GETTING THE RIGHT EVENTS FROM NETWORK ELEMENTS

NMS-A01

Benoit Claise
Housekeeping

• Please switch off your mobile phones!
• Don’t forget to complete your evaluations - you can access them on-line via Schedule Builder!
• Visit the World of Solutions on Level -01!
• Your session printouts have been prepared by Print Center on Level -01
• Please remember this is a ‘No Smoking’ venue!
• Please remember to wear your badge at all times including the Party!
This Tutorial Is...

• **NOT** about
 - Fault Management Return On Investment
 - A level 1 type of presentation
 - Marketing slides
 - Polling the device to “discover” the fault
 - Fault Management Applications details

• **About**
 - Features, tricks, information, examples, etc.
 - on “How to generate the right events from your network elements!”
Polling vs. Event Notification

• Message:
 Let the network elements monitor themselves
 Let’s tune the right fault management events from the network elements

After the event...
Then potentially some event-based polling
Polling vs. Event Notification

<table>
<thead>
<tr>
<th>Polling</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load on</td>
<td>Network Manager Station, Links, Network Devices</td>
</tr>
</tbody>
</table>
| **Application** | **Performance Management**
| | (Availability Monitoring, Utilization, and Forecasting)
| | **Fault Management** | **Proactive Fault Monitoring, Operational Monitoring** |
Agenda

• SNMP Notification: Traps and Informs
• Syslog Messages
• Embedded Syslog Manager
• RMON Event/Alarm
• EVENT-MIB
• EXPRESSION-MIB
• Specific MIBs and Scenarios
• Embedded Event Manager
SNMP NOTIFICATION

EVERYBODY KNOWS ABOUT TRAPS!
SNMP Notifications

- Notifications are the messages being generated from the SNMP agent, regardless of the mechanism to deliver them

- SNMP notification implemented in SNMPv2:
 - Traps
 - Unacknowledged UDP packet
 - Implemented since SNMPv1
 - Informs
 - Acknowledged UDP packet
 - Implemented since SNMPv2c
Remote Device Goes Down

1. Load MIB
2. SNMP Agent
3. Agent Generates Notification
4. SNMP Notification
5. SNMP Manager

SNMP Trap Notification

- SNMP trap notification contains:
 - Varbinds: ifIndex, ifDescr, ifType, ifLocReason
- OID: linkDown notification

LinkDown Notification Delivered to the NMS

OID for linkDown

Trap PDU 1.3.6.1.2.1.11.0.2

ifIndex.4 4
ifDescr.4 Serial 1/2
ifType.4 propPointToPointSerial(22)
ifLocReason.4 Keepalive failed

Instance 4
Serial 1/2
How to Enable SNMP Traps Notification?

• On a Cisco router:

 Router (config)# snmp-server enable traps <trap_type>

 Router (config)# snmp-server host <NMS host> version <v1/v2c/v3 [auth | noauth | priv]> <trap_community> <trap_type>

• On a Cisco switch:

 Switch>(enable) set snmp trap enable <trap_type>
 Switch>(enable) set snmp trap <NMS_host>
Traps-Show Commands

Router#show snmp
...
22689 SNMP packets output
 0 Too big errors (Maximum packet size 1500)
 229 No such name errors
 0 Bad values errors
 0 General errors
 22450 Response PDUs

172 Trap PDUs

SNMP logging: enabled
Logging to 10.48.71.130.162, 0/10, 86 sent, 0 dropped.
Logging to 144.254.7.167.162, 0/10, 85 sent, 1 dropped.
linkUp/linkDown Notification

Cisco Redefinition

CISCO-GENERAL-TRAPS

IETF Notification

IF-MIB
(RFC2233/RFC2863)

router(config)# snmp-server trap link ietf
How to Enable SNMP Inform Notification?

Enable Trap and Inform Notifications; Ideally “Notification”!

Router(config)# snmp-server enable traps ...

Router(config)# snmp-server host <host-id> informs
 version [2c | 3 [auth | noauth | priv]]
 <community-string>...

Router(config)# snmp-server informs [retries retries] [timeout seconds] [pending pending]

By default: 3 retries, 30 sec timeout, 25 informs pending for acknowledgement

- “snmp-server enable informs…” no functionality!

- Switches:

 So far, needed the SNMPv3 architecture
 8.3(1): simplified v2c inform CLI
Informs: Show Commands

Router#show snmp
...
SNMP Manager-role output packets ...
 20 Inform-request PDUs
 0 Timeouts
 0 Drops
...
SNMP Manager-role input packets ...
 20 Response PDUs
 0 Response with errors
...
SNMP informs: enabled
...
...
SNMP informs: enabled
 Informs in flight 0/25 (current/max)
 Logging to 10.48.71.163.162
 2 sent, 0 in-flight, 0 retries, 0 failed, 0 dropped
SNMP Source Trap Notification

SNMP Agent

Eth0 (10.1.1.1)

S0

L0

SNMP Manager

Router(config)# snmp-server trap-source ethernet 0
(notification sent even if ethernet 0 is down)

Or even better

Router(config)# snmp-server trap-source loopback 0
SNMP Traps vs. Informs

<table>
<thead>
<tr>
<th></th>
<th>Traps</th>
<th>Informs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>None</td>
<td>Some</td>
</tr>
<tr>
<td>Retries</td>
<td>Not Applicable</td>
<td>3 (Default)</td>
</tr>
<tr>
<td>Resources</td>
<td>x</td>
<td>X</td>
</tr>
<tr>
<td>Source</td>
<td>Source Interface Configuration</td>
<td>Not Implemented</td>
</tr>
</tbody>
</table>
Notification Deduplications
Notion of Time

SNMPv2-Notification-PDU

<table>
<thead>
<tr>
<th>PDU type</th>
<th>Request-id</th>
<th>ErrorStatus =0</th>
<th>ErrorIndex =0</th>
<th>Variable-bindings:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sysUpTime</td>
</tr>
</tbody>
</table>

- The notifications have no notion of UTC time
 - NTP is of NO USE between network elements and notification receiver for SNMP notifications
 - Big drawback of SNMP notifications
- No solution for network-wide alarm deduplications or analysis
 - Only track: the fault management applications look at the time the notifications are received
- Similar problem with SNMPv1: trap also sends the sysUpTime
How to Find Out About Notifications?

Router(config)# snmp-server enable traps ?
 atm Enable SNMP atm traps
 bgp Enable BGP state change traps
 config Enable SNMP config traps
 ...

- TAC Web document
 http://www.cisco.com/warp/customer/477/SNMP/SNMPTrapsInImages.html

- What device supports which MIB?
 http://www.cisco.com/go/mibs
NOTIFICATION-LOG-MIB

- RFC-3014 “NOTIFICATION-LOG MIB”
- Notification buffer: allow a management station to retrieve notifications that have been missed
- Notifications visualization without a receiver; useful for troubleshooting!
- No persistence across reload

Router(config)#snmp mib notification-log ?
 default create/configure default log
 globalageout modify the global ageout
 globalsize modify the global size
The MIB returns the MIB values, not the CLI
WHAT HAPPENS IF THE NOTIFICATION DOESN’T EXIST?
OR IF THERE IS NO SNMP NOTIFICATION RECEIVER?
Syslog Message

Agent

Fan Failure

Syslog Message Sent:
*Apr 10 08:21:32 CET
%CI-3-PARTFANFAIL : Single fan failure

Syslog Receiver

Cisco InfoCenter
CW RME Syslog Analyzer
(UNIX Syslogd)

Diagram:
1. Agent sending Syslog Message
2. Syslog Receiver receiving the message
3. Cisco InfoCenter CW RME Syslog Analyzer (UNIX Syslogd)

Image: Syslog Message Diagram
Syslog Message

- Syslog produces (mostly) structured logs of information; allowing software subsystems to report and save important error messages either locally or to a remote logging server.
- Very basic reporting mechanism: no variable bindings, plain English text.
- Text messages sent to a Syslog daemon, on UDP port 514.
- Very basic “standard”, informational RFC 3164.
- RFC 3195: reliable delivery for Syslog.
- Complementary to other events (SNMP notifications).
Syslog Message Format

Message Header:

< >, Timestamp, Tag string, …

<facility(X)>.<level(Y)>

WHERE Is the Message Logged in the Syslog Server?
local0…local7, cron, user, etc.

WHAT Messages Are Logged?
emergency 0, alert 1, critical 2, error 3, warning 4, notification 5, information 6, debug 7

• <facility.level> is not retained in the Syslog message file
• Additional timestamp is added by logging host
• Header example
 Message Header: local7.emergency
How to Enable Syslog Message on Cisco IOS?

- On a Cisco router:

  ```
  Router(config)# logging on
  Router(config)# logging <server_ip_address>
  Router(config)# logging facility local6
  Router(config)# service sequence-numbers
  Router(config)# service timestamps log [datetime | uptime]
  Router(config)# service timestamps log datetime [msec] [localtime] [show-timezone] [year]
  ```

 Optional: Default Is in UTC with No Milliseconds and No Time Zone

 Note: UTC, Universal Time, since 1970
Syslog Message “Body” Format in the Cisco IOS

- NTP is needed!
- Header:level can be different than Body:severity
Router# show logging
Syslog logging: enabled (0 messages dropped, 13 messages rate-limited, 0 flushes, 0 overruns)
 Console logging: level debugging, 34 messages logged
 Monitor logging: level debugging, 0 messages logged
 Buffer logging: level debugging, 47 messages logged
 Logging Exception size (8192 bytes)
 Trap logging: level debugging, 51 message lines logged
 Logging to 10.48.71.225, 51 message lines logged

Log Buffer (8192 bytes):
 *Apr 10 08:21:32 CET: %SYS-5-RESTART: System restarted --
 *Apr 10 08:21:32 CET: %SNMP-5-COLDSTART: SNMP agent on host popo is undergoing a cold start
 *Apr 10 08:21:32 CET: %LINK-5-CHANGED: Interface FastEthernet5/1, changed state to administratively down
How to Enable Syslog Message on Catalyst OS?

On a Cisco Catalyst Switch:

```
Switch(enable) > set logging session enable
Switch(enable) > set logging server <Server_ip_address>
Switch(enable) > set logging server facility local7
Switch(enable) > set logging server severity 3
Switch(enable) > set logging console enable
Switch(enable) > set logging timestamp enable
```

Local Time Configured on the Switch (Optional)
Router(config)# logging source-interface loopback 0
Syslog Message Filtering: Example 1

• How to get the error messages which have severity level equal or lower than error?

Router(config)# logging 10.10.10.10
Router(config)# logging facility local6
Router(config)# logging trap errors
Router(config)# logging console debugging

Confusing! Should be Level!!
(The One in the Syslog Header)

• On the Syslog server (UNIX), the corresponding line in Syslog.conf file is:

 local6.errors /var/log/mylog
Syslog Message Filtering: Example 2

• How to only log the error messages related to spanning tree?

Switch> (enable) set logging session enable
Switch> (enable) set logging server 10.10.10.10
Switch> (enable) set logging server severity 0
Switch> (enable) set logging level spantree 0
Switch> (enable) set logging server facility local5
Switch> (enable) set logging console enable

• On the Syslog server (UNIX), the corresponding line in Syslog.conf file is:

 local5.emerg /var/log/spantree
Convert a Syslog Message to a SNMP Notification?

Why?
Not all error messages are supported via notifications
Syslog daemon not running in the NMS
Events correlation need

Send a trap/inform from the CISCO-SYSLOG-MIB when a new Syslog message is generated

How to convert to a trap?

```
Router (config)# snmp-server enable traps syslog
```

How to convert to an inform?

```
Router (config)# snmp-server host <x.x.x.x> informs version 2c public syslog
```

Attention to the `<all>` Keyword !!!
Syslog Writing to Flash

• System error and debug messages saved on the router’s CompactFlash disks (also known as ATA Flash disks)
• Persistent across reboot
• Introduced in 12.0(26)S

Router(config)# logging buffered
Router(config)# logging persistent url disk1:/syslog size 134217728 filesize 16384

Router# copy slot0:/syslog ftp://myuser/mypass@192.21.1.129/syslog
Syslog Issue
Consistent Message Format

- Syslog isn’t consistently used across different Cisco platforms and Cisco IOS versions

 Example: environmental monitor initiated shutdown event

 Cisco IOS 11.2 → ENVM-1-SHUTDOWN
 Cisco IOS 12.0 → ENVM-0-SHUT
How to Find Out About Syslog Messages?

• ‘Cisco IOS Software System Error Messages’ per Cisco IOS release
 For Cisco IOS version 12.2:
 products_system_message_guide_book09186a008009e73d.html

• ‘System message’ per Cisco switch, Cisco 6000 switch:
 ps700/products_system_message_guide_chapter09186a00800f2709.html

• Error Message Decoder
 http://www.cisco.com/cgi-bin/Support/Errordecoder/home.pl

• Output Interpreter
 https://www.cisco.com/cgi-bin/Support/OutputInterpreter/home.pl
XML Interface to Syslog Messages

• Enable Syslog messages to be sent in an Extensible Markup Language (XML) format
• Logs in a standardized XML format can be more readily used in external customized monitoring tools
• Tags are hard-coded
• Available in 12.2(15)T
• Configuration:

 Router(config)#logging console xml
 Router(config)#logging monitor xml 6
 Router(config)#logging host 128.107.165.215 xml
 Router(config)#logging host 171.69.1.129
 Router(config)#logging buffered xml 10000
XML Interface to Syslog Messages
Events Comparison

000013: *Oct 11 14:52:10.039: %SYS-5-CONFIG_I:
Configured from console by vty0 (172.19.208.14)

<iOS-log-msg>
 <facility>SYS</facility>
 <severity>5</severity>
 <msg-id>CONFIG_I</msg-id>
 <seq>000013</seq>
 <time>*Oct 11 14:52:10.039</time>
 <args>
 <arg id="0">console</arg>
 <arg id="1">vty0 (172.19.208.14)</arg>
 </args>
</iOS-log-msg>
Syslog Messages vs. SNMP Notifications

<table>
<thead>
<tr>
<th></th>
<th>Syslog</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMS</td>
<td>Syslog Daemon</td>
<td>Trap Receiver</td>
</tr>
<tr>
<td>Protocol/Port</td>
<td>UDP 514</td>
<td>UDP 162</td>
</tr>
<tr>
<td>Filtering</td>
<td>Yes</td>
<td>Limited</td>
</tr>
<tr>
<td>Format</td>
<td>Easy-to-Read Format, No MIB Needed</td>
<td>More Rigid Format, Parse Able</td>
</tr>
<tr>
<td>Reliability</td>
<td>None (RFC 3195 Reliable Syslog) (Syslog Writing to Flash)</td>
<td>None with Traps Some with Informs (NOTIFICATION-LOG MIB)</td>
</tr>
</tbody>
</table>

Note: the Syslog message could be sent faster!
EMBEDDED SYSLOG MANAGER

SOME MORE FLEXIBILITY FOR THE SYSLOG MESSAGES
Embedded Syslog Manager (ESM)

- Post-process Syslog messages with selected ESM filters (proactive rules-based analysis)
- User definable scripting (TCL)
- New message queue in parallel with classic Syslog
- Available in images with TCL 8.3.4, in 12.3(2)T, 12.2(25)S
Embedded Syslog Manager (ESM)
Configuration Example

Router(config)# logging filter <URL> [<position>]
[<args <argstring>]]

- “URL”, the location of the TCL script (Cisco IOS, Flash, Web, TFTP server)
- “Position”, ordering of filters when multiple exist
- “Args”, arguments to the TCL script

Router(config)# logging console filtered
Router(config)# logging host <x.x.x.x> filtered [stream_id]

- The stream_ID is added by the script, for event routing
Embedded Syslog Manager (ESM)
Example 1

• **Severity escalation**: messages that Cisco deemed low priority may be very important to some customers

• Example: escalate syslog messages that contain the word ‘CONFIG_I’ to severity level of 4 (they are by default level 5)

```bash
Router(config)# logging filter slot0:escalate.tcl args CONFIG_I 4
```
Embedded Syslog Manager (ESM) Example 1

Embedded Syslog Manager, Severity Escalation Module
===
Usage: Set CLI Args to "mnemonic new_severity"
Namespace: global
Check for null message

if { [string length $::orig_msg] == 0} {
 return ""
}

if { [info exists ::cli_args] } {
 set args [split $::cli_args]
 if { [string compare -nocase [lindex $args 0] $::mnemonic] == 0 } {
 set ::severity [lindex $args 1]
 set sev_index [string first [lindex $args 0] $::orig_msg]
 if { $sev_index >= 2 } {
 incr sev_index -2
 return [string replace $::orig_msg $sev_index $sev_index \n [lindex $args 1]]
 }
 }
}

return $::orig_msg
Embedded Syslog Manager (ESM)
Example 2

- **Message correlation:** to help reduce the volume of messages when certain well-known network events occur, ESM can correlate local events, and summarize them.

- **Example:** link-flapping messages can be counted over a period of time, and a single Syslog message sent.

 00:22:11: %LINK-3-UPDOWN: serial1 flapping
 (4 changes to up/4 changes to down between 00:21:09 and 00:22:11)
Embedded Syslog Manager (ESM)
Other Examples

- **Message routing:** categorize messages using criteria other than facility or severity
 Example: send all spanning tree messages to a separate syslog server (setting a specific stream ID in the TCL script)

- **SMTP-based email alerts:** capability for notifications using TCP to external servers, such as TCP-based Syslog collectors or Simple Mail Transfer Protocol (SMTP) servers
 Example: “configuration changes” sent to administrators via an email message

- **Your example…the possibilities are endless!**
SOMETIMES THE EXACT NOTIFICATION DOESN’T EXIST! BUT THE SNMP OBJECTS TO TRIGGER THE NOTIFICATION DO EXIST!
RMON Event and Alarm

High CPU!!

SNMP Agent ➔ Cloud ➔ NMS

Sent an Alarm when CPU load > 80%

ALARM: “cpu too busy”
RMON Event and Alarm

• Allows proactive monitoring:
 The device polls itself

• RMON-MIB used to configure SNMP notification:
 Traps and informs
 Integer32, Counter32, Counter64, Gauge, or Timeticks may be sampled

• Included in all Cisco IOS software images
 Since Cisco IOS 11.1
 CLI or SNMP configuration

• Included in all the switches images
 Only SNMP configuration
How to Enable RMON Event and Alarm via CLI?

- Configure RMON to generate a trap if CPU utilization reaches 80%, and rearm the trap if utilization drops below 40%, sampling interval is 20 seconds.

```plaintext
Router(config)#rmon alarm 1
cpmCPUTotalEntry.3.0 20 absolute rising-threshold 80 1 falling-threshold 40 2 owner me

Router(config)#rmon event 1 log Trap public description "cpu busy" owner me

Router(config)#rmon event 2 log description "cpu not too busy"
```
RMON Reaction Condition

Thresholds

Rising
80%

Falling
40%

Threshold Violation

Alert!!

No Alert

Threshold Violation

Alert!!

Threshold violation

<40%

T: Internal Sampled Interval (20 sec)
How to Enable RMON Event and Alarm via SNMP?

Send a trap when the number of bytes going into interface with ifIndex 12, during the last two minutes is above 140000000

```
snmpset -c private <router> eventStatus.123 integer 2
snmpset -c private <router> eventDescription.123 string "above 140000000"
snmpset -c private <router> eventType.123 integer 4
snmpset -c private <router> eventCommunity.123 string "public"
snmpset -c private <router> eventOwner.123 string "event_owner"
snmpset -c private <router> eventStatus.123 integer 1
snmpset -c private <router> alarmStatus.321 integer 4
snmpset -c private <router> alarmStatus.321 integer 2
snmpset -c private <router> alarmInterval.321 integer 120
snmpset -c private <router> alarmVariable.321 integer ifInOctets.12
snmpset -c private <router> alarmSampleType.321 integer 1
snmpset -c private <router> alarmRisingThreshold.321 integer 140000000
snmpset -c private <router> alarmRisingEventIndex.321 integer 123
snmpset -c private <router> alarmOwner.321 string "alarm_owner"
snmpset -c private <router> alarmStatus.321 integer 1
```
Which MIB Variables to Monitor?

dot3StatsCarrierSenseErrors
CiscoEnvMonTemperatureState
CpmCpuTotal5min
IfOutDiscards
CiscoEnvMonFanState
BufferNoMem
LocIfResets
LocIfCollisions
IfOperStatus
CiscoMemoryPoolFree
LocIfInputQueueDrops
LocIfCarTrans
BufferFail
LocIfInCRC
LocIfOutputQueueDrops

See the APPENDIX
Fault Management

Which MIB Variables to Monitor?

Interface

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Times the Interface Internally Reset</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.17</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>The Current Operational State of the Interface; the Testing (3) State Indicates That No Operational Packets Can Be Passed</td>
<td>.1.3.6.1.2.1.2.2.1.8</td>
<td>5 Min</td>
<td>!= 1</td>
</tr>
<tr>
<td>Number of Times Interface Saw the Carrier Signal Transition</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.21</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Output Collisions Detected on This Interface</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.25</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>Number of Input Packets Which Had Cyclic Redundancy Checksum Errors</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.12</td>
<td>15 Min</td>
<td></td>
</tr>
</tbody>
</table>
ifIndex and RMON Persistence

- **ifIndex persistence**

 Router

  ```
  router(conf) snmp-server ifindex persist
  router(conf-if) snmp-server ifindex persist
  ```

 Switch: ifIndex persistence by default

- **RMON persistence**

 Router: event/alarm saved in the startup configuration

 Switch: no event/alarm persistence
EVENT-MIB

SOMETIMES THE EXACT NOTIFICATION DOESN’T EXIST!
BUT THE SNMP OBJECTS TO TRIGGER THE NOTIFICATION DO EXIST!
Event-MIB

- The EVENT MIB provides a superset of the capabilities of the RMON alarm and event
- The EVENT MIB calls “triggers”
 The RMON MIB calls “alarms,”
 but the concepts are the same
- More flexible test types with the EVENT-MIB
 Existence test: absent, present, changed
 Boolean test: \(<\), \(=\), \(<\), \(\leq\), \(>\), \(\geq\)
- Event MIB proposed by Cisco to IETF DISMON
 Working Group, accepted standard track RFC-2981
Event-MIB Advantages vs. RMON Event and Alarm

- EVENT MIB can monitor
 - Any MIB object (existence)
 - Any integer/counter (Boolean, threshold)
- RMON MIB can only monitor
 - Integer/counter (threshold)
- EVENT-MIB allows wildcarding
- EVENT-MIB sends an SNMP notification in response to a trigger (like RMON) but add the concept of setting a MIB object (integers)
- EVENT-MIB can specify which variables to add to the notification
Cisco IOS Support

• Event MIB Support in Cisco IOS release 12.1(3)T and 12.0(12)S

• RFC 2981-compliant support is in Cisco IOS release 12.2(4)T

• Only configuration support via SNMP so far: no CLI

 Scriptable Interface for adding command line support in 12.3(7)T

 However “show management event” exists

 However “debug management event mib” exists
EVENT-MIB: Example 1
Wildcarding

- Wildcarding is a powerful functionality which allows you to monitor multiple instances of an object
- Can specify a single OID for monitoring, or use wildcarding to specify a group of OIDs
- Example:

 Monitor ifInOctets for all interfaces; the EVENT-MIB is configured to monitor the delta values of ifInOctets for all interfaces once per minute; if any of the samples exceed the delta rising or falling triggers, a trap notification will be sent
EVENT-MIB: Example 2
Add Variable to Notification

1. Look at the Status of ALL the Interface: ifOperStatus.*
2. Customized New linkUP/Down Notification Sent with Extra VARBINDS (sysLocation, sysName…)
EVENT-MIB: Example 3
SNMP Set

1. The Trigger
 mteTriggerValueID => ccmHistoryRunningLastChanged
 mteTriggerBooleanComparison <> 0
 => change in the config

2. The Event
 SNMP Set, using CONFIG-COPY-MIB to copy the config to TFTP server

3. The SNMPSet
 TFTP Server
 Change in the config
How to Enable the EVENT-MIB?

Step 1: Any MIB Object Type

- Each trigger is configured to watch a single object or a group of objects specified by a wildcard.
- The object-type can be any one of the types:
 - INTEGER_TYPE
 - OCTET_PRIM_TYPE
 - NULL_TYPE
 - OBJECT_ID_TYPE
 - SEQUENCE_TYPE
 - INTEGER_32_TYPE
 - IP_ADDR_PRIM_TYPE
 - COUNTER_TYPE
 - GAUGE_TYPE
 - TIME_TICKS_TYPE
 - OPAQUE_PRIM_TYPE
 - COUNTER_32_TYPE
 - UNSIGNED32_TYPE
 - COUNTER_64_TYPE

- However, the type of sampling dictates the types of objects that can be monitored.
How to Enable the EVENT-MIB?

Step 2: Possibility: Sampling Type

• The Event MIB process checks the state of this watched object at predefined intervals.

• The type of sampling that can be done on an object is of two types:
 - Absolute
 - Delta

• Configurable observation interval
How to Enable the EVENT-MIB?

Step 3: Test Type and Parameters

• The test that can be done on the watched object is one or a combination of the following:

 Existence

 Absent, Present, Changed

 Boolean

 Unequal, Equal, Less, LessOrEqual, Greater, GreaterOrEqual

 Threshold

 Rising, Falling, Rising or Falling
How to Enable the EVENT-MIB?

Step 4: Actions

- This could be one or both of the following:
 - Notifications (Traps/Informs), with the possibility to add extra Object IDs to the notification
 - SNMP set
How to Enable EVENT-MIB?

Define the Trigger
- mteTriggerTable
 - INDEX: mteOwner, IMPLIED
 - mteTriggerName
 - mteTriggerObjects
 - mteTrigger*Event

Define Which Variable(s) to Add to the Notification
- mteObjectsTable
 - INDEX: mteOwner, IMPLIED
 - mteObjectsName
 - mteObjectsIndex

Define the Notification
- mteEventNotificationTable
 - INDEX: mteOwner, IMPLIED
 - mteEventName

Define the Event
- mteEventTable
 - INDEX: mteOwner, IMPLIED
 - mteEventName
 - mteEventAction

Define the SNMP Set
- mteEventSetTable
 - INDEX: mteOwner, IMPLIED
 - mteEventName
EVENT-MIB Feature
MIB Persistence

- Allows the MIB to be persistent across reloads, i.e., MIB information retains the same set object values each time a networking device reboots

```
Router(config)# snmp mib persist [event]
```

- Write to NVRAM by using the “write mib-data“
- Any modified MIB data must be written to NVRAM memory using the “write mib-data”

```
Router# write mib-data
```

- Added in 12.2(4)T3
Event MIB Summary

- If we want a trigger:
 - Threshold based,
 - On the local device (not remote),
 - Without wildcard,
 - With no extra objects in notification,
 - With no SNMP Set

- Then it is easier to use the RMON Event/Alarm

- Else the EVENT-MIB is your friend 😊
SOMETIMES THE DESIRED SNMP OBJECT DOESN’T EXIST BUT CAN BE DERIVED FROM MULTIPLE OTHER OBJECTS
EXPRESSION-MIB

• Allows you to create new SNMP objects based upon existing MIB variables and formulas
• Interesting when combined with the EVENT-MIB
• EXPRESSION MIB proposed by Cisco to IETF DISMON Working Group, accepted standard track RFC-2982
 Cisco implementation based on IETF draft, again in the DISMON Working Group, and numbered in Cisco’s namespace
• Only configuration support via SNMP so far: no CLI
 Scriptable interface for adding command line support in 12.3(7)T
 However “show management expression” exists
 However “debug management expression mib” exists
EVENT-MIB and EXPRESSION-MIB

Example 1: Notification

• An access router would like to send a trap only for the high-speed interface

• Router A sends a trap when Serial0 has:
 BW>100Kbits & OperStatus=DOWN

• Steps:
 Create an expression that will return “1” when the condition is TRUE and “0” when FALSE

 Exp1 = (ifSpeed > 100000) && (ifOperStatus == 2)

 If Exp1 == “1” generates an event; this will be checked every minute
EVENT-MIB and EXPRESSION-MIB
Example 1: Notification

```snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 6
snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 5
snmpset -v 2c -c private RouterA expExpressionIndex.101.49.101.120.112 gauge 1
snmpset -v 2c -c private RouterA expExpressionComment.1 octetstring "e1 expression"
snmpset -v 2c -c private RouterA expExpression.1 octetstring '$1 < 100000 && $2 == 2'
snmpset -v 2c -c private RouterA expObjectID.1.1 objectidentifier ifSpeed.16
snmpset -v 2c -c private RouterA expObjectID.1.2 objectidentifier ifOperStatus.16
snmpset -v 2c -c private RouterA expObjectSampleType.1.1 integer 1
snmpset -v 2c -c private RouterA expObjectSampleType.1.2 integer 1
snmpset -v 2c -c private RouterA expObjectStatus.1.1 integer 1
snmpset -v 2c -c private RouterA expObjectStatus.1.2 integer 1
snmpset -v 2c -c private RouterA expNameStatus.101.49.101.120.112 integer 1
```
EVENT-MIB and EXPRESSION-MIB

Example 1: Notification

```plaintext
mteTriggerEntry
mteEventEntry

snmpset -v 2c -c private RouterA mteTriggerEntryStatus.Y integer 6
snmpset -v 2c -c private RouterA mteTriggerEntryStatus.Y integer 5

snmpset -v 2c -c private RouterA mteTriggerValueID.Y objectidentifier
1.3.6.1.4.1.9.10.22.1.4.1.1.2.1.0.0.0
snmpset -v 2c -c private RouterA mteTriggerValueIDWildcard.Y integer 2

snmpset -v 2c -c private RouterA mteTriggerTest.Y o "40"

snmpset -v 2c -c private RouterA mteTriggerFrequency.Y gauge 60
snmpset -v 2c -c private RouterA mteTriggerSampleType.Y integer 1
snmpset -v 2c -c private RouterA mteTriggerEnabled.Y integer 1

snmpset -v 2c -c private RouterA mteEventEntryStatus.Z integer 6
snmpset -v 2c -c private RouterA mteEventEntryStatus.Z integer 5

snmpset -v 2c -c private RouterA mteEventActions.Z o "80"
```

- **#N Characters for the mteOwner**: `tom`
- **#mteTriggername**: `trigger1`
- **#mteEventname**: `event1`
- **Existance**: 0
- **Boolean**: 1
- **Threshold**: 2
- **Absolute**: 1
- **When Condition Is met>send Notification**

EVENT-MIB and EXPRESSION-MIB
Example 1: Notification

```
snmpset -v 2c -c private RouterA mteTriggerBooleanValue.Y i 1
snmpset -v 2c -c private RouterA mteTriggerBooleanComparison.Y i 2
snmpset -v 2c -c private RouterA mteTriggerBooleanObjectsOwner.Y o "tom"
snmpset -v 2c -c private RouterA mteTriggerBooleanObjects.Y o "object1"
snmpset -v 2c -c private RouterA mteTriggerBooleanEventOwner.Y o "tom"
snmpset -v 2c -c private RouterA mteTriggerBooleanEvent.Y o "event1"
```

Creating the ObjectTable

```
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 6
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 5
snmpset -v 2c -c private RouterA mteObjectsID.Z o ifAdmin.13
snmpset -v 2c -c private RouterA mteObjectEntryStatus.Z.1 i 1
```

Attaching the object to the event:

```
snmpset -v 2c -c private RouterA mteEventNotificationObjectsOwner.Z o "tom"
snmpset -v 2c -c private RouterA mteEventNotificationObjects.Z o "objects1"
```

Activating the Trigger and the Event
EVENT-MIB and EXPRESSION-MIB

Example 2: Simple Capacity Planning

• If my link utilization is above 50% for an hour, it’s time to upgrade the link

• Steps:

 Create an expression

 utilization = (ifInOctets + ifOutOctets) *800/hour/ifSpeed

 If utilization is above 50% of the bandwidth after one hour, generates an event
EVENT-MIB and EXPRESSION-MIB

Example 3: Table Entry Count

- Sometimes there is no counter for the number of table entries in the MIB definition
- Create an expression1 that will match all entries
- Create an expression2 that will sum expression1
- Other examples:
 - Number of Ethernet interfaces up
 - Number of entries in the CAM table
 - Number of static route in the routing table
ARP Table Entry Count
Show Command Example

Router# show management expression
 Expression: e1exp is active
 Expression to be evaluated is $1==3 where:
 $1 = ipNetToMediaEntry.4
 Object Condition is not set
 Sample Type is absolute
 ObjectID is wildcarded

 Expression: e2exp is active
 Expression to be evaluated is sum($1) where:
 $1 = ciscoExperiment.22.1.4.1.1.4.1.0.0
 Object Condition is not set
 Sample Type is absolute
 ObjectID is wildcarded

• This example specifies an expression e2exp that sums up all the static ARP entries
Expression MIB Feature
MIB Persistence

• Allows the MIB to be persistent across reloads, i.e., MIB information retains the same set object values each time a networking device reboots

```plaintext
Router(config)# snmp mib persist [expression]
```

• Any modified MIB data must be written to NVRAM memory using the “write mib-data”

```plaintext
Router# write mib-data
```

• Added in 12.2(4)T3
EVENT-MIB and EXPRESSION-MIB Summary

- Very flexible and useful MIBs
- Not that easy to set up
- You should work from existing examples
 Drop me an email
SPECIFIC MIBS AND SCENARIOS

SPECIFIC INTERFACES,
MPLS/VPN SYSLOG & SNMP NOTIFICATION,
IP SLA & SNMP,
ENHANCED OBJECT TRACKING
Disabling the Logging of Some Interfaces

- Limit the amount of output that is logged from the group-async interface and ISDN D channels

 Router(config)# interface Group-Async 1
 Router(config-if)# no logging event link-status
 Router(config-if)# no snmp trap link-status

- Depending on the layering...

 Router(config)# snmp ifmib trap throttle
 Router(config-if)# no logging event subif-link-status

- Depending on the encapsulation...

 Router(config-if)# no logging event dlci-status-change
VRF Aware Notifications

Notifications sent to a receiver in a VRF

Router(config)#snmp-server host <receiver-ip-addr> vrf yellow public
VRF Aware Syslog

- Syslog messages sent to a server in a VRF
- New in 12.2(24)S

Router(config)#logging host vrf <yellow> <syslog-ip-address>
Monitoring Service
IP SLA

Management Application

Configure
Collect Data
SNMP Trap
Reconfigure

Source

Measure

Target

IP Host

Measure

Trigger Other Operations Based on Thresholds/Timeouts

Measure Performance

IP SLA, Previously Service Assurance Agent
Monitoring Service with IP SLA
VoIP Example

```
ip sla 11
    udp-jitter 198.198.198.1 3000 codec g711alaw

ip sla reaction-configuration 11 react connectionLoss
threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react jitterDSAvg
threshold-value 10 5 threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react jitterSDAvg
threshold-value 10 5 threshold-type immediate action-type trapOnly
ip sla reaction-configuration 11 react mos
threshold-value 390 220 threshold-type immediate action-type trapOnly

ip sla schedule 11 start-time now
```
Enhanced Objects Tracking for IP SLA

- The Enhanced Object Tracking feature separates the tracking mechanism from the protocol and creates a separate standalone tracking process that can be used by any other process.

- Subset of the Enhanced Object Tracking Cisco IOS feature:

 Track the output from the IP SLA objects and use the provided information to trigger an action.

- Aspects of an IPSLA operations which can be tracked: state and reachability.

- Introduced in 12.3(4)T and 12.2(25)S.
Example: HSRP and IPSLA Tracking

Internet

Server

ISP 1

IP SLA

Router 1

HSRP: 10.10.10.10

ISP 2

Router 2

10.10.7.1

10.10.10.1

10.10.10.2
Example: HSRP and IP SLA Tracking

Router1(config)#
 ip sla 18
 icmp-echo <server>
 ip sla schedule 18 start-time now life forever
 track 100 rtr 18 state
 interface FastEthernet0/0
 ip address 10.10.10.1 255.255.255.224
 standby 1 ip 10.10.10.10
 standby 1 priority 105
 standby 1 preempt
 standby 1 track 100 decrement 10

Without Enhanced Object Tracking:
 "Standby 1 track serial 0"

With Enhance Object Tracking:
 The Object 100 Is Tracked
Example 2: Injecting Routes and IP SLA

User1 -> ISP 1 -> Customer Router 1 -> Customer Network -> Server

ISP 2 -> Customer Router 2 -> Customer Network

Internet

Don’t Advertise the Route Anymore

Traffic “Black Holed”

BGP

IP SLA
Example 2: Injecting Routes Into Routing Tables

Router1(config)#

 ip sla 1
 icmp-echo <server>
 ip sla schedule 1 start-time now life forever

 track 123 rtr 1 reachability

 ip route <server_network> 255.255.255.0 Null0 track 123
 (more specific routes will be used to forward packets)

 router bgp 65505
 redistribute static

The static route, advertised by BGP, will only exit if the reachability to the server is OK!
Embedded Event Manager (EEM)

- In-box monitoring of different components of the system via a set of software agents (event detectors)
- Event detectors (ED) notify EEM when an event of interest occurs; based on this, an action can be taken

Advantages:
- Local programmable actions, triggered by specific events

- Version 1.0 introduced in 12.0(26)S, 12.3(4)T
- Version 2.0 introduced in 12.2(25)S
- Version 2.1 introduced in 12.3(14)T
- Version 2.2 introduced in 12.4(2)T
Embedded Event Manager (EEM) 1.0
The Framework

Syslog Event

Syslog ED

SNMP Event

SNMP ED

Other Events

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

Syslog ED

SNMP ED

Future EDs...

Syslog

SNMP

Notifications

Other Events

(*) Initially Developed for High Availability
Embedded Event Manager 1.0
Example 1: Syslog ED

• Applets are groupings of an ‘event specification’ and a policy action that is taken when the specified event occurs

```plaintext
event manager applet fe0trans
    event syslog pattern .*UPDOWN.*FastEthernet0/0.*
    action 1.0 syslog priority emergencies msg “New syslog $_syslog_msg”
```

• Example: causes an emergency-level Syslog message when a log message indicates that the FastEthernet0/0 port changed state to either up or down
Embedded Event Manager 1.0
Example 2: Notification ED

```
event manager applet memory-demo
  event snmp oid 1.3.6.1.4.1.9.9.48.1.1.1.6.1 get-type exact entry-op lt entry-val 512000 poll-interval 10
  action 1.0 syslog priority critical msg "Memory exhausted; current available memory is \$_snmp_oid_val bytes"
  action 2.0 force-switchover
```

- Example: the applet will run when the available memory on the primary RP falls below the specified threshold of 512000 bytes
Embedded Event Manager 1.0
Environment Variables

- These environment variables can be used in ‘msg’ text
- Will be replaced with the relevant text
- Environment variable available for all events
 - `$_event_type` The event type that triggered the event
 - `$_event_pub_time` The time at which the event type was published
- Environment variable available for SNMP events
 - `$_snmp_oid` The SNMP object OID that caused the event to be published
 - `$_snmp_oid_val` The SNMP object ID value when the event was published
- Environment variable available for Syslog events
 - `$_syslog_msg` The syslog message that caused the event to be published
- A lot more environment variables in the version 2.0, 2.1, and 2.2
 → check the documentation
Embedded Event Manager 2.0
The Framework

Event Detectors

- Syslog Event
- SNMP Notifications
- Process Scheduler Database
- Interface Descriptor Blocks
- Watchdog ED
- Interface Counter ED
- Timer Event ED
- Counter Event ED
- Application Specific Event ED

Embedded Event Manager 2.0

Actions

- Syslog
- Cisco TCL Scripts
- Modify Counter
- Application Specific Event
- SNMP Notifications
- Switch Over or Reload (*)

(*) Initially Developed for High Availability
Embedded Event Manager 2.0
Example 3: Watchdog ED

- Watchdog event detector example:

Monitor the “SNMP engine” process from “show processes cpu”; sent a trap if the CPU is above 20% for 10 seconds
Embedded Event Manager 2.1
The Framework

- Syslog Event
- SNMP Notification
- Process Scheduler Database
- Interface Descriptor Blocks

Event Detectors:
- Syslog ED
- SNMP ED
- Watchdog ED
- Interface Counter ED
- Timer Event ED
- Counter Event ED
- Application Specific Event ED
- CLI ED
- OIR ED

Embedded Event Manager 2.0

Actions:
- Syslog
- User TCL Scripts
- Short Email notification
- CLI command
- Modify Counter
- Application Specific Event
- SNMP Notifications
- Get info
- Switch Over or Reload (*)
Command Line Interface (CLI) event detector example:

When the “router bgp 1” CLI command is entered, a syslog message is sent
Embedded Event Manager 2.2

- Amongst others, Enhanced Object Tracking Event Detector

- Advantages:

 IP SLA state/reachability is supported by EOT

 EOT now supported by EEM

 EEM has got an implicit IP SLA Event Detector
Embedded Event Manager
Advantages

- More and more event detectors
- Automated local action triggered by events
 TCL: scripting for Cisco written policies
 Control is in the customer’s hands: full customization
- Customized notifications, syslog, and email
 Environment variables, redefined syslog priority level, etc.
- Can define your own applications in the router
- Some examples in the documentation
- My personal view:
 EOT used for object tracking
 + EEM for the action/fault management
 + TCL for the customized action/fault management
 = the perfect framework for any policy-based management
Principles of Fault Management in Cisco Devices

• Quick fault detections is strategic to network management

• Systematic network element polling doesn’t always scale

• Let’s put some more NMS intelligence into the network elements

• Let’s tune the right fault management events from the network elements themselves

• We investigated a few ways

• Then potentially event-based polling…
Other Network Management Sessions

- NMS-A02 Advanced Network Performance measurement with Cisco IOS IPSLA
- NMS-A03 Advanced NetFlow Usage
- NMS-A04 Advanced IOS Management Tools
- NMS-A05 Managing the MPLS core and MPLS VPNs
- NMS-A06 Operating your MPLS Core and IP VPNs
- NMS-D01 Zero Touch Provisioning and Configuration Management
- NMS-D02 Performance Measurement with Cisco Devices
- NMS-D03 Securely Managing Your Network and SNMPv3
- NMS-D04 Cisco Accounting Techniques
- NMS-D05 Management of Cisco IOS-XR platforms
- NMS-D06 Management of IP Telephony (for Enterprises)
- NMS-T01 CiscoWorks LMS 2.5 - A Practical Guide
- NMS-T02 MPLS Operations and Management: A Practical Guide
Recommended Reading

• Continue your Networkers learning experience with further reading from Cisco Press.

• Visit the on-site Cisco company store, where the full range of Cisco Press books is available for you to browse.
Management & Operations

- Benoit Claise – Distinguished Service Engineer
- Bruno Klaser – Consulting Systems Engineer
- David Melton – Systems Engineer
- Monique Morrow – Distinguished Consulting Engineer
- Emmanuel Tychon – Software Engineer
- Anders Viden – Product Marketing Manager
Q and A
APPENDIX
Fault Management

Which MIB Variables to Monitor?

Interface

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>locIfResets</code></td>
<td>Number of Times the Interface Internally Reset</td>
<td><code>.1.3.6.1.4.1.9.2.2.1.1.17</code></td>
<td>15 Min</td>
</tr>
<tr>
<td><code>ifOperStatus</code></td>
<td>The Current Operational State of the Interface; the Testing(3) State Indicates that No Operational Packets Can Be Passed</td>
<td><code>.1.3.6.1.2.1.2.2.1.8</code></td>
<td>5 Min</td>
</tr>
<tr>
<td><code>locIfCarTrans</code></td>
<td>Number of Times Interface Saw the Carrier Signal Transition</td>
<td><code>.1.3.6.1.4.1.9.2.2.1.1.21</code></td>
<td>15 Min</td>
</tr>
<tr>
<td><code>locIfCollisions</code></td>
<td>Number of Output Collisions Detected on this Interface</td>
<td><code>.1.3.6.1.4.1.9.2.2.1.1.25</code></td>
<td>15 Min</td>
</tr>
<tr>
<td><code>locIfInCRC</code></td>
<td>Number of Input Packets Which had Cyclic Redundancy Checksum Errors</td>
<td><code>.1.3.6.1.4.1.9.2.2.1.1.12</code></td>
<td>15 Min</td>
</tr>
</tbody>
</table>
Fault Management
Which MIB Variables to Monitor?

Interface

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifOutOctets The Total Number of Octets Transmitted out of the Interface, Including Framing Characters</td>
<td>.1.3.6.1.2.1.2.2.1.16</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td>locIfInputQueue Drops The Number of Packets Dropped Because the Input Queue Was Full</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.26</td>
<td>30 Min</td>
<td>> 1% of Incoming Traffic</td>
</tr>
<tr>
<td>locIfOutputQueue Drops The Number of Packets Dropped Because the Output Queue Was Full</td>
<td>.1.3.6.1.4.1.9.2.2.1.1.27</td>
<td>30 Min</td>
<td>> 10% of Outgoing Traffic</td>
</tr>
<tr>
<td>ifInDiscards The Number of Inbound Packets Which Were Chosen to Be Discarded even Though No Errors Had Been Detected to Prevent Their Being Deliverable to a Higher-Layer Protocol; One Possible Reason for Discarding Such a Packet Could be to Free up Buffer Space</td>
<td>.1.3.6.1.2.1.2.2.1.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fault Management
Which MIB Variables to Monitor?

Ethernet

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot3StatsCarrier SenseErrors</td>
<td>.1.3.6.1.2.1.10.7.2.1.11</td>
<td>15 Min</td>
<td>>= 2</td>
</tr>
<tr>
<td>Number of Times that the Carrier Sense Condition Was Lost or Never Asserted When Attempting to Transmit a Frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot3StatsDeferred Transmissions</td>
<td>.1.3.6.1.2.1.10.7.2.1.7</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td>A Count of Frames for Which the First Transmission Attempt on a Particular Interface is Delayed Because the Medium Is Busy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot3StatsExcessive Collisions</td>
<td>.1.3.6.1.2.1.10.7.2.1.9</td>
<td>15 Min</td>
<td>0.2% of Traffic</td>
</tr>
<tr>
<td>Count of Frames for Which Transmission Failed Because of Excessive Collisions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot3StatsInternalMac ReceiveErrors</td>
<td>.1.3.6.1.2.1.10.7.2.1.16</td>
<td>15 Min</td>
<td>1% of Incoming Traffic</td>
</tr>
<tr>
<td>Count of Frames for Which Reception Fails Because of an Internal MAC Sublayer Receive Error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dot3StatsInternalMac TransmitErrors</td>
<td>.1.3.6.1.2.1.10.7.2.1.10</td>
<td>15 Min</td>
<td>1% of Outgoing Traffic</td>
</tr>
<tr>
<td>Count of Frames for Which Transmission Fails Because of an Internal MAC Sublayer Transmit Error</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fault Management
Which MIB Variables to Monitor?

Memory

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bufferFail</code></td>
<td>.1.3.6.1.4.1.9.2.1.46</td>
<td>15 Min</td>
<td></td>
</tr>
<tr>
<td><code>bufferNoMem</code></td>
<td>.1.3.6.1.4.1.9.2.1.47</td>
<td>15 Min</td>
<td>>= 1</td>
</tr>
<tr>
<td><code>ciscoMemoryPoolFree</code></td>
<td>.1.3.6.1.4.1.9.9.48.1.1.1.6</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td><code>ciscoMemoryPoolLargestFree</code></td>
<td>.1.3.6.1.4.1.9.9.48.1.1.1.7</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td><code>ciscoMemoryPoolUsed</code></td>
<td>.1.3.6.1.4.1.9.9.48.1.1.1.5</td>
<td>30 Min</td>
<td></td>
</tr>
<tr>
<td><code>ciscoMemoryPoolFree</code></td>
<td>.1.3.6.1.4.1.9.9.48.1.1.1.6</td>
<td>15 Min</td>
<td></td>
</tr>
</tbody>
</table>
Fault Management

Which MIB Variables to Monitor?

Environment

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>ciscoEnvMon FanState</td>
<td>.1.3.6.1.4.1.9.9.13.1.4.1.3</td>
<td>15 Min</td>
<td>>= 1</td>
</tr>
<tr>
<td>ciscoEnvMon SupplyState</td>
<td>.1.3.6.1.4.1.9.9.13.1.5.1.3</td>
<td>15 Min</td>
<td>>= 1</td>
</tr>
<tr>
<td>ciscoEnvMon TemperatureState</td>
<td>.1.3.6.1.4.1.9.9.13.1.3.1.6</td>
<td>15 Min</td>
<td>!= 1</td>
</tr>
<tr>
<td>ciscoEnvMon VoltageState</td>
<td>.1.3.6.1.4.1.9.9.13.1.2.1.7</td>
<td>15 Min</td>
<td>!= 1</td>
</tr>
</tbody>
</table>
Fault Management

Which MIB Variables to Monitor?

Miscellaneous

<table>
<thead>
<tr>
<th>Object Descr</th>
<th>OID</th>
<th>Poll Int</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpmCPUTotal 5min</td>
<td>Overall CPU Busy Percentage in the Last 5 Min Period; this Object Deprecates the avgBusy5 Object from the OLD-CISCO-SYSTEM-MIB</td>
<td>.1.3.6.1.4.1.9.9.109.1.1.1.1.5X</td>
<td>5 Min</td>
</tr>
<tr>
<td>sysUpTime</td>
<td>System Uptime in 1/100ths of Seconds</td>
<td>.1.3.6.1.2.1.1.3</td>
<td>5 Min</td>
</tr>
</tbody>
</table>
Recommended Reading

- Continue your Networkers learning experience with further reading from Cisco Press.
- Visit the on-site Cisco company store, where the full range of Cisco Press books is available for you to browse.

Cisco Storage Networking Architectures Poster

Cisco Press
Management & Operations

• Benoit Claise – Distinguished Service Engineer
• Bruno Klauser – Consulting Systems Engineer
• David Melton – Systems Engineer
• Monique Morrow – Distinguished Consulting Engineer
• Emmanuel Tychon – Software Engineer
• Anders Viden – Product Marketing Manager