
ACI-SE M04

Application Policy Infrastructure Controller

Application Policy Infrastructure Controller (APIC)

Cisco Confidential 2 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

APIC Operations

Cisco Confidential 3 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

APPLICATION

SECURITY

Web
Tier

App
Tier

DB
Tier

Trusted
Zone DB

Tier
DMZ

External
Zone

 Cloud

Application Admin

Security Admin

Network Admin

Cloud Admin

ACI Goal: Common Policy and Operations Framework

Cisco Confidential 4 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Application Admin

Security Admin

Network Admin

SECURITY

Trusted
Zone

DB
Tier

DMZ

External Zone

APPLICATION

COMMON POOL OF RESOURCES

Cloud Admin

 Cloud

ACI Goal: Common Policy and Operations Framework

APIC

Cisco Confidential 5 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

APIC

Cisco Confidential 6 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Fabric Initialization & Maintenance

•  ACI Fabric supports discovery, boot, inventory and systems maintenance
processes via the APIC

•  Fabric Discovery and Addressing
•  Image Management
•  Topology validation through wiring diagram and systems checks

Loopback and VTEP IP Addresses allocated
from “Infra VRF” via DHCP from APIC

APIC Cluster

Topology Discovery via LLDP using
ACI specific TLV’s (ACI OUI)

APIC APIC APIC

Cisco Confidential 7 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Fabric Initialization & Maintenance

APIC bootstrap configuration

1)  APIC Cluster Configuration
2)  Fabric Name
3)  TEP Address space (Infra-VRF)
4)  …

Leaf switch discovers attached
APIC via LLDP, requests TEP

address and boot file via DHCP

2

1

Spine switch discovers attached
Leaf via LLDP, requests TEP

address and boot file via DHCP

3

All nodes in the same APIC cluster should
contain same bootstrap information if they are

intended to form a cluster

4

Fabric can be discovered and initialized
from multiple sources concurrently

5

6 Fabric will self assemble starting from
multiple APIC sources

APIC Cluster

7

APIC Cluster will form when members
discovery each other via Appliance

Vector (AV)
APIC APIC APIC

Cisco Confidential 8 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Fabric Initialization & Maintenance

•  ACI Fabric leverages the same Global Catalogue methodology as UCS, the supported HW/SW
matrix, image versioning, …

•  APIC and switch node image management controlled via APIC policies
•  Policies control which images should be on which groupings of devices, when the images

should be upgraded/downgraded
•  Also control the upgrade process, automatic, manual step by step, …

“All-APICs” APIC Cluster

“All-Leafs”

“All-Spines”

APIC APIC APIC

Cisco Confidential 9 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Fabric Initialization & Maintenance

•  All nodes in the fabric are fundamentally ‘stateless’ in that they require no local state to be
configured and added to the fabric

•  To provide more explicit control at FCS it is assumed one of two mechanisms will be used
•  Loose wiring plan rules + local device config (switch-role, fabric-ID, node-ID)
•  Strict wiring plan rules with zero touch node config

Wiring diagram, what connectivity is
acceptable, configured via the APIC

Zero-Touch install leverages
strict wiring policy to ensure a
specific device is connected
correctly to the fabric

Minimal Touch install leverages
specific boot parameters
combined with loose connectivity
policies to ensure a specific
device is connected correctly to
the fabric

APIC APIC APIC

Cisco Confidential 10 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Management Networks

•  Infra VRF – Used for inband APIC to switch node communication, non routable outside the fabric
•  Inband Management Network – ‘tenant’ VRF created for inband access to switch nodes
•  OOB Management Network – APIC and switch node dedicated mgmt ports

OOB Management Network

APIC will have:
1.  2 attached to fabric for data
2.  2 for mgmt (OOB)
3.  1 console ethernet port (can be only used

for direct laptop hookup)
4.  CIMC/IPMI ports

Inband Management VRF

Infrastructure VRF

Switch nodes will have:
1.  Inband access to Infra & Mgmt VRF
2.  Mgmt Port (OOB)
3.  Console port

APIC APIC APIC

Cisco Confidential 11 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

What is APIC?

•  APIC is the policy controller

•  It’s not the control plane

•  It’s not in the data path

•  It’s a highly redundant cluster of 3+
Servers

11

Cisco Confidential 12 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Hypervisor Integration with ACI
Policy Resolution Immediacy

§  Policies are pushed to Leaf nodes based on Resolution Immediacy defined upon association of EPG to
VMM Domain

§  Immediate: All policies (VLAN / NVGRE / VXLAN bindings, Contracts, Filters) pushed to leaf node upon Hypervisor pNIC
attachment. LLDP or OpFlex used to resolve Hypervisor to Leaf node attachment.

§  Lazy: Policies only pushed to leaf node upon pNIC attachment AND vNIC association with port-group (EPG)

§  Policy programming in Leaf node hardware based on Instrumentation Immediacy
§  Immediate: Policies programmed in Policy CAM once received by APIC as defined by Resolution Immediacy Policy
§  Lazy: Polices programmed in hardware Policy CAM only when reachability is learnt through data path

APIC

Cisco Confidential 13 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

•  ACI Fabric supports discovery, boot, inventory, and systems maintenance processes through the APIC
‒  Fabric discovery and addressing

‒  Image management

‒  Topology validation through wiring diagram and systems checks

APIC Cluster

Topology discovery
through LLDP using ACI-
specific TLVs (ACI OUI)

Loopback and VTEP IP
addresses allocated from
“infra VRF” through DHCP

from APIC

APIC APIC APIC

APIC controller is attached in-band

Cisco Confidential 14 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Root

Everything is an object

Objects are hierarchically organized

Class identifies object type
Card, Port, Path, EPG…

Class Inheritance
Access port is a subclass of port.
A leaf node is a subclass of fabric node.

Set of attributes

identity states descriptions

references lifecycle

MO
•  class
•  dn
•  prop1
•  prop2
•  …

Distributed Managed Information Tree (dMIT)
contains comprehensive system information
• discovered components
• system configuration
• operational status including statistics and faults

dMIT

Full unified description of entities.

No artificial separation of
configuration, state, runtime data.

Object Tree

Cisco Confidential 15 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Universe

Tenant: Pepsi

App Profile

EPGs

L3 Networks

Tenant: Coke

App Profile

EPGs

L3 Networks

Fabric

Switch

Line Cards

Ports

•  Local & External AAA (TACACS
+, RADIUS, LDAP)
Authentication & Authorization

•  RBAC to control READ and
WRITE for ALL Managed
Objects

•  RBAC to enforce Fabric Admin
and per-Tenant Admin
separation

Multi-tenancy

Cisco Confidential 16 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

...

A
PI

C
 N

od
e

A
PI

C
 N

od
e

A
PI

C
 N

od
e

A
PI

C
 N

od
e

...

Topology

Policy Observer

Boot

sh
ar

d

sh
ar

d

sh
ar

d

sh
ar

d sh
ar

d

sh
ar

d

sh
ar

d

sh
ar

d

ACI Fabric

3-
31

 N
od

e
C

lu
st

er

à Shard is a unit of data mgmt
¡  Data is placed into shards
¡  Each shard has 3 replicas
¡  Shards are evenly distributed

Allows horizontal (scale-out) scaling.
Simplifies replications scope.

Each APIC Node has all APIC
functions, however, processing is
evenly distributed

¡  Shard data assignments are based on
pre-determined hash function.

¡  Static shard layout determines the
assignment of shards to appliances

¡  Each replica in the shard has use
preference (1..3)

¡  Writes happen to the highest

preference reachable

¡  In case of split-brain, automatic
reconciliation is performed

APIC Clustering

Cisco Confidential 17 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Proportion of data that is lost when nth appliance dies, out of a total of 5 appliances and a variable
replication factor K.

0

0.2

0.4

0.6

0.8

1

K=1
2
3
4
5

K is the replication factor:
•  K=1 means no replication

(just 1 copy per shard).
•  K=5 means full replication

(all appliances contain a copy).

n represents how many dead
appliances we have:
•  n=1 is the first appliance

to go.
•  n=5 is the last one to die.

This represents the fraction of
data (contexts) that is lost as a
direct consequence of the failure
of each specific appliance, from
0 (no loss) to 1 (complete loss).

When replication factor K=1 (just one copy),
for every lost appliance of the
total data is lost. The same amount is lost
as each appliance dies, starting with n=1.

As replication factor K increases, there
is no data loss unless at least K appliances
die. But besides that, data loss is gradual
and starts smaller.

For example, for K=3, nothing is lost until
appliance n=3 dies, at which point
0.1 of data is lost.

Data
loss

Effect of Replication on Reliability

Cisco Confidential 18 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Proportion of data that is lost when appliance nth dies, for a variable number of appliances L=3..12 and
fixed replication factor K=3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 L=12
11
10
9
8
7
6
5
4
3

Here L is the number of appliances,
starting with a minimum of 3.

If we maintain a replication factor of K=3,
no data is lost for as long as just 1 or
2 appliances die. Data loss begins only
when we lose our third appliance.

Increasing the number of appliances
does significantly (and rapidly)
improve resilience.

If we only have 3 appliances, losing
the 3rd means total data loss.

With 4 appliances, losing the 3rd
means a loss of 0.25.

0.10

0.05
0.01

Down to 0.005 for 12
appliances

Conclusion: probability of data loss
can be easily reduced by increasing
the replication factor and the number
of appliances. Full replication is not
needed to achieve very good numbers.

Data
loss

Effect of Sharding on Reliability

Cisco Confidential 19 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

A
PI

C
 N

od
e

A
PI

C
 N

od
e

A
PI

C
 N

od
e

A
PI

C
 N

od
e

Shard1

 4
N

od
e

C
lu

st
er

APIC Clustering Sharding and Reliability

Shard3

Shard2 Shard1

Shard3

Shard2 Shard1

Shard3

Shard2 Shard1

Shard3

Shard2
•  Each shard has 3 replicas
•  Shards are evenly distributed
•  No data is lost for as long as just

1 or 2 APIC appliances die.
•  Data loss begins only when we

lose our third appliance
•  With 4 appliances, losing the 3rd

means a loss of 0.25

Cisco Confidential 20 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

The Observer: Functionalities

The
Observer

Faults,
Events

Logs,
Diagnostics,

Forensics

0
100

Te
na

S
pi

n
Le

af
P

at
h

IF
C

Health Scores

. . .

. . .

. . .

. . .
POD POD Tier 1

Spine 1
Tier 1

Spine 2

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf

Tier 2
Spine 2

Tier 2
Spine 1

Tier 1
Spine 1

Tier 1
Spine 2

Statistics

Health
Scores

Link
Utilization

67%
Packets
Unicasts

Drops

Cisco Confidential 21 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Observer: Health Score

∑

Animation Complete

Number
between

0 and 100 Health Score

weighted

Cisco Confidential 22 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Unified Information Model

Unified API

Object Oriented

•  Comprehensive access to underlying information model
•  Consistent object naming directly mapped to URL
•  Supports object, sub-tree and class-level queries

RESTFul over HTTP(s)

•  JSON + XML
•  Unified: automatically delegates request to corresponding

components
•  Transactional
•  Single Management Entity yet fully independent components

APIC

Cisco Confidential 23 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

ACI Programmability Overview
DevOps
Libraries

REST API

ACI-enabled Fabric devices L4-7 Scripting APIs

Python SDK
Coming

soon

Designed
around Open
APIs & Open
Source

Cisco Confidential 24 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

REST API Deep Dive

•  APIC Simulator
•  Virtual machine + mininet to simulate leaf-spine
•  Supports all APIC configuration
•  Does not include a datapath

•  APIC is based on a hierarchical object model. EVERYTHING is represented as an object and
every object can be manipulated via REST.

•  REST operations: POST, GET, DELETE

•  Support for JSON and XML

Cisco Confidential 25 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

REST API Deep Dive (2)

•  Format: http://host[:port]/api/{mo|class}/{dn|className}.{json/xml}[?options]
•  /api/—Specifies that the message is directed to the API.
•  mo | class—Specifies whether the target of the operation is a managed object (MO) or an

object class.
•  dn—Specifies the distinguished name (DN) of the targeted MO.
•  className—Specifies the name of the targeted class. This name is a concatenation of the

package name of the object queried and the name of the class queried in the context of the
corresponding package. For example, the class aaa:User results in a className of aaaUser in
the URI.

•  json | xml—Specifies whether the encoding format of the command or response HTML body is
JSON or XML.

Cisco Confidential 26 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

REST API Example - Authenticate

Authenticate a user for API Operation

POST: http://apic1/api/aaaLogin.xml

Body (XML):

<aaaUser name="georgewa"
pwd="paSSword1" />

Cisco Confidential 27 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Creating a Tenant
REST XML

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.xml

Payload:
<fvTenant name='Tenant1'
status='created,modified'>
</fvTenant>

REST JSON

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.json

 Payload:
{"fvTenant":{"attributes":
{"dn":"uni/tn-
MyTenant","name":”Tenant1","
rn":"tn-
Tenant1","status":"created"},"c
hildren":[]}}

Where to find these examples: https://github.com/datacenter/nexus9000/tree/master/aci

Cisco Confidential 28 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Creating an App Network Profile
REST XML

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.xml

Payload:
<fvTenant name='Tenant1'
status='created,modified'>
<fvAp name='WebApp'>
</fvAp>
</fvTenant>

REST JSON

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.json

Payload:
{"fvTenant": {"attributes":
{"name": {"value": "Tenant1"}},
"children":
[{"fvRsTenantMonPol": {}},
{"fvAp": {"attributes": {"name":
{"value":
"WebApp"}}}},
{"fvRsResMonEPGPol": {}}]}}

28

Cisco Confidential 29 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Creating an App Network Profile

29

REST XML

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.xml

Payload:
<fvTenant name="T1"
status="created,modified">
 <fvAp name="www.T1.com"
status="created,modified">
 <fvAEPg name="WEB"
status="created,modified">
….

REST JSON

HTTP Method: POST

Request URL:
http://apic1/api/mo/uni.json

Payload:
{"fvTenant": {"attributes":
{"name": {"value": "T1"}},
"children": [{"fvAp":
{"attributes": {"name":
{"value": "www.T1.com"}},
"children": [{"fvAEPg":
….

Cisco Confidential 30 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

APIC

L4-7 Scripting API
•  APIC interfaces with the device using python scripts

•  APIC calls device specific python script function on
various events

•  APIC uses device configuration model provided in the
package to pass appropriate configuration to the
device scripts

•  Device script handlers interface with the device using
its REST or CLI interface

Device Spec
(XML)

Device Script
(Python / CLI)

Uses
Device’s
native API

30

Cisco Confidential 31 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Importing/Exporting via XML/
JSON

Cisco Confidential 32 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Scripting Through the API – Tenants, and Bridge Domains

<fvTenant dn="uni/tn-TigerTeam" name=“TigerTeam">

 <fvCtx name=“TigerTeamL3"/>

 <!-- bridge domain -->

 <fvBD arpFlood="true" name="BDTigerTeam" unkMacUcastAct="flood">

Creating a tenant named
TigerTeam

Creating an L3-Context

Creating an Bridge Domain

Enabling flooding on the BD for unknown unicast

 <fvRsCtx tnFvCtxName=“TigerTeamL3"/>

 <fvSubnet ip="10.1.100.1/24" scope="private"/>

 </fvBD>

Associate with L3-Context

Assign Subnet/Gateway

End BD config

Cisco Confidential 33 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Scripting Through the API – Tenants, and Bridge Domains

 <!-- Security -->

 <aaaDomainRef dn="uni/tn-TenantInfra/domain-tenantinfra" name="tenantinfra"/>

 <!-- Local Contracts -->

 <vzFilter name="ad">

 <vzEntry dFromPort="1099" dToPort="1099" etherT="ipv4" name="FilterEntry" prot="6"/>

 </vzFilter>

Enter security config for tenant

Create a filter

Cisco Confidential 34 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Scripting Through the API – Tenants, and Bridge Domains

 <vzBrCP name="ADCtrct">

 <vzSubj name="ad">

 <vzRsSubjFiltAtt tnVzFilterName="ad"/>

 </vzSubj>

 </vzBrCP>

Create a Contract

Create a Subject

Assign a Filter

Close Subject

Close Contract

Cisco Confidential 35 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Scripting Through the API – Tenants, and Bridge Domains

 <!-- Application Profile-->

 <fvAp name="TenantInfraServ">

 <fvAEPg name="AD">

 <fvRsBd tnFvBDName="BDTigerTeam"/>

 <fvRsProv tnVzBrCPName="ADCtrct"/>

 </fvAPg>

Create App Profile

Create EPG

Assign BD

Assign Provider Contract

Cisco Confidential 36 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

APIC

ACI Fabric Attached Device API

Hypervisor

ACI
Agent*

Hypervisor

ACI
Agent*

Hypervisor

ACI
Agent*

Hypervisor

ACI
Agent*

•  Open API between a controller and a set
of network devices designed to natively
support ACI Policy

•  Supported over TCP/SSL/HTTP

•  Logical policy model is pushed directly
from controller (Policy Authority) to device
(Policy Element), which renders it in
software / hardware

•  Policy Elements could be leaf switches in
a network fabric, hypervisor switches, or
L4-7 devices

Cisco Confidential 37 © 2013-2014 Cisco and/or its affiliates. All rights reserved.

Conclusion & Key Links

•  ACI is based on policy model abstraction that models application semantics

•  ACI supports a number of open northbound and southbound APIs that are easy to use:
•  REST API
•  Python API
•  L4-7 Scripting
•  ACI Agent (native ACI Policy API)

3
7

§ Github
–  https://github.com/datacenter/nexus9000

§ Devnet
–  https://developer.cisco.com/site/tech/networking/routers-switches/n9k/overview/

Thank you.

