

Cisco Support Community

Expert Series Webcast

Отказоустойчивость с использованием Cisco ASA Clustering - принципы работы, ограничения, диагностика

Михаил Кадер

Инженер Cisco по вопросам информационной безопасности в России и других странах СНГ Август 18, 2015

Вебинар на русском языке

Отказоустойчивость с использованием Cisco ASA Clustering - принципы работы, ограничения, диагностика

Август 18, 2015

Во время презентации заслуженный системный инженер Cisco по вопросам информационной безопасности в России и других странах СНГ Михаил Кадер рассмотрит некоторые особенности отказоустойчивости с использованием Cisco ASA Clustering. Также будут рассмотрены принципы работы кластера, диагностические средства и ограничения.

Михаил Кадер

https://supportforums.cisco.com/ru/event/12560361

Вебинар на русском языке

Методы оптимизации работы протокола BGP на маршрутизаторах Cisco. Уменьшение времени сходимости протокола

Сентябрь 22, 2015

В ходе презентации заместитель технического директора ООО "Фаст Лейн" Андрей Петрунин рассмотрит различные аспекты работы протокола BGP в Cisco IOS, которые влияют на производительность маршрутизатора, а также на время сходимости протокола. Будут даны определенные рекомендации, выполнение которых позволит сократить время сходимости протокола при передаче больших объемов маршрутной информации

https://supportforums.cisco.com/ru/event/12583421

Андрей Петрунин

Премия "Самый активный участник Сообщества Поддержки Cisco"

Как стать активным участником? Легко!

- Создавайте документы, пишите блоги, загружайте видео, отвечайте на вопросы пользователей.
- Вклад оценивается на основе таблицы лидеров
- Также оценивается количество документов, блогов и видео, созданных пользователем.
- Вклад оценивается только по русскоязычному сообществу, не включая рейтинг, набранный в глобальном Cisco Support Community.

Оцени контент

Ваши оценки контента дают возможность авторам получать баллы.

Хотите чтобы поиск был удобным и простым? Помогите нам распознать качественный контент в Сообществе. Оценивайте документы, видео и блоги.

Пожалуйста, не забывайте оценивать ответы пользователей, которые щедро делятся своим опытом и временем.

Сессия «Спросить Эксперта» с Михаилом Кадером, Русланом Ивановым и Олегом Типисовым

18 августа – 28 августа 2015

Получить дополнительную информацию, а также задать вопросы эксперту в рамках данной темы Вы можете на странице, доступной по ссылке:

https://supportforums.cisco.com/community/russian/expert-corner

Вы можете получить видеозапись данного семинара и текст сессии Q&A в течении ближайших 5 дней по следующей ссылке https://supportforums.cisco.com/community/russian/expert-corner/webcast

Конкурс "Отказоустойчивость с использованием Cisco ASA Clustering - принципы работы, ограничения, диагностика

18 августа в 14:00 мск

Мы предлагаем Вам принять участие в конкурсе после проведения вебкаста, который так и будет называться «Отказоустойчивость с использованием Cisco ASA Clustering - принципы работы, ограничения, диагностика»

- Первые три победителя получат фирменный куб Cisco-TAC
- Ответы присылайте на <u>csc-russian@external.cisco.com</u>
- Задание конкурса будет размещено сегодня после проведения вебкаста

Скачать презентацию Вы можете по ссылке:

https://supportforums.cisco.com/ru/document/12581891

Присылайте Ваши вопросы!

Используйте панель Q&A, чтобы задать вопрос. Наши эксперты ответят на Ваши вопросы Сегодняшняя презентация включает опросы аудитории Пожалуйста, примите участие в опросах!

Отказоустойчивость с использованием Cisco ASA Clustering - принципы работы, ограничения, диагностика

Cisco Support Community Expert Series Webcast

Михаил Кадер

Инженер Cisco по вопросам информационной безопасности в России и других странах СНГ Август 18, 2015

Вопрос 1

Сколько штук Cisco ASA продается в России и странах СНГ каждый год?

- 1. Больше 1000 штук.
- 2. Больше 5000 штук.
- 3. Больше 10000 штук.

Agenda

- Clustering Overview
- Unit Roles and Functions
- Packet Flow
- Control and Data Interfaces
- Configuring Clustering
- Advanced Deployment Scenarios
- Closing Remarks

Clustering Overview

ASA Failover

- A pair of identical ASA devices can be configured in Failover
 - Licensed features are aggregated except 3DES in ASA 8.3+
 - Data interface connections must be mirrored between the units with L2 adjacency
 - Active/Standby or Active/Active deployment with multiple contexts
 - Virtual IP and MAC addresses on data interfaces move with the active unit
 - Centralized management from the active unit or context
 - Stateful failover "mirrors" stateful conn table between peers
- Failover delivers high availability rather than scalability
 - Cannot scale beyond two physical appliances/modules or virtual instances
 - Active/Active failover requires manual traffic separation with contexts
 - Stateful failover makes Active/Active impractical for scaling

ASA Clustering

- Up to 16 identical ASA appliances combine in one traffic processing system
- Preserve the benefits of failover
 - Feature license aggregation across entire cluster
 - Virtual IP and MAC addresses for first-hop redundancy
 - Centralized configuration mirrored to all members
 - Connection state preserved after a single member failure
- Implement true scalability in addition to high availability
 - Stateless load-balancing via IP Routing or Spanned Etherchannel with LACP
 - Out-of-band Cluster Control Link to compensate for external asymmetry
 - Elastic scaling of throughput and maximum concurrent connections
 - All units should be connected to the same subnet on each logical interface

System Requirements

- All cluster members must have an identical hardware configuration
 - Up to 8 ASA5580/5585-X in ASA 9.0 and 9.1; up to 16 ASA5585-X in ASA 9.2(1)+
 - Up to 2 ASA5500-X in ASA 9.1(4)+
 - SSP types, application modules, and interface cards must match precisely
- Each ASA5580/5585-X member must have Cluster license installed
 - Enabled by default on ASA5500-X except ASA5512-X without Security Plus
 - 3DES and 10GE I/O licenses must match on all members.
- Limited switch chassis support for control and data interfaces
 - Catalyst 3750-X, 6500 with Sup32, Sup720, or Sup720-1GE, and 6800 with Sup2T
 - Nexus 5000, 6000, 7000, 9300, and 9500
 - Catalyst 4500-X and ASR 9000 with ASA 9.5(1) in July 2015

Unsupported Features

- Remote Access VPN
 - SSL VPN, Clientless SSL VPN, and IPSec
- DHCP Functionality
 - DHCP client, DHCPD server, DHCP Proxy
 - DHCP Relay until ASA 9.4(1)
- Advanced Application Inspection and Redirection
 - SIP until ASA 9.4(1)
 - CTIQBE, WAAS, MGCP, MMP, RTSP, Skinny, H.323, GTP engines
 - Cloud Web Security, Botnet Traffic Filter, and WCCP
 - ASA CX module
- TLS Proxy

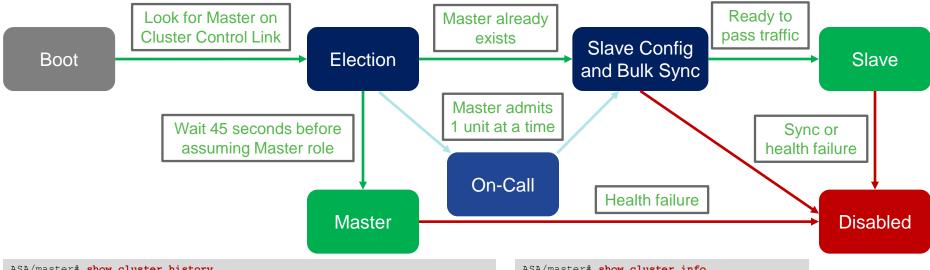
Scalability

- Throughput scales at 70% of the aggregated capacity on average
 - 16 ASA5585-X SSP-60 at 40Gbps → 448Gbps of Maximum UDP Throughput
 - 16 ASA5585-X SSP-60 at 20Gbps → 224Gbps of Real World TCP Throughput
 - Scales at ~100% with no traffic asymmetry between members (up to 640Gbps)
- Concurrent connections scale at 60% of the aggregated capacity
 - 16 ASA5585-X SSP-60 at 10M → 96M concurrent connections
- Connections rate scales at 50% of the aggregated capacity
 - 16 ASA5585-X SSP-60 at 350K CPS → 2.8M CPS

Centralized Features

- Not all features are distributed, some are centralized
 - Control and management connections
 - DCERPC, ESMTP, IM, Netbios, PPTP, RADIUS, RSH, SNMP, SQLNet, SunRPC, TFTP, and XDMCP inspection engines
 - Site-to-site VPN
 - Multicast in some scenarios
- Any connections matching these features always land on one cluster member
 - Switchover of such connections is not seamless

Unit Roles and Functions



Master and Slaves

- One cluster member is elected as the Master; others are Slaves
 - First unit joining the cluster or based on configured priority
 - New master is elected only upon departure
- Master unit handles all management and centralized functions
 - Configuration is blocked on slaves
 - Virtual IP address ownership for to-the-cluster connections
- Master and slaves process all regular transit connections equally
 - Management and some centralized connections must re-establish upon Master failure
 - Disable or reload Master to transition the role; do not use cluster master command

State Transition

ASA/master# show o	cluster history	
From State	To State	Reason
15:36:33 UTC Dec 3	 3 2013	
DISABLED	DISABLED	Disabled at startup
15:37:10 UTC Dec 3	3 2013	
DISABLED	ELECTION	Enabled from CLI
15:37:55 UTC Dec 3	3 2013	
ELECTION	MASTER	Enabled from CLI
==========		

ASA/master# show cluster info
Cluster sjfw: On
 Interface mode: spanned
 This is "A" in state MASTER
 ID : 0
 Version : 9.1(3)
 Serial No.: JAF1434AERL
 CCL IP : 1.1.1.1
 CCL MAC : 5475.d029.8856
 Last join : 15:37:55 UTC Dec 3 2013
 Last leave: N/A

Flow Owner

- All packets for a single stateful connection must go through a single member
 - Unit receiving the first packet for a new connection typically becomes Flow Owner
 - Ensures symmetry for state tracking purposes and FirePOWER NGIPS inspection

```
ASA/master# show conn

18 in use, 20 most used

Cluster stub connections: 0 in use, 0 most used

TCP outside 10.2.10.2:22 inside 192.168.103.131:35481, idle 0:00:00, bytes 4164516, flags UIO
```

- · Another unit will become Flow Owner if the original one fails
 - Receiving packet for an existing connection with no owner
- The conn-rebalance feature should be enabled with caution
 - An overloaded member may work even harder to redirect new connections
 - Existing connections are re-hosted only on unit departure

Flow Director

- Flow Owner for each connection must be discoverable by all cluster members
 - Each possible connection has a deterministically assigned Flow Director
 - Compute hash of {SrcIP, DstIP, SrcPort, DstPort} for a flow to determine Director
 - Hash mappings for all possible flows are evenly distributed between cluster members
 - All members share the same hash table and algorithm for consistent lookups
 - SYN Cookies reduce lookups for TCP flows with Sequence Number Randomization
- Flow Director maintains a backup stub connection entry
 - Other units may query Director over Cluster Control Link to determine Owner identity
 - New Owner can recover connection state from director upon original Owner failure

```
TCP outside 172.18.254.194:5901 inside 192.168.1.11:54397, idle 0:00:08, bytes 0, flags Y
```

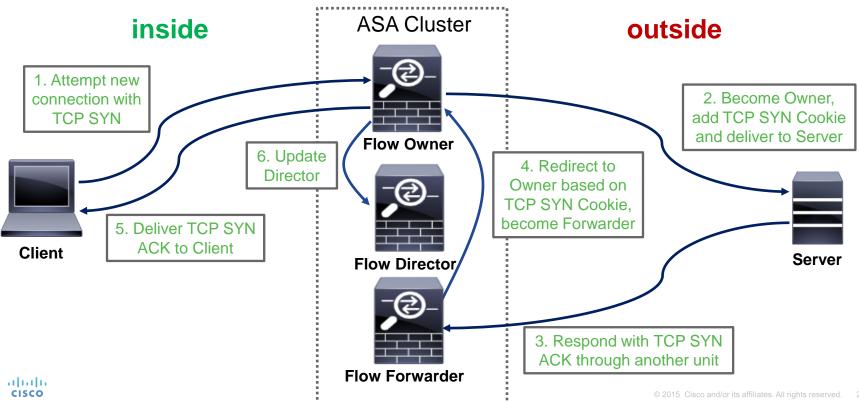
When Flow Director and Owner are the same, another unit has Backup Stub Flow

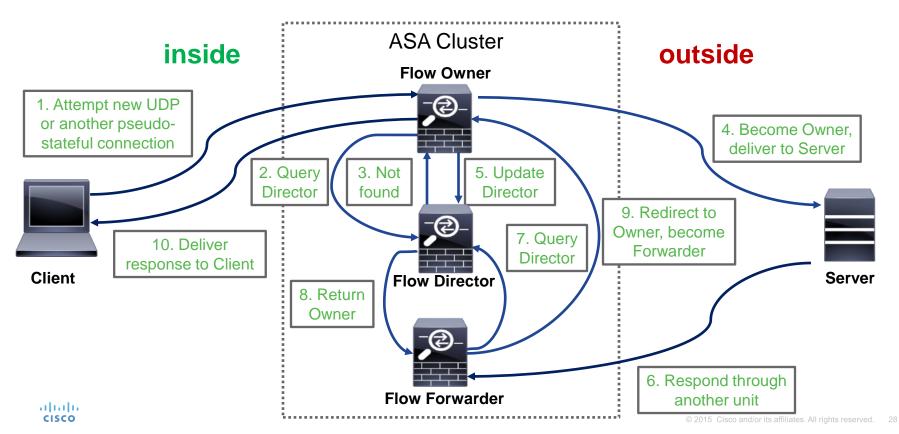
```
TCP outside 172.18.254.194:5901 inside 192.168.1.11:54397, idle 0:00:08, bytes 0, flags \boldsymbol{y}
```

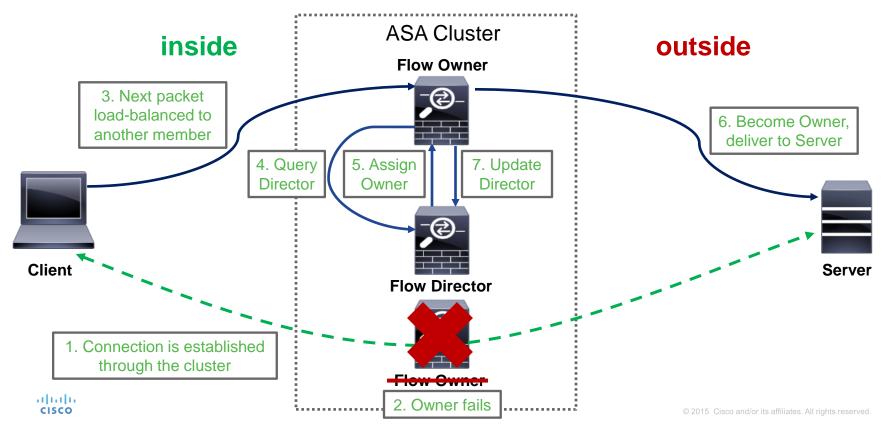

Flow Forwarder

- External stateless load-balancing mechanism does not guarantee symmetry
 - Only TCP SYN packets can reliably indicate that the connection is new
- Cluster member receiving a non-TCP-SYN packet must query Flow Director
 - No existing connection → Drop if TCP, become Flow Owner if UDP
 - Existing connection with no Owner → Become Flow Owner
 - Existing connection with active Owner → Become Flow Forwarder
- Flow Forwarder maintains stub connection entry to avoid future lookups
 - Asymmetrically received packets are redirected to Owner via Cluster Control Link
 - Slave units become Flow Forwarders for any centralized connections

```
ASA/slave# show conn detail
[...]


TCP inside: 192.168.103.131/52033 NP Identity Ifc: 10.8.4.10/22,
flags z, idle 0s, uptime 8m37s, timeout -, bytes 0,
cluster sent/rcvd bytes 25728/0, cluster sent/rcvd total bytes 886204/0, owners (1,255)
```



Packet Flow


New TCP Connection

New UDP-Like Connection

Owner Failure

Application Inspection

- Centralized
 - All packets for control and associated data connections are redirected to Master
 - Examples: ESMTP, SQLNet, TFTP
- Fully Distributed
 - Control and associated data connections are processed independently by all units
 - Examples: HTTP, FTP
- Semi Distributed with ASA 9.4(1)+
 - Control connections are processed independently by all units
 - Data connections are redirected to the associated control connections' Owners
 - Example: SIP

Per-Session Port Address Translation (PAT)

- By default, dynamic PAT xlates have a 30-second idle timeout
 - Single global IP (65535 ports) allows about 2000 conn/sec for TCP and UDP
- ASA 9.0 Per-Session Xlate feature allows immediate reuse of the mapped port
 - Enabled by default for all TCP and DNS connections

```
asa# show run all xlate

xlate per-session permit tcp any4 any4

xlate per-session permit tcp any4 any6

xlate per-session permit tcp any6 any4

xlate per-session permit tcp any6 any6

xlate per-session permit udp any4 any4 eq domain

xlate per-session permit udp any4 any6 eq domain

xlate per-session permit udp any6 any4 eq domain

xlate per-session permit udp any6 any4 eq domain

xlate per-session permit udp any6 any6 eq domain
```

TCP Reset is generated to force immediate termination

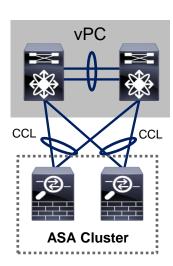
Network Address Translation (NAT)

- Static NAT is performed by all cluster members based on configuration
- One-to-one dynamic NAT xlates are created by Master and replicated to Slaves
- Dynamic PAT is distributed to individual members
 - Master evenly allocates PAT addresses from the configured pools to each member
 - Provision at least as many pool IPs as cluster members to avoid connection failures
 - Per-session xlates are local to the Owner with an Xlate backup
 - Some connections require non-per-session xlates which are centralized to Master

```
asa(config) # xlate per-session deny tcp any4 any4 eq 5060
```

- NAT limits clustering scalability with nearly guaranteed flow asymmetry
 - NAT and PAT pools are not advertised
 - No interface PAT or Proxy ARP in Individual mode

Control and Data Interfaces


Cluster Control Link (CCL)

- Carries all data and control communication between cluster members
 - Master discovery, configuration replication, keepalives, interface status updates
 - Centralized resource allocation (such as PAT/NAT, pinholes)
 - Flow Director updates and Owner queries
 - Centralized and asymmetric traffic redirection from Forwarders to Owners
- Must use same dedicated interfaces on each member.
 - Separate physical interface(s), no sharing or VLAN sub-interfaces
 - An isolated non-overlapping subnet with a switch in between members
 - No packet loss or reordering; up to 10ms one-way latency in ASA 9.1(4)+
- CCL loss forces the member out of the cluster
 - No direct back-to-back connections

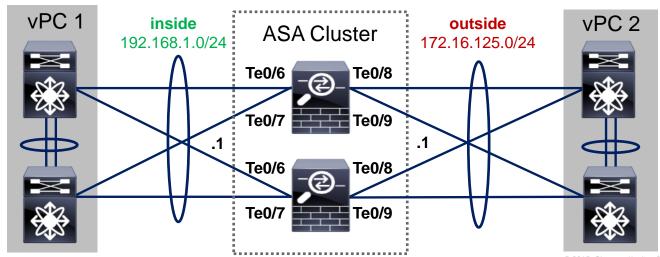
CCL Best Practices

- Size and protect CCL appropriately
 - Bandwidth should match maximum forwarding capacity of each member
 - Use an LACP Etherchannel for redundancy and bandwidth aggregation
 - 20Gbps of Real World traffic with ASA5585-X SSP-60 → 2x10GE CCL
 - Dual-connect to different physical switches in vPC/VSS
 - Use I/O cards for extra 10GE ports in ASA 9.1(2)+, not IPS/SFR SSP
- Set MTU 100 bytes above largest data interface MTU
 - Avoids fragmentation of redirected traffic due to extra trailer
- Ensure that CCL switches do not verify L4 checksums
 - TCP and ICMP checksums for redirected packets look "invalid" on CCL
- Enable Spanning Tree Portfast and align MTU on the switch side

Data Interface Modes

- Recommended data interface mode is Spanned Etherchannel "L2"
 - Multiple physical interfaces across all members bundle into a single Etherchannel

```
asa(config)# interface Port-Channel1
asa(config-if)# port-channel span-cluster
```


- External Etherchannel load-balancing algorithm defines per-unit load
- All units use the same virtual IP and MAC on each logical data interface
- Each member has a separate IP on each data interface in Individual "L3" mode
 - Use PBR or dynamic routing protocols to load-balance traffic
 - All Etherchannels are local to each member.
 - Virtual IPs are owned by Master, interface IPs are assigned from configured pools

```
asa(config) # ip local pool INSIDE 192.168.1.2-192.168.1.17
asa(config-if) # interface Port-Channel1
asa(config-if) # ip address 192.168.1.1 255.255.255.0 cluster-pool INSIDE
```


Spanned Etherchannel Interface Mode

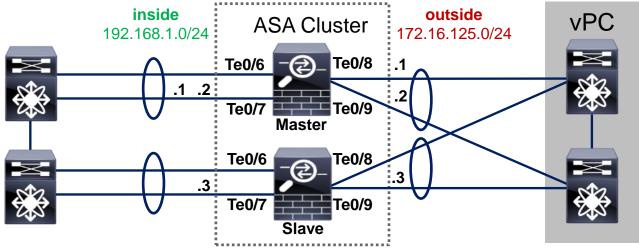
- Create transparent and routed firewalls on per-context basis
- Must use Etherchannels: "firewall-on-a-stick" VLAN trunk or separate
- Use symmetric Etherchannel hashing algorithm with different switches
- Seamless load-balancing and unit addition/removal with cLACP

Clustering LACP (cLACP)

- Recommended way to bundle data interfaces into a Spanned Etherchannel
 - Up to 8 active and 8 standby links in 9.0/9.1 with dynamic port priorities in vPC/VSS

```
asa(config) # interface TenGigabitEthernet 0/8
asa(config-if) # channel-group 1 mode active vss-id 1
```

Up to 32 active total (up to 16 per unit) links with global static port priorities in 9.2(1)+


```
asa(config) # cluster group DC_ASA
asa(cfg-cluster) # clacp static-port-priority
```

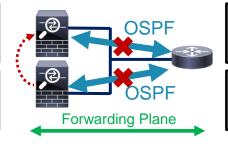
- Use static LACP port priorities to avoid problems with unsupported switches
- Always configure virtual MAC addresses for each Etherchannel to avoid instability
- Disable LACP Graceful Convergence and Adaptive Hash on adjacent NX-OS
- cLACP assumes each Spanned Etherchannel connects to one logical switch
 - LACP actor IDs between member ports are not strictly enforced, allowing creativity

Individual Interface Mode

- Routed firewalls only
- Master owns virtual IP on data interfaces for management purposes only
- All members get data interface IPs from the pools in the order of admittance
- Per-unit Etherchannels support up to 16 members in 9.2(1)+

Traffic Load Balancing in Individual Mode

- Each unit has a separate IP/MAC address pair on its data interfaces
 - Traffic load-balancing is not as seamless as with Spanned Etherchannel mode
- Policy Based Routing (PBR) is very static by definition
 - Use static route maps on adjacent routers to fan flows across all cluster members
 - Simple per-flow hashing or more elaborate distribution using ACLs
 - Difficult to direct return connections with NAT/PAT
 - Must use SLA with Object Tracking to detect unit addition and removal
- Dynamic routing with Equal Cost Multi Path (ECMP)
 - Per-flow hashing with no static configuration
 - Easier to detect member addition and removal
 - Preferred approach with some convergence caveats


Dynamic Routing

- Master unit runs dynamic routing in Spanned Etherchannel mode
 - RIP, EIGRP, OSPFv2, OSPFv3, and PIM
 - BGPv4 in ASA 9.3(1)+ and BGPv6 in ASA 9.3(2)+
 - Routing and ARP tables are synchronized to other members, like in failover
 - Possible external convergence impact only on Master failure
- Each member forms independent adjacencies in Individual mode
 - Same protocols as in Spanned Etherchannel, but multicast data is centralized as well
 - Higher overall processing impact from maintaining separate routing tables
 - Slower external convergence on any member failure

Non Stop Forwarding (NSF)

- Routing Information Base (RIB) is replicated in Spanned Etherchannel mode
 - Master establishes dynamic routing adjacencies and keeps Slaves up-to-date
 - When Master fails, the cluster continues traffic forwarding based on RIB
 - New Master re-establishes the dynamic routing adjacencies and updates the RIB
 - Adjacent routers flush routes and cause momentary traffic blackholing
- Non Stop Forwarding (NSF) and Graceful Restart (GR) support in ASA 9.3(1)+
 - New Master notifies compatible peer routers in Spanned Etherchannel clustering
 - Master acts as a helper to support a restart of the peer router in all modes
- 1. Cluster Master fails; new Master initiates adjacency with the peer router indicating that traffic forwarding should continue.
- 4 ASA cluster continues normal traffic forwarding until the primary RP restarts or the backup takes over or the timeout expires.

- 2. Router re-establishes adjacency with Master while retaining the stale routes; these routes are refreshed when the adjacency reestablishes.
- 3. Primary Route Processor undergoes a restart, signals the peer cluster to continue forwarding while the backup re-establishes adjacencies.

Dynamic Routing Convergence Optimization

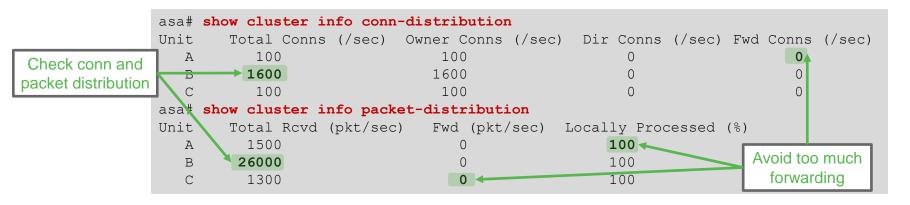
- Reduce protocol timers on all connected segments to speed up convergence
 - OSPF timers **must** match between peers
 - Do not lower dead interval in Spanned Etherchannel mode with NSF/GR

ASA 9.1 and earlier software uses higher minimum timers

```
asa(config) # interface GigabitEthernet0/0
                                                           Generate OSPF hello packets every 1 second
asa(config-if) # ospf hello-interval 1 4
asa(config-if) # ospf dead-interval 3 +
                                                      Declare neighbor dead with no hello packets for 3 seconds
asa(config-if) # router ospf 1
                                                      Delay before and between SPF calculations for 1 second
asa(config-router) # timers spf 1 1 +
```

ASA 9.2(1)+ provides faster convergence

```
asa(config) # interface GigabitEthernet0/0
asa(config-if) # ospf dead-interval minimal hello-multiplier 3
asa(config-if) # router ospf 1
asa(config-router) # timers throttle spf 500 1000 5000 -
```


Generate 3 OSPF FastHello packets per second; 1 second to detect a dead neighbor

Delay SPF calculation by 500 ms, delay between calculations for 1 second and no more than 5 seconds

Verifying Load Distribution

- Uneven Owner connection distribution implies a load-balancing issue
 - Use a more granular Etherchannel hashing algorithm on connected switches
- High Forwarder connection count implies flow asymmetry
 - Always match Etherchannel hashing algorithms between all connected switches
 - Cannot avoid asymmetry with NAT/PAT

Management Interface

- Any regular data interface can be used for managing the cluster
 - Always connect to virtual IP to reach the Master and make configuration changes
 - cluster exec allows to execute non-configuration commands on all members

- Units use same IP in Spanned Etherchannel mode for syslog and NSEL
- Dedicated management interface is recommended to reach all units
 - management-only allows MAC/IP pools even in Spanned Etherchannel mode
 - Some monitoring tasks requires individual IP addressing (such as SNMP polling)
 - No dynamic routing support, only static routes

Health Monitoring

- CCL link loss causes unit to shut down all data interfaces and disable clustering
 - Clustering must be re-enabled manually after such an event until ASA 9.5(1)
- Each member generates keepalives on CCL every 1 second by default
 - Master will remove a unit from the cluster after 3 missed keepalives (holdtime)
 - Member leaves cluster if its interface/SSP is "down" and another member has it "up"
 - Re-join attempted 3 times (after 5, 10, 20 minutes), then the unit disables clustering
- Disable health check during changes and tune other parameters

```
Keepalive is always 1/3 of
  a/master# cluster group sjfw
                                                                                       the configured holdtime
  a/master(cfq-cluster) # no health-check
  a/master(cfg-cluster) # health-check holdtime 1
                                                                                        Added in ASA 9.4(1)
  a/master(cfq-cluster) # no health-check monitor-interface Management0/0
  a/master(cfg-cluster) # health-check cluster-interface auto-rejoin 5 1 1
                                                                                        Configurable re-join
  a/master(cfg-cluster) # health-check data-interface auto-rejoin 10 2 1
                                                                                       attempts, interval, and
                                                                                     interval multiplier in 9.5(1
allada
```

Configuring Clustering

Preparation Checklist

- Get serial console access to all future cluster members
- Clear the existing configuration and configure appropriate boot images
- Switch to the multiple-context mode if desired
- Install Cluster (ASA5580/5585-X) and matching 3DES/10GE I/O licenses
- Designate a dedicated management interface (same on all members)
- Designate one or more physical interfaces per unit for CCL
- Assign an isolated subnet for CCL on a separate switch or VDC
- Configure jumbo-frame reservation command and reload each ASA
- Pick Spanned Etherchannel or Individual interface mode for the entire cluster

Setting Interface Mode

- Use cluster interface-mode command before configuring clustering
 - The running configuration is checked for incompatible commands
 - Interface mode setting is stored outside of the startup configuration
 - Use show cluster interface-mode to check current mode
 - Use no cluster interface-mode to return to standalone mode
- Clearing the interface configuration and reloading each ASA is recommended
 - You can display the list of conflicts and resolve them manually

```
asa(config)# cluster interface-mode spanned check-details
ERROR: Please modify the following configuration elements that are incompatible with
'spanned' interface-mode.
- Interface Gi0/0 is not a span-cluster port-channel interface, Gi0/0(outside)
cannot be used as data interface when cluster interface-mode is 'spanned'.
```

It is not recommended to bypass the check and force the mode change

Establishing Management Access

- Start clustering configuration on the Master unit
- ASDM High Availability and Scalability Wizard simplifies deployment

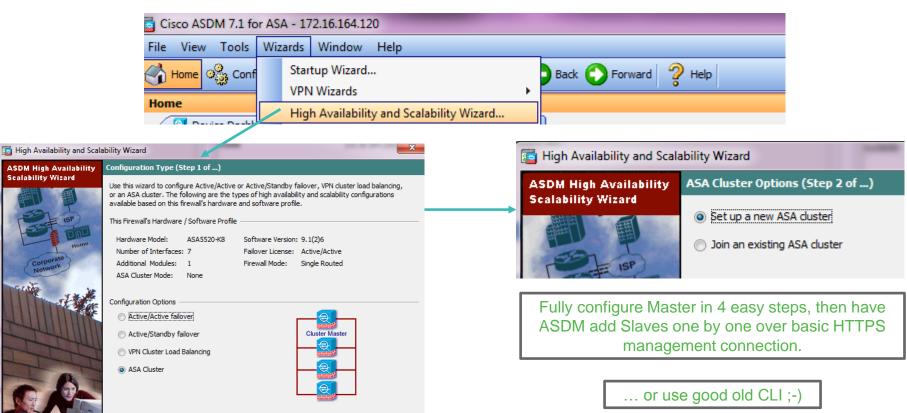
Requires basic management connectivity to all members

- Only set the interface mode on Master, then add Slaves automatically over HTTPS
- ip local pool CLUSTER_MANAGEMENT 172.16.162.243-172.16.162.250
 !
 interface Management0/0
 description management interface
 management-only
 nameif mgmt
 security-level 0
 ip address 172.16.162.242 255.255.255.224 cluster-pool CLUSTER_MANAGEMENT
 !
 route mgmt 0.0.0.0 0.0.0.0 172.16.162.225 1

http server enable

http 0.0.0.0 0.0.0.0 mgmt

aaa authentication http console LOCAL

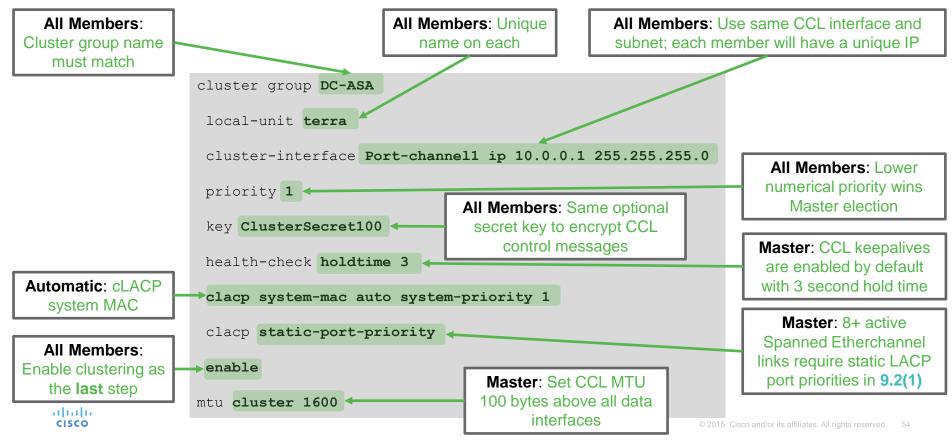

username cisco password cisco privilege 15

Master: Configure the IP pool under management interface

Slaves: Use individual IP addresses from the pool (starting

from .244 in this example) on the same management interfaces

ASDM High Availability and Scalability Wizard


CLI Configuration: CCL Etherchannel

- Create an Etherchannel interface for CCL on each member separately
 - Same physical interface members across all units
 - Use LACP for quicker failure detection or static on mode for less complexity
 - Use system context in the multiple-context mode
 - Connect one physical interface to each logical switch in VSS/vPC

```
ciscoasa(config) # interface TenGigabitEthernet 0/6
ciscoasa(config-if) # channel-group 1 mode on
INFO: security-level, delay and IP address are cleared on TenGigabitEthernet0/6.
ciscoasa(config-if) # no shutdown
ciscoasa(config-if) # interface TenGigabitEthernet 0/7
ciscoasa(config-if) # channel-group 1 mode on
INFO: security-level, delay and IP address are cleared on TenGigabitEthernet0/7.
ciscoasa(config-if) # no shutdown
```


CLI Configuration: Cluster Group

CLI Configuration: Data Interfaces on Master

Spanned Etherchannel Mode

Spanned Etherchannel bundles ports across entire cluster

Single virtual IP for all members

interface TenGigabitEthernet0/8
channel-group 20 mode active
interface TenGigabitEthernet0/9
channel-group 20 mode active
interface Port-channel20
port-channel span-cluster
mac-address 0001.000a.0001
nameif inside
security-level 100
ip address 10.1.1.1 255.255.255.0

Up to 32 ports with cLACP in **9.2(1)**

Virtual MAC is required for Etherchannel stability

Individual Mode

Every member bundles a separate Etherchannel

Virtual IP is owned by Master for management only

cisco

ip local pool INSIDE 10.1.1.2-10.1.1.17
interface TenGigabitEthernet0/8
channel-group 20 mode active
interface TenGigabitEthernet0/9
channel-group 20 mode active
the channel-group 20 mode active
interface Port-channel20
nameif inside
security-level 100
ip address 192.168.1.1 255.255.255.0 cluster-pool INSIDE

CLI Configuration: Adding Slave Units

Verify that the Master is operational before adding Slave members

```
asa# show cluster info
Cluster DC-ASA: On
Interface mode: spanned
This is "terra" in state MASTER

ID : 1
Version : 9.1(3)
Serial No.: JAF1511ABFT
CCL IP : 10.0.0.1
CCL MAC : 5475.d05b.26f2
Last join : 17:20:24 UTC Sep 26 2013
Last leave: N/A
```

Add one Slave at a time by configuring the cluster group

```
cluster group DC-ASA
local-unit sirius
cluster-interface Port-channel1 ip 10.0.0.2 255.255.255.0
priority 100
key ClusterSecret100
enable
```


Spanned Etherchannel Verification

Each cluster member shows only local Etherchannel member ports

```
asa# show port-channel summary
Flags: D - down P - bundled in port-channel
        I - stand-alone s - suspended
        H - Hot-standby (LACP only)
        U - in use N - not in use, no aggregation/nameif
        M - not in use, no aggregation due to minimum links not met
        w - waiting to be aggregated
Number of channel-groups in use: 2
Group Port-channel Protocol Span-cluster Ports
       Po1 (U)
                        TACP
                                              Te0/6(P)
                                                          Te0/7(P)
                                      No 🔨
2.0
       Po20(U)
                                              Te0/8(P)
                                                          Te0/9(P)
                         LACP
                                     Yes
         Port-Channel20 is a cluster-spanned
                                            Port-Channel1 is the Cluster Control
        data Etherchannel; it will only come up
                                              Link Etherchannel; it is bundled
             when clustering is enabled
                                                separately by each member
```


Monitoring and Troubleshooting Clustering

- ASDM Clustering dashboard shows aggregated health information
- show cluster command group displays aggregated traffic and resource data
 - show cluster history helps to understand state transitions and failure reasons
 - show cluster cpu helps to check CPU utilization across cluster
- show cluster info command group displays cluster subsystem information
 - show cluster info health helps to monitor aggregated unit health data
 - show cluster info loadbalance relates to optional Conn Rebalance feature
 - show cluster info trace shows cluster state machine debug data for Cisco TAC
- Leverage syslogs to understand failure reasons

%ASA-3-747022: Clustering: Asking slave unit terra to quit because it failed interface health check 3 times (last failure on Port-channell), rejoin will be attempted after 20 min.

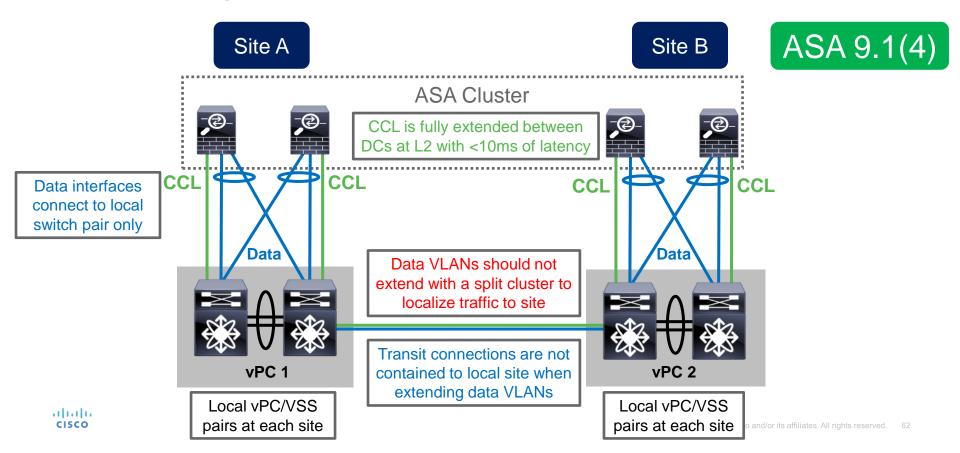
Use logging device-id to identity reporting members for connection events

Вопрос 2

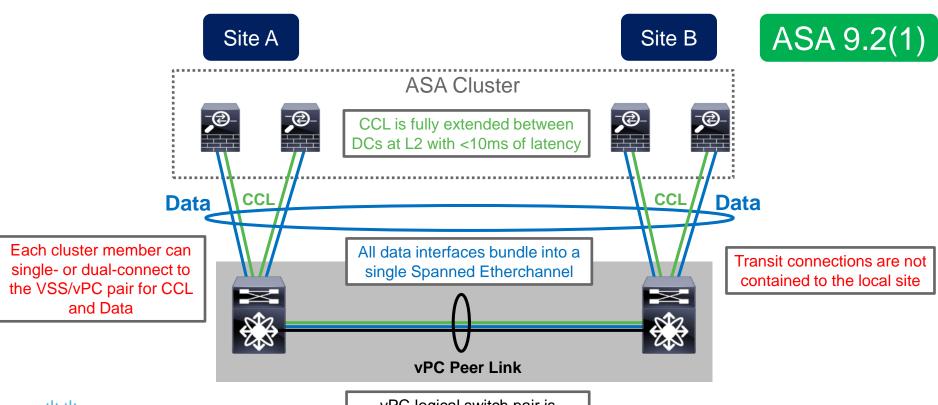
Работают ли уже в России территориально распределенные кластеры Cisco ASA?

- 1. Да, в производственном режиме
- 2. Да, только в тестовом режиме
- 3. Нет

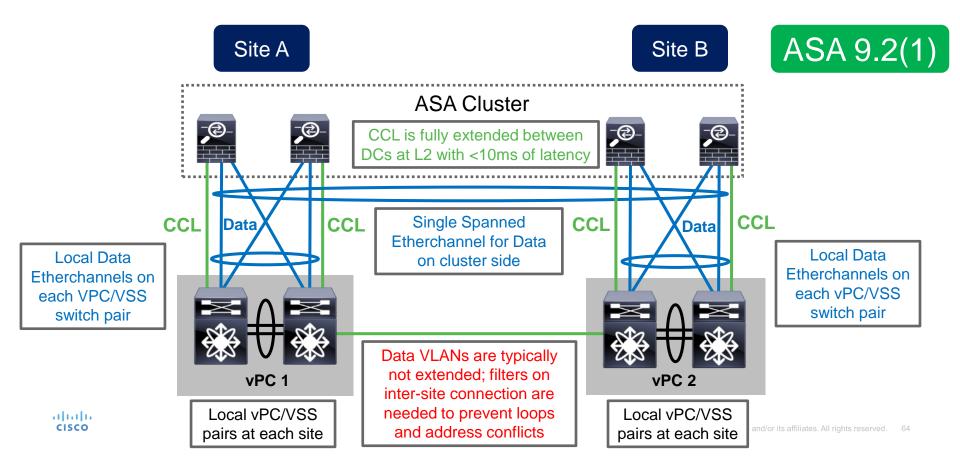
Advanced Deployment Scenarios



Inter Data Center (DC) Clustering


- Clustering assumes rather than requires data interface adjacency at Layer 2
- Geographically separated clusters supported in ASA 9.1(4)+
 - "Dark Media" CCL with up to 10ms of one-way latency
 - No tolerance for packet re-ordering or loss
 - Routed firewall in Individual interface mode only
- ASA 9.2(1) extends inter-DC clustering support to Spanned Etherchannel mode
 - Transparent firewall only
 - Routed firewall support presents design challenges

Split or Single Individual Mode Cluster in Inter DC

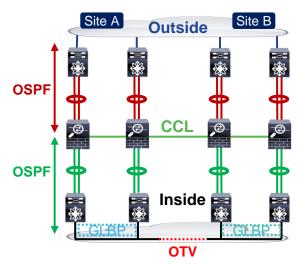


Extended Spanned Etherchannel Cluster in Inter DC

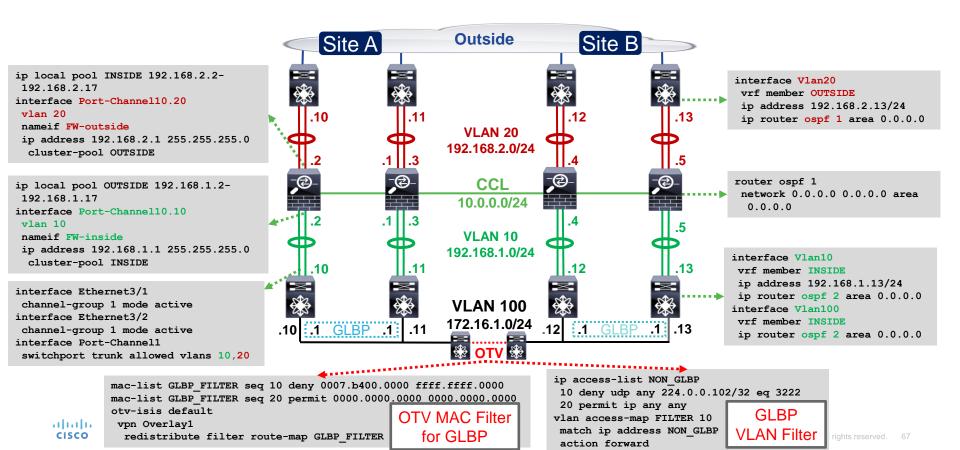


vPC logical switch pair is stretched across sites

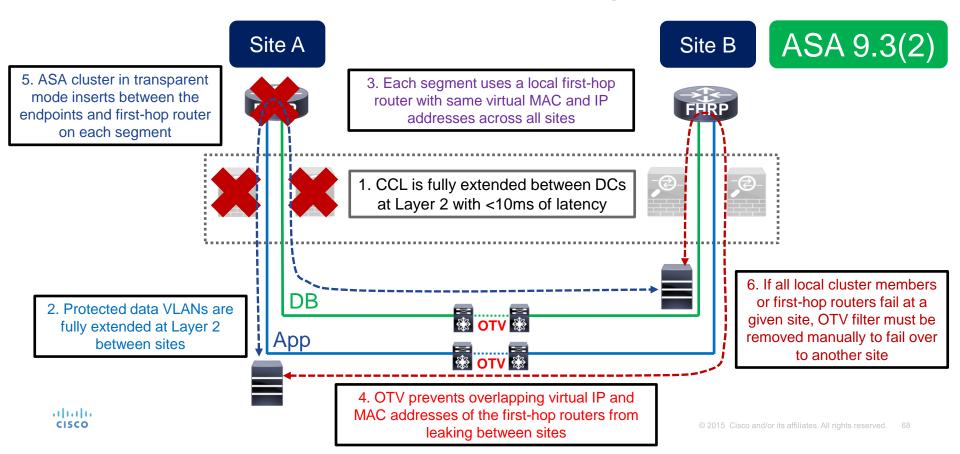
Split Spanned Etherchannel Cluster in Inter DC



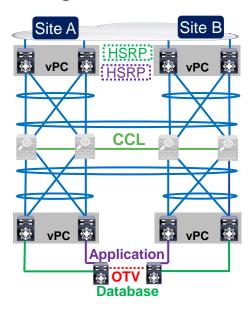
North-South Inter DC Clustering


Example: N-S Split Individual Mode Cluster

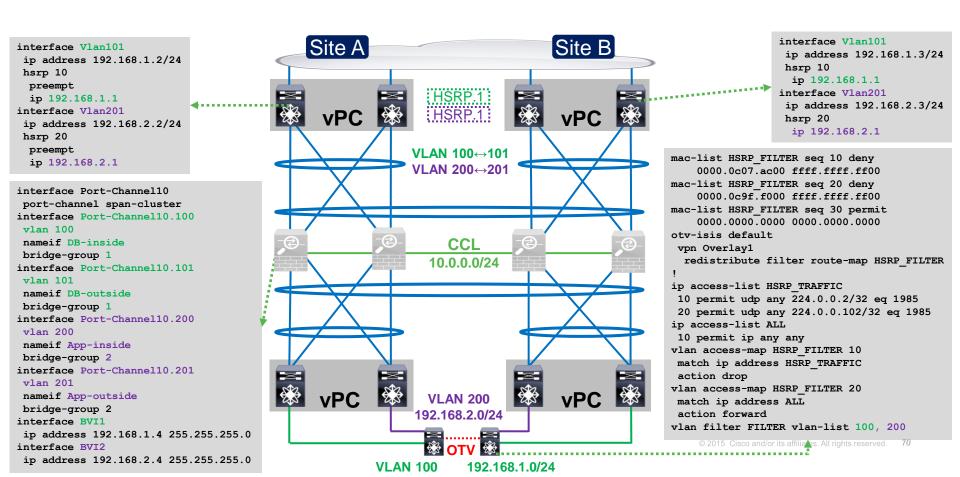
- A pair of standalone (non-vPC) Nexus switches at each site
 - One Individual mode cluster unit per switch, single attached
 - Routed firewall-on-a-stick VRF sandwich with OSPF
- Inside VLAN is fully extended between sites with OTV
 - Each pair of switches uses localized GLBP as first hop router
 - GLBP traffic is blocked between sites.
 - OSPF allows re-routing in case of local cluster unit failure
- Traffic symmetry is achievable without NAT
 - Outbound connections use the directly attached cluster member
 - Inbound traffic requires LISP to eliminate tromboning due to ECMP



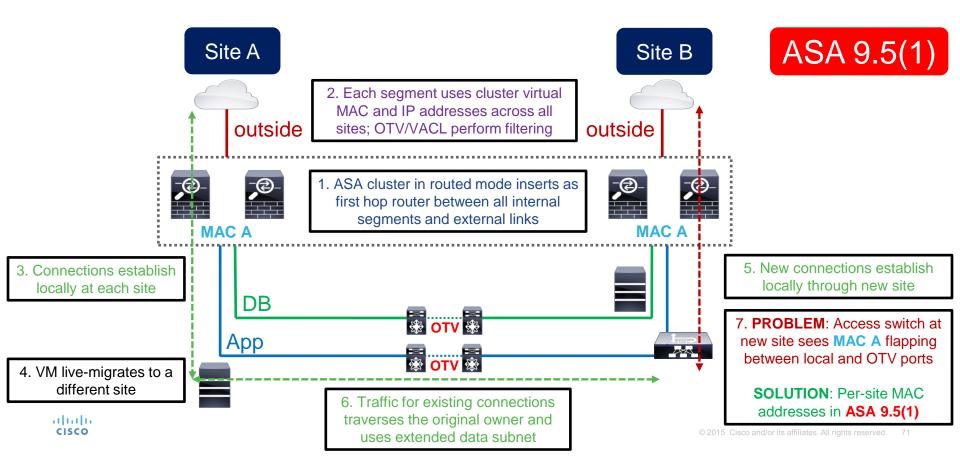
N-S Split Individual Cluster Sample Configuration


vlan filter FILTER vlan-list 100

East-West Inter DC Clustering


Example: E-W Split Spanned Etherchannel Cluster

- A vPC pair of Nexus switches at each site
 - Split Spanned Etherchannel cluster in transparent mode to separate internal segments
 - Separate Etherchannel to local cluster members per vPC pair
 - Acceptable impact from passing ASA twice between segments
- Internal VLANs are fully extended between sites with OTV
 - Each site uses localized HSRP as first hop router
 - HSRP traffic is blocked between sites.
 - Full Layer 2 reachability from each router to remote site
 - OTV filters must be manually removed on full upstream path failure
- Must implement LISP to avoid excessive flow redirection



E-W Split Spanned Cluster Sample Configuration

Future East-West Inter DC Scenario

Per-Site MAC Addresses

- Routed Spanned Etherchannel cluster uses different MAC addresses in 9.5(1)
 - Global interface MAC address is used to receive and source frames by default
 - Per-site MAC addresses are optionally used to source frames on extended segments

```
asa(config) # cluster group DC-ASA
asa(cfg-cluster) # site-id 2
asa(cfg-cluster) # interface Port-Channel1.1000
asa(config-if) # mac-address 0001.aaaa.0001 site-id 1
asa(config-if) # mac-address 0001.aaaa.0002 site-id 2
asa(config-if) # mac-address 0001.aaaa.aaaa 0001 site-id 2
asa(config-if) # mac-address of site-id 2
asa
```

- Dynamic routing is centralized, so it does not work with split outside networks
- Global MAC address localization is required through OTV or similar mechanism

Closing Remarks

Clustering Best Practices

- Only use compatible Catalyst and Nexus switches
- Leverage LACP Etherchannel for CCL and dual-connect to VSS/vPC
 - Match the forwarding capacity of each member
 - Raise CCL MTU to 100 bytes above all data interfaces
- Speed up switching and routing convergence
 - Enable Spanning Tree Portfast on CCL and data interfaces
 - Use NSF/GR or lower dead interval and SPF throttle timers on cluster and peers
- Reduce asymmetry to increase scale
 - Keep TCP Sequence Number Randomization enabled for SYN Cookies
 - Minimize centralized features and NAT/PAT
 - Use Spanned Etherchannel mode with symmetric hashing for best load distribution

Вопрос 3

Какая тема была бы интересной для следующей презентации:

- Firepower services on ASA deployment and troubleshooting
- 2. Secure DC best practices
- 3. vASA and vNGIPS deployment

Отправьте свой вопрос сейчас!

Используйте панель Q&A, чтобы задать вопрос.

Эксперты ответят на Ваши вопросы.

Приглашаем Вас активно участвовать в Сообществе и социальных сетях

Google+ https://plus.google.com/106603907471961036146

LinkedIn http://www.linkedin.com/groups/Cisco-Russia-CIS-3798

Instgram https://instagram.com/ciscoru

Подписаться на рассылку csc-russian@external.cisco.com

Мы также предоставляем Вашему вниманию Сообщества на других языках!

Если Вы говорите на Испанском, Португальском или Японском, мы приглашаем Вас принять участие и вести общение на Вашем родном языке

Если Вы говорите на Испанском, Португальском или Японском, мы приглашаем Вас принять участие в Сообществах:

Русское

http://russiansupportforum.cisco.com

Испанское

https://supportforums.cisco.com/community/spanish

Португальское

https://supportforums.cisco.com/community/portuguese

Японское

https://supportforums.cisco.com/community/csc-japan

Китайское

 $\underline{\text{http://www.csc-china.com.cn}}^{\text{@ 2015}} \text{ Cisco and/or its affiliates.}$

Технические семинары в клубе Cisco Expo Learning Club

http://ciscoclub.ru/events

Пожалуйста, участвуйте в опросе

Спасибо за Ваше внимание!

CISCO TO

CISCO TOMORROW starts here.