OPERATIONAL)
maapi.startUserSession("admin",

InetAddress.getByName("localhost"),
"system",
new String[] {"admin"},
MaapiUserSessionFlag.PROTO_TCP);

sub = cdb.newSubscription();
int subid = sub.subscribe(1, new allocVlanService(),

"/avl:alloc-vlan-data");
// tell CDB we are ready for notifications
sub.subscribeDone();

}
catch (Exception e) {

LOGGER.error("", e);
}

}

public void run() {
try {

while(true) {
int[] points= sub.read();
EnumSet<DiffIterateFlags> enumSet =

EnumSet.<DiffIterateFlags>of(
DiffIterateFlags.ITER_WANT_PREV,
DiffIterateFlags.ITER_WANT_ANCESTOR_DELETE,
DiffIterateFlags.ITER_WANT_SCHEMA_ORDER);

ArrayList<Request> reqs = new ArrayList<Request>();
try {

sub.diffIterate(points[0],
new Iter(sub),
enumSet, reqs);

}
catch (Exception e) {

reqs = null;
}
sub.sync(CdbSubscriptionSyncType.DONE_PRIORITY);

private void safeclose(Cdb s) {
try {s.close();}
catch (Exception ignore) {}

}

private enum Operation { CREATE, DELETE}
private enum Type { UNIT, VID}

private class Request {
ConfKey key;
Operation op;
Type t;
ConfPath path;

}

private class Iter implements CdbDiffIterate {
CdbSubscription cdbSub;

Iter(CdbSubscription sub) {
this.cdbSub = sub;

}

public DiffIterateResultFlag iterate(
ConfObject[] kp,
DiffIterateOperFlag op,
ConfObject oldValue,
ConfObject newValue, Object initstate) {

ArrayList<Request> reqs = (ArrayList<Request>) initstate;

try {
ConfPath p = new ConfPath(kp);
System.out.println("ITER " + op + " " + p);
ConfKey key = (ConfKey) kp[kp.length-2];
Request r = new Request();
r.path = p; r.key = key;

if ((op == DiffIterateOperFlag.MOP_CREATED) &&
kp[0].toString().equals("avl:request-allocate-unit")) {
r.op = Operation.CREATE; r.t = Type.UNIT;
reqs.add(r);

} else if ((op == DiffIterateOperFlag.MOP_CREATED) &&
kp[0].toString().equals("avl:request-allocate-vid")) {

r.op = Operation.CREATE; r.t = Type.VID;
reqs.add(r);

} else if ((op == DiffIterateOperFlag.MOP_DELETED)) {
r.op = Operation.DELETE;
reqs.add(r);

}
} catch (Exception e) {

LOGGER.error("", e);
}
return DiffIterateResultFlag.ITER_RECURSE;

}
}

private int[] units = null;
private int[] vids = null;

private int alloc_unit() {
if (units == null) {

units = new int[256];
for (int i = 0; i < 256; i++)

units[i]=-1;
}
for (int i =0; i < 256; i++) {

if (units[i] == -1) {
units[i] = i;
return i;

}
}
return -1;

}
private void deallocate_unit(ConfValue v) {

int i = Integer.parseInt(v.toString());
units[i] = -1;

}
private int alloc_vid() {

if (vids == null) {
vids = new int[256];
for (int i =0; i < 256; i++)

vids[i]=-1;
}
for (int i =0; i < 256; i++) {

if (vids[i] == -1) {
vids[i] = i;
return i;

}
}
return -1;

}
private void deallocate_vid(ConfValue v) {

long i = ((ConfUInt16)v).longValue();
vids[(int)i] = -1;

}
private void redeploy(String path, ConfKey k, Maapi m) {

Redeployer r = new Redeployer(path, k, m);
Thread t = new Thread(r);
t.start();

}
private class Redeployer implements Runnable {

private String path;
private ConfKey k;
private Maapi m;

public Redeployer(String path, ConfKey k, Maapi m) {
this.path = path; this.k = k; this.m = m;

}
public void run() {

try {
m.requestAction(new ConfXMLParam[] {},

"/avl:alloc-vlan{%x}/reactive-re-deploy",
k);

} catch (Exception e) {
throw new RuntimeException("error in reactive-re-deploy", e);

}
}

}
}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What are the RFM
shortcomings?

Works very well for staged
creates.

Doing staged updates or
deletes are increasingly
difficult.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• More logic has to be added to the CdbSubscriber to handle different
lifecycle event.

• At delete, a service is just deleted. So staging implies having a
façade service which can be deleted while the underlaying service is
deleting (updating with less and less written config).

• Some lifecycle cases are easily missed in the code.

RFM with complex lifecycle.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

RFM with complex lifecycle (staged delete)

NSO

MyService

Device

CdbSubscriber
Lifecycle
handling create() {

if (…) {
// set stage 1
// write plan data

} else {
return

}

if (…) {
// set stage 2
// write plan data

} else {
return

}

MyServiceFacade

CdbSubscriber
”re-deploy”

plan
component ”self”

component A

More logic in the underlying
subscriber to handle lifecycle events

A service facade with its own subscriber
to handle e.g. the delete

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Why are Nano
Services needed?

Reactive FastMap (RFM) is the
driving force.

Native support for all lifecycle
events with a deterministic
lifecycle

Keeping service code to a
minimum and located in one
place.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nano service Code
example

The CDB subscriber is
replaced by YANG
declarations.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

A Simple Nano Service
private void writeDeviceConfig(NavuNode root, NavuNode vlanService,

ConfUInt32 unitVal, ConfUInt32 vlanVal) throws NavuException {
NavuList managedDevices = root.container("devices").list("device");
for(NavuContainer deviceContainer : managedDevices.elements()) {

NavuContainer ifs = deviceContainer.container("config").
container("r", "sys").container("interfaces");

NavuContainer unit = null;
if (unitVal != null) {

NavuContainer iface = ifs.list("interface").sharedCreate(vlanService.leaf("iface").value());
iface.leaf("enabled").sharedCreate();
unit = iface.list("unit").sharedCreate(new ConfInt32((int)unitVal.longValue()));
unit.leaf("description").sharedSet(vlanService.leaf("description").value());

}
if (unitVal != null && vlanVal != null) {

unit.leaf("vlan-id"). sharedSet(new ConfUInt16(vlanVal.longValue()));
unit.leaf("enabled").sharedSet(new ConfBool(true));
for (ConfValue arpValue : vlanService.leafList("arp")) {

unit.leafList("arp").sharedCreate(arpValue);
}

}
}

}

private ConfUInt32 getChildLeafUInt32Value(NavuContainer runningRequest,
String leafname) throws NavuException {

if(runningRequest != null) {
NavuLeaf runningLeaf = runningRequest.leaf(leafname);
if (runningLeaf != null) return(ConfUInt32) runningLeaf.value();

}
return null;

}

private NavuList getTransRequestList(NavuNode root) throws NavuException {
return root.getParent().container(xcimrm.hash). container("xcimrm").list("request");

}

private NavuList getRunningRequestList(NavuNode root) throws NavuException {
startReadTransRunningOper(root);
NavuContainer operBase = new NavuContainer(this.operCtx);
NavuContainer operRoot = operBase.container(xcimrm.hash);

] return operRoot.container(xcimrm.prefix, "xcimrm").list("request");
}

private int startReadTransRunningOper(NavuNode root) throws NavuException {
this.operCtx = new NavuContext(root.context().getMaapi());
int th = operCtx.startOperationalTrans(Conf.MODE_READ);
return th;

}

private void checkThatSyncFromHasBeenPerformed(NavuNode root) throws Exception {
NavuList managedDevices = root. container("devices").list("device");
for (NavuContainer device : managedDevices) {

if (device.list("capability").isEmpty()) {
String mess = "Device %1$s has no capabilities, has sync-from been performed?";
String key = device.getKey().elementAt(0).toString();
throw new DpCallbackException(String.format(mess, key));

}
}

}
}

public class AllocVlanServiceRFS {
private static Logger LOGGER Logger.getLogger(AllocVlanServiceRFS.class);
private NavuContext operCtx = null;

@NanoServiceCallback(servicePoint="alloc-vlanspnt",
componentType="avl:vlan-iface", state=”ncs:init",
callType=NanoServiceCBType.CREATE)

public Properties vlanIfaceInitCreate(NanoServiceContext context,
NavuNode vlanService,
NavuNode root,
Properties opaque,
Properties componentProperties)
throws DpCallbackException {

System.out.println("vlan-iface alloc-req CREATE()");
LOGGER.setLevel(Level.ALL);
checkThatSyncFromHasBeenPerformed(root);

try {
ConfValue serviceKey = vlanService.leaf("name").value();
LOGGER.debug("ServiceKey = "+ serviceKey.toString());
NavuList transRequestList = getTransRequestList(root);
NavuContainer request = transRequestList.sharedCreate(serviceKey);
request.leaf("owner").sharedSet(

new ConfPath("/avl:alloc-vlan{%s}", serviceKey).toString());
} catch (Exception e) {

throw new DpCallbackException("Could not instantiate service", e);
}
return opaque; // opaque is not used by this service

}

@NanoServiceCallback(servicePoint="alloc-vlanspnt",
componentType="avl:vlan-iface", state="avl:vid-alloc",
callType=NanoServiceCBType.CREATE)

public Properties vlanIfaceAllocCreate(NanoServiceContext context,
NavuNode vlanService,
NavuNode root,
Properties opaque,
Properties componentProperties)
throws DpCallbackException {

System.out.println("vlan-iface vid-alloc CREATE()");
LOGGER.setLevel(Level.ALL);
try {

ConfValue serviceKey = vlanService.leaf("name").value();
LOGGER.debug("ServiceKey = "+ serviceKey.toString());
NavuList runningRequestList = getRunningRequestList(root);
NavuContainer runningRequest = runningRequestList

.elem(serviceKey.toString());
ConfUInt32 unit = getChildLeafUInt32Value(runningRequest, "unit");
ConfUInt32 vlan = getChildLeafUInt32Value(runningRequest, "vlan");
if (opaque == null) {

opaque = new Properties();
}
opaque.setProperty("UNITVAL", "'" + unit.toString() + "'");
writeDeviceConfig(root, vlanService, unit, vlan);

} catch (Exception e) {
throw new DpCallbackException("Could not instantiate service", e);

}
return opaque; // opaque is not used by this service

}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Simple Nano Service YANG statements
ncs:plan-outline vlan-plan {
description "Service alloc-vlan plan definition";

ncs:component-type "ncs:self" {
ncs:state "ncs:init";
ncs:state "ncs:ready” [
ncs:nano-callback;

}
}

ncs:component-type "avl:vlan-iface" {
ncs:state "ncs:init" {
ncs:post-action-node "/ncs:devices" {
ncs:action-name "sync-from";
ncs:result-expr "count(sync-result/result) = 1";

}
}
ncs:state "avl:unit-alloc" {
ncs:create {
ncs:pre-condition {
ncs:monitor
"/myserv:myoper[name=$SERVICE/name]" {
ncs:trigger-expr "syslog = 'true'";

}
}

}
}
ncs:state "avl:vid-alloc" {
ncs:create {
ncs:nano-callback;
ncs:pre-condition {
ncs:monitor
"/myserv:myoper[name=$SERVICE/name]" {
ncs:trigger-expr "syslog = 'true'";

}
}

}
}
ncs:state "ncs:ready";

}
}

ncs:service-behavior-tree alloc-vlanspnt {
description
"Behaviour tree for alloc-vlan service";

ncs:plan-outline-ref vlan-plan;

ncs:selector {
ncs:create-component "'self'" {
ncs:component-type-ref "ncs:self";

}
ncs:create-component ”vlan" {
ncs:component-type-ref "avl:vlan-iface";

}
}

}
}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nano vs Traditional
Services.

The original FastMap algorithm
is indifferent to ”staging”.
Needs external means to re-
deploy.

A Nano service executes on
the plan and has an enhanced
FastMap algorithm that
supports “staging”. Re-
deploys natively using kickers.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What is a kicker?

A kicker monitors a data node
(config or oper) and can call
an action when the data node
changes.
Simpler than a CDB
subscriber.

Created by writing kicker
declarations in a transaction
and takes effect after this
transaction is committed.

Note, does not work on data
written using the CDB API.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Internals of Nano vs
Traditional Services.

The are as YANG declarations
the same type of
“servicepoint”.

Any actions or operational data
on the service are still valid

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Internals of a traditional service
NSO

create() {

if (…) {
// set stage 1
// write plan data

}

if (…) {
// set stage 2
// write plan data

}

MyService
service-config

private-data
…
rev-diff-set

re-reploy

re-deploy
.
.
.

re-deploy

plan
component ”self”

component A

The re-deploys will make the service re-enter the
create() code. Each time an new ”if” clause is
evaluated true, more config is set on the devices.
This is the ”staging”of a RFM.
However all config, independent of stage, is ending
up in one and the same rev-diff-set

The plan is a log that
reflects the current state of
the RFM service.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Internals of a Nano service
NSO

create() {

if (…) {
// set stage 1
// write plan data

}

if (…) {
// set stage 2
// write plan data

}

plan
component ”self”

component A

MyService
service-config

private-data
…

-rev-diff-set

create() {
// set stage 2
}

<config-template>
// set stage 1
</config-template>

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

create
-pre-condition
delete
-pre-condition
private-data
-rev-diff-set

kicker for
pre-
condition

kicker for
pre-
condition

The create() code is broken up
and moved to the relevant states.

The plan is a execution
sequence. When a
pre-condition is not met

a kicker is created.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

What does the
Nano service
executable plan
imply?

Since the component and its
states constitutes a execution
order, this order can be
controlled and changed.
Typically delete operations
should go in reverse order -
backtrack

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Why would a Nano
plan-component
backtrack?

• A component is removed
from the plan.

• A pre-condition in a
components state was
previously satisfied but this is
no longer the case.

• The complete service
instance is deleted.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Plan components can be removed independently of each other
• Removal of config from a component is performed in “reverse”

order
• Other components can still progress forward.
• When the component is backtracking is complete the component is

removed from the plan.

A plan component is removed from the plan

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1, initially converging
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

Initially all
components are
progressing forward.

Each component are
independent and
execution stops at
the first pre-condition
that evaluates to
false.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1, Compontent A removed, backtracking
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

At some point it is
decided that a
component should be
removed.

The component is
set to backtracking
and device config
is removed in the
reverse order.
Still execution stops
At the first delete
pre-condition that
evaluates to false.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1,Parallel backtrack and forward progress
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

While a component
is backtracking other
components can
still commence their
forward execution.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1, Remove of backtracked component
Nano Service
plan

component ”self”

component B

init ready

init B1 B2 ready

When the component
is completely
backtracked it is
removed from the
plan.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• If a state in a plan component was satisfied but this is no longer the
case, this implies that the component has progressed “to far”.

• This backtrack motion has in this case a goal state, which is the
state that fails to be satisfied

• When the goal state is reached the component switches to forward
execution again.

A state pre-condition is no longer satisfied.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 2, initially converging
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

Initially all
components are
progressing forward.

Any re-deploy of
the service expects,
and will validate that
all previously met
pre-conditions are
still satisfied.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1, state pre-condition no longer satisfied
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

If a re-deploy will
identify that previously
met pre-condition no
longer is satisfied it
will immediately start
to backtrack that
component.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 1, backtracking to the goal state
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

The backtracking
component will
backtrack to the state
with the failing
pre-condition.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 2, component switch to forward progress
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

When the device
config is removed
up to the state with
the failing
pre-condition it will
switch back to
normal forward
execution again.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• If a service is deleted the service parameters together with its
executable plan (including rev-diff-sets) is “zombiefied” i.e. stored
as a blob in a zombie list.

• The service instance itself is removed but it cannot be recreated
while the zombie is backtracking.

• When all components are backtracked and removed the zombie is
removed from the list.

• The zombie list contains the plan that shows the backtracking
progress.

A service is deleted

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 3, initially converging
Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

Initially all
components are
progressing forward.

At some point the
complete service is
deleted.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 3, Service deleted, zombie created
Nano ServiceNano Service
plan

component ”self”

component A

component B

plan
component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

Nano Service
plan

component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

Zombie

plan
component ”self”

component A

component B

init ready

init A1 A2 ready

init B1 B2 ready

At delete the service parameters
are stored as a blob, a zombie in
a zombie list together with its
plan.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 3, Zombie service components backtrack

Zombie

plan
component ”self”

component B

init ready

init B1 B2 ready

The zombie starts backtracking all of the
plan components. The same principles, with
delete pre-conditions controlling which states
can be removed, holds for the zombie.

During the zombie phase the same, deleted,
service instance cannot be recreated.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 3, Zombie components are removed

Zombie

plan
component ”self”

init ready

The last component to be removed from
a zombie plan is the self component.

At this point all device config is removed
by the service zombie.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Scenario 3, Finally zombie is removed

Zombie

plan
component ”self”

init ready

When all components are removed the
zombie itself is removed.

At this point the same service instance
as was previously a zombie is now allowed
to be recreated, if that would be the case.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

How does Nano
services handle
actions?

In FastMap any actions, rpcs
or time consuming operation
must be avoided.

In a RFM these are found in
the CDB subscribers. They are
often necessary e.g. when an
rpc must be called to free the
license of a virtual devices that
should be deleted etc.

Nano services implements
these as state post-actions
that can run asynchronously.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Post-actions aka. Side-effects
NSO

plan
component ”self”

MyService
service-config

create() {
// set stage 2
}

status
post-action-status
create
-pre-condition
-post-action

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status

delete() {
// check state
}

create() {
// set stage 4
}

When a state is
completed and this
state has a declared
post-action, this
implies that this
action should be run
asynchroneously.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Post-actions, adding to the side-effect-queue
NSO

plan
component ”self”

MyService
service-config

create() {
// set stage 2
}

status
post-action-status
create
-pre-condition
-post-action

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status

delete() {
// check state
}

create() {
// set stage 4
}side-effect-queue

…

/MyService/plan/self/state2 <some action> not-reached

…

The action request
is put on a specific
queue. The
side-effect-queue.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Post-actions, updating post-action-status
NSO

plan
component ”self”

MyService
service-config

create() {
// set stage 2
}

status
post-action-status
create
-pre-condition
-post-action

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status

delete() {
// check state
}

create() {
// set stage 4
}side-effect-queue

…

/MyService/plan/self/state2 <some action> reached

…

After execution the
result is reported
back to the original
state.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Post-actions, waiting for completion
NSO

plan
component ”self”

MyService
service-config

create() {
// set stage 2
}

status
post-action-status
create
-pre-condition
-post-action

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status
create
-pre-condition
delete
-pre-condition

status
post-action-status

delete() {
// check state
}

create() {
// set stage 4
}side-effect-queue

…

/MyService/plan/self/state2 <some action> reached

…

Next state can have
a pre-condition that
monitors the result
of the post-action.
In effect, the service
will commit current
transaction and
postpone further
execution until the action has finished.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

So far the plan has
been static. How
can we make the
plan change?

During service execution
sometimes decisions to
change the plan is made. In
traditional RFMs this is made
programmatically.

A Nano service has a
behavior-tree that makes all
decisions on the layout of the
plan.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• A directed tree consisting of control-flow and execution nodes with
exactly one root which must be a control-flow node.

• All interior nodes are control-flow nodes and all leafs are execution
nodes.

• A control-flow node can, when evaluated, decide which children
should also be evaluated.

• A execution node can, when evaluated, create a plan component by
referring to a component-type and give it a name.

• Evaluating the full tree renders a plan, aka. synthesizing the plan.

Behavior tree

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• During the plan execution. The behavior tree is synthesized before
the first component and then between each component that is
processed.

• If a component is added this is also executed. If a component is
removed it will immediately be backtracked.

• There are two types of control-nodes: selectors and multipliers. The
first selects it children, the second multiplies it children depending
on an controlling expression.

• Enough to create a very dynamic plan if needed.

Behavior tree synthesizing cont.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Synthesizing the plan
MyService
plan-outline

component-type ncs:self
state ncs:init
state ncs:ready

component-type my:A
state ncs:init
state my:A1

create
pre-condition
post-action

state my:A2
create

pre-condition
delete

pre-condition
state ncs:ready

component-type my:B
state ncs:init

create
pre-condition

state my:B1
state my:B2
state ncs:ready

service-behavior-tree

multiplier
when <node-set>
var vname=current()/name

create-component
type ncs:self
name ’self’

selector

selector
pre-condition

create-component
type my:A
name ’A’

create-component
type my:B
name $vname

MyService plan
component ncs:self ”self”

component my:B ”elem1”

component my:B ”elem2”

component my:B ”elem3”

init ready

init B1 B2 ready

init B1 B2 ready

init B1 B2 ready

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

How are Nano
services defined

Everything around Nano
services are declared using
YANG extensions.

The only code part is the
create code and the post
actions.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• A Nano service uses the normal service point.
• A Nano service must use the ncs:nano-plan-data grouping.
• A Nano service must declare a ncs:plan-outline with all its possible

components and their states.
• A Nano service must declare a ncs:service-behavior-tree with its

control-flow and execution nodes.
• All “reasonable” declarations are xpath expressions (i.e. almost

everything). This includes pre-conditions, post-actions, variable
declarations etc.

Nano service declarations.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nano Service declaration
list link {

description "This is my Nano service";

uses ncs:nano-plan-data;
uses ncs:service-data;
ncs:servicepoint link-servicepoint;

key name;

leaf name {
type string;

}

…

}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nano Service plan-outline declaration
ncs:plan-outline link-plan {
ncs:component-type "ncs:self" {

ncs:state "ncs:init";
ncs:state "ncs:ready";

}
ncs:component-type "link:vlan-link" {

ncs:state "ncs:init";
ncs:state "link:dev-setup" {

ncs:create {
ncs:nano-callback;

}
}
ncs:state "ncs:ready" {

ncs:create {
ncs:pre-condition {

ncs:monitor "$SERVICE/endpoints" {
ncs:trigger-expr "test-passed = 'true'";

}
}

}
ncs:delete {

ncs:pre-condition {
ncs:monitor "$SERVICE/plan" {

ncs:trigger-expr "component[name != 'self'][./back-track = 'false']/state[name='ncs:ready'][./status = 'reached’] or "
+ "not(current()/component[back-track = 'false'])";

}
}

}
}

}
}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Nano Service service-behavior-tree declaration
ncs:service-behavior-tree link-servicepoint {

description
"Make before brake vlan example";

ncs:plan-outline-ref link-plan;

ncs:selector {
/* create a single component of type self */
ncs:create-component "'self'" {

ncs:component-type-ref "ncs:self";
}

/* create one link component per given endpoint */
ncs:multiplier {

ncs:foreach "endpoints" {
ncs:variable "LINKNAME" {

ncs:value-expr "concat(a-device, '-', a-interface,
'-', b-device, '-', b-interface)";

}

ncs:create-component "$LINKNAME" {
ncs:component-type-ref "link:vlan-link";

}
}

}
}

}

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Are the
development of
Nano services
finished now?

On the contrary, Nano services
are just recently becoming
adopted in real deployments.

New functionality is discussed
and planned.

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

• Debugging tools
• More support and control of post-actions.
• Support for notification kickers.
• Drawing tool for building/redefining Nano services.
• Support for simplifying xpath expression declarations
• …

New Nano services functionality could be…

