Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Business Operation Manager, Cisco Press: Jan Cornelssen
Executive Editor: Mary Beth Ray
Managing Editor: Sandra Schroeder
Senior Development Editor: Christopher Cleveland
Senior Project Editor: Tonya Simpson
Copy Editor: Bill McManus
Technical Editor: Jerome Henry
Editorial Assistant: Vanessa Evans
Cover Designer: Mark Shirar
Composition: Studio Galou
Indexer: Publishing Works
Proofreader: Laura Hernandez
About the Author

David Hucaby, CCIE No. 4594, is a network engineer for a large university healthcare network based on Cisco wireless products. David has bachelor’s and master’s degrees in electrical engineering from the University of Kentucky. He is the author of several Cisco Press titles, including CCNP SWITCH Exam Certification Guide; Cisco LAN Switching Video Mentor; CCNP Security FIREWALL Exam Certification Guide; Cisco ASA, PIX, and FWSM Firewall Handbook, Second Edition; and Cisco Firewall Video Mentor.

David lives in Kentucky with his wife, Marci, and two daughters.

About the Technical Reviewer

Jerome Henry, CCIE Wireless No. 24750, is a technical marketing engineer in the Wireless Enterprise Networking Group at Cisco systems. Jerome has close to 17 years of experience teaching technical Cisco courses in more than 15 different countries and 4 different languages, to audiences ranging from bachelor degree students to networking professionals and Cisco internal system engineers.

Focusing on his wireless experience, Jerome joined Cisco in 2012. Before that time, he was consulting and teaching Heterogeneous Networks and Wireless Integration with the European Airespace team, which Cisco later acquired to become its main wireless solution. He then spent several years with a Cisco Learning Partner developing wireless courses and working on training material for new wireless technologies. In addition to his CCIE Wireless certification, Jerome is a Certified Wireless Networking Expert (CWNE No. 45) and has developed several Cisco courses focusing on wireless topics (IUWNE, IUWMS, IUWVN, CUWSS, IAUWS, LBS, CWMN lab guide, and so on) and authored several Wireless books (CCNP Wireless IUWMS Quick Reference, CCNP Wireless CUWSS Quick Reference, and so on). Jerome also is an IEEE 802.11 group member and participant of Wi-Fi Alliance working groups. With more than 10,000 hours in the classroom, Jerome was awarded the IT Training Award Best Instructor silver medal in 2009. He is based in the Research Triangle Park in North Carolina.
Dedications

As always, this book is dedicated to the most important people in my life: my wife, Marci, my two daughters, Lauren and Kara, and my parents, Reid and Doris Hucaby. Their love, encouragement, and support carry me along. I'm so grateful to God, who gives endurance and encouragement (Romans 15:5), who has allowed me to enjoy networking and working on projects like this, and who invented wireless communication. With a higher purpose.

As the sign in front of a church near my home says: “Prayer: The world’s greatest wireless connection.”
Acknowledgments

It has been my great pleasure to work on another Cisco Press project. I've now been writing Cisco Press titles continuously for more than 15 years. I have physically worn out several laptop keyboards and probably several Cisco Press editors in the process. I am most thankful that Chris Cleveland has never worn out—he has been the development editor for almost every project I have ever worked on. I can’t say enough good things about working with him. I am grateful to Mary Beth Ray for inviting me back to revise this book, Tonya Simpson as the project editor, Bill McManus for raising the copy editing bar to an amazing height, and many other Cisco Press folks who have worked hard to make this book happen.

I am very grateful for the insight, knowledge, and helpful comments that Jerome Henry has provided. He is a tremendous resource for wireless networking expertise and training. Jerome’s input has made this a more well-rounded book and me a more educated author.

As always, I have enjoyed the good discussions with my dad, Reid Hucaby, a fellow EE and a seasoned RF engineer, that this book has prompted about all things wireless.

Finally, I am indebted to my co-worker and good friend, Rick Herring, who has been saying for years that I should write a wireless book one day. I always thought he was joking until now.
Contents at a Glance

Introduction xxi
Chapter 1: RF Signals and Modulation 3
Chapter 2: RF Standards 37
Chapter 3: RF Signals in the Real World 71
Chapter 4: Understanding Antennas 91
Chapter 5: Wireless LAN Topologies 111
Chapter 6: Understanding 802.11 Frame Types 129
Chapter 7: Planning Coverage with Wireless APs 153
Chapter 8: Understanding Cisco Wireless Architectures 183
Chapter 9: Implementing Autonomous and Cloud Deployments 211
Chapter 10: Implementing Controller-based Deployments 231
Chapter 11: Understanding Controller Discovery 265
Chapter 12: Understanding Roaming 281
Chapter 13: Understanding RRM 305
Chapter 14: Wireless Security Fundamentals 327
Chapter 15: Configuring a WLAN 353
Chapter 16: Implementing a Wireless Guest Network 371
Chapter 17: Configuring Client Connectivity 385
Chapter 18: Managing Cisco Wireless Networks 409
Chapter 19: Dealing with Wireless Interference 429
Chapter 20: Troubleshooting WLAN Connectivity 449
Chapter 21: Final Review 475
Appendix A: Answers to the “Do I Know This Already?” Quizzes 487
Appendix B: Modulation and Coding Schemes 505
Appendix C: CCNA Wireless 200-355 Exam Updates 513
 Key Terms Glossary 515
 Index 529

On the DVD
Appendix D: Study Planner

Key Terms Glossary
Contents

Introduction xxi

Chapter 1 RF Signals and Modulation 3

“Do I Know This Already?” Quiz 3

Foundation Topics 7

Comparing Wired and Wireless Networks 7

Understanding Basic Wireless Theory 7

- Understanding Frequency 9
- Understanding Phase 14
- Measuring Wavelength 14
- Understanding RF Power and dB 15

 Important dB Laws to Remember 17

Comparing Power Against a Reference: dBm 19

Measuring Power Changes Along the Signal Path 20

Understanding Power Levels at the Receiver 23

Carrying Data Over an RF Signal 24

- FHSS 26
- DSSS 27

 1-Mbps Data Rate 28

 2-Mbps Data Rate 28

 5.5-Mbps Data Rate 29

 11-Mbps Data Rate 30
- OFDM 30
- Modulation Summary 32

Exam Preparation Tasks 34

Review All Key Topics 34

Key Terms 34

Chapter 2 RF Standards 37

“Do I Know This Already?” Quiz 37

Foundation Topics 41

Regulatory Bodies 41

- ITU-R 41
- FCC 42
- ETSI 44
- Other Regulatory Bodies 45
Chapter 6 Understanding 802.11 Frame Types 129
“Do I Know This Already?” Quiz 129
Foundation Topics 132
802.11 Frame Format 132
802.11 Frame Addressing 134
Accessing the Wireless Medium 136
 Carrier Sense 137
 Collision Avoidance 137
802.11 Frame Types 140
 Management Frames 140
 Control Frames 141
 Data Frames 142
Client Housekeeping 142
 A Client Scans for APs 143
 A Client Joins a BSS 144
 A Client Leaves a BSS 145
 A Client Moves Between BSSs 146
 A Client Saves Power 147
Exam Preparation Tasks 151
Review All Key Topics 151
Define Key Terms 151

Chapter 7 Planning Coverage with Wireless APs 153
“Do I Know This Already?” Quiz 153
Foundation Topics 157
AP Cell Size 157
 Tuning Cell Size with Transmit Power 157
 Tuning Cell Size with Data Rates 159
Chapter 10 Implementing Controller-based Deployments 231

“Do I Know This Already?” Quiz 231

Foundation Topics 235

Connecting a Centralized Controller 235

Using Controller Ports 235

Using Controller Interfaces 237

Performing an Initial Setup 238

Initial Setup of a Centralized Controller with the Configuration Wizard 239

Initial Setup of a Converged Controller with the Configuration Wizard 247

Initial Setup of a Centralized Controller with WLAN Express Setup 254

Initial Setup of a Centralized Controller with the CLI 257

Maintaining a Wireless Controller 258

Back Up Controller Configurations 258

Updating Wireless LAN Controller Code 259

Updating Wireless Control Module Code 262

Exam Preparation Tasks 263

Review All Key Topics 263

Define Key Terms 263

Chapter 11 Understanding Controller Discovery 265

“Do I Know This Already?” Quiz 265

Foundation Topics 268

Discovering a Controller 268

AP States 268

Discovering a WLC 270

Selecting a WLC 271

Designing High Availability 272

Detecting a Controller Failure 274

Building Redundancy 274

N+1 Redundancy 274

N+N Redundancy 275

N+N+1 Redundancy 276

SSO Redundancy 277
Chapter 12 Understanding Roaming 281
“Do I Know This Already?” Quiz 281
Foundation Topics 285
Roaming Overview 285
 Roaming Between Autonomous APs 285
 Intracontroller Roaming 288
Roaming Between Centralized Controllers 290
 Layer 2 Roaming 290
 Layer 3 Roaming 292
 Scaling Mobility with Mobility Groups 296
 Roaming Coordination with Centralized Controllers 298
Roaming Between Converged Controllers 300
Exam Preparation Tasks 303
Review All Key Topics 303
Define Key Terms 303

Chapter 13 Understanding RRM 305
“Do I Know This Already?” Quiz 305
Foundation Topics 308
Configuring 802.11 Support 308
 Configuring Data Rates 309
 Configuring 802.11n and 802.11ac Support 310
Understanding RRM 311
 RF Groups 313
 TPC 315
 DCA 318
 Coverage Hole Detection Mitigation 320
 Manual RF Configuration 322
 Verifying RRM Results 323
Exam Preparation Tasks 325
Review All Key Topics 325
Define Key Terms 325

Chapter 14 Wireless Security Fundamentals 327
“Do I Know This Already?” Quiz 327
Foundation Topics 331
Anatomy of a Secure Connection 331
 Authentication 332
 Message Privacy 333
 Message Integrity 334
 Intrusion Protection 335
Wireless Client Authentication Methods 336
 Open Authentication 336
 WEP 337
 802.1x/EAP 338
 LEAP 339
 EAP-FAST 339
 PEAP 340
 EAP-TLS 340
Wireless Privacy and Integrity Methods 341
 TKIP 341
 CCMP 342
WPA and WPA2 342
Securing Management Frames with MFP 343
Configuring Wireless Security 344
 Configuring WPA2 Personal 344
 Configuring WPA2 Enterprise Mode 346
 Configuring WPA2 Enterprise with Local EAP 348
Exam Preparation Tasks 351
Review All Key Topics 351
Define Key Terms 351

Chapter 15 Configuring a WLAN 353
“Do I Know This Already?” Quiz 353
Foundation Topics 355
WLAN Overview 355
Configuring a WLAN 356
 Configuring a RADIUS Server 356
 Creating a Dynamic Interface 358
 Creating a New WLAN 360
 Configuring WLAN Security 362
 Configuring WLAN QoS 364
 Configuring Advanced WLAN Settings 365
 Finalizing WLAN Configuration 366
Icons Used in This Book

- Wireless Device
- Wireless Signal
- Wireless Access Point
- Lightweight Access Point
- Directional Antenna
- Wireless LAN Controller
- Wireless Bridge
- CAPWAP Tunnel
- Layer 2 Switch
- Multilayer Switch
- Wireless Client
- Mesh Access Point
- Mobility Services Engine
- Real Time Location Service
- Authentication Service
- Spectrum Analysis
- Wireless Cell
- AAA
- Server

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a show command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate an optional element.

- Braces ({ }) indicate a required choice.

- Braces within brackets ([{ }]) indicate a required choice within an optional element.
Introduction

Welcome to the world of Cisco Certified Network Associate (CCNA) Wireless! As technology continues to evolve, wireless technologies are finding their way to the forefront. This clearly indicates the progression from a fixed wired type of connectivity to a more fluid, mobile workforce that can work when, where, and how they want. Regardless of your background, one of the primary goals of the CCNA Wireless certification is to introduce you to the Cisco Unified Wireless Network (CUWN).

This book is designed to help you prepare for the Cisco CCNA Wireless 200-355 WIFUND (Implementing Cisco Wireless Networking Fundamentals) certification exam. To achieve the CCNA Wireless specialization, you must first pass the CCENT, CCNA Routing and Switching, or any CCIE certification.

Who Should Read This Book

Wireless networking is a complex business. The CCNA Wireless specialization was developed to introduce wireless LANs, the CUWN, and Cisco’s wireless product line. The certification tests for proficiency in designing, installing, configuring, monitoring, and troubleshooting wireless networks in an enterprise setting.

How to Use This Book

The book consists of 21 chapters. Each chapter tends to build upon the chapter that precedes it. The chapters of the book cover the following topics:

- **Chapter 1, “RF Signals and Modulation”:** This chapter covers the basic theory behind radio frequency (RF) signals and the methods used to carry data wirelessly.
- **Chapter 2, “RF Standards”:** This chapter covers the agencies that regulate, standardize, and validate the correct use of wireless LAN devices.
- **Chapter 3, “RF Signals in the Real World”:** This chapter explores many of the conditions that can affect wireless signal propagation.
- **Chapter 4, “Understanding Antennas”:** This chapter explains some basic antenna theory, in addition to various types of antennas and their application.
- **Chapter 5, “Wireless LAN Topologies”:** This chapter explains the topologies that can be used to control access to the wireless medium and provide data exchange between devices.
- **Chapter 6, “Understanding 802.11 Frame Types”:** This chapter covers the frame format and frame types that APs and clients must use to communicate successfully. It also discusses the choreography that occurs between an AP and its clients.
- **Chapter 7, “Planning Coverage with Wireless APs”:** This chapter explains how wireless coverage can be adjusted to meet a need and how it can be grown to scale over a greater area and a greater number of clients. It also explains how coverage can be measured, surveyed, and validated.
Chapter 8, “Understanding Cisco Wireless Architectures”: This chapter describes the autonomous, cloud-based, centralized, and converged wireless architectures and how you can leverage their respective strengths to solve some fundamental problems.

Chapter 9, “Implementing Autonomous and Cloud Deployments”: This chapter discusses basic operation of an autonomous AP and how you can connect to it and convert it to lightweight mode, to become a part of a larger, more integrated wireless network. It also provides an introduction of Cisco Meraki cloud-based APs.

Chapter 10, “Implementing Controller-based Deployments”: This chapter covers the wireless controller’s role in linking wired and wireless networks. It also covers the minimal initial configuration needed to get a controller up on the network where you can manage it more fully.

Chapter 11, “Understanding Controller Discovery”: This chapter explains the process that each lightweight AP must go through to discover and bind itself with a controller before wireless clients can be supported.

Chapter 12, “Understanding Roaming”: This chapter discusses client mobility from the AP and controller perspectives so that you can design and configure your wireless network properly as it grows over time.

Chapter 13, “Understanding RRM”: This chapter covers Radio Resource Management (RRM), a flexible and automatic mechanism that Cisco wireless LAN controllers can use to make wireless network operation more efficient.

Chapter 14, “Wireless Security Fundamentals”: This chapter covers many of the methods you can use to secure a wireless network.

Chapter 15, “Configuring a WLAN”: This chapter explains how to define and tune a wireless LAN to support wireless clients and connectivity with a wired infrastructure.

Chapter 16, “Implementing a Wireless Guest Network”: This chapter discusses the steps you can take to configure a guest network as an extension to your wireless infrastructure.

Chapter 17, “Configuring Client Connectivity”: This chapter introduces some of the most common types of wireless clients and how to configure them to join a wireless LAN.

Chapter 18, “Managing Cisco Wireless Networks”: This chapter provides an overview of Prime Infrastructure, how you can configure controllers and APs with it, and how you can use it to monitor a variety of things in your network.

Chapter 19, “Dealing with Wireless Interference”: This chapter covers some common types of devices that can cause interference and the Cisco CleanAir features that can detect and react to the interference sources.
Chapter 20, “Troubleshooting WLAN Connectivity”: This chapter helps you get some perspective about wireless problems, develop a troubleshooting strategy, and become comfortable using the tools at your disposal.

Chapter 21, “Final Review”: This short chapter lists the exam preparation tools useful at this point in the study process. It also provides a suggested study plan now that you have completed all of the earlier chapters in this book.

Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes”: This appendix provides the correct answers to the “Do I Know This Already?” quizzes that you will find at the beginning of each chapter. Brief explanations for the correct answers will also help you complete your understanding of topics covered.

Appendix B, “Modulation and Coding Schemes”: This appendix outlines the direct-sequence spread spectrum (DSSS) and orthogonal frequency-division multiplexing (OFDM) data rates used for 802.11b/g and 802.11a; the modulation and coding schemes and data rates used for 802.11n; and the modulation, coding schemes, and data rates used for 802.11ac.

Appendix C, “CCNA Wireless 200-355 Exam Updates”: This appendix is a living document that provides you with updated information if Cisco makes minor modifications to the exam upon which this book is based. Be sure to check the online version of this appendix at http://www.ciscopress.com/title/9781587144578 for any updates.

Appendix D, “Study Planner”: This spreadsheet is designed as a tool to help you plan and track major study milestones as you prepare for the CCNA Wireless exam.

Key Terms Glossary: The glossary defines all WLAN-related terms that you were asked to define at the end of each chapter.

Each chapter follows the same format and incorporates the following tools to assist you by assessing your current knowledge and emphasizing specific areas of interest within the chapter:

Do I Already Know This Quiz?: Each chapter begins with a quiz to help you assess your current knowledge of the subject. The quiz is divided into specific areas of emphasis that enable you to best determine where to focus your efforts when working through the chapter.

Foundation Topics: The foundation topics are the core sections of each chapter. They focus on the specific protocols, concepts, or skills that you must master to successfully prepare for the examination.

Exam Preparation: Near the end of each chapter, this section highlights the key topics from the chapter and the pages where you can find them for quick review. This section also provides a list of key terms that you should be able to define in preparation for the exam. It is unlikely that you will be able to successfully complete the certification exam by just studying the key topics and key terms, although they are a good tool for last-minute preparation just before taking the exam.
■ DVD-based practice exam: This book includes a DVD containing several interactive practice exams. It is recommended that you continue to test your knowledge and test-taking skills by using these exams. You will find that your test-taking skills will improve by continued exposure to the test format. Remember that the potential range of exam questions is limitless. Therefore, your goal should not be to “know” every possible answer but to have a sufficient understanding of the subject matter so that you can figure out the correct answer with the information provided.

Certification Exam Topics and This Book
The questions for each certification exam are a closely guarded secret. However, we do know which topics you must know to successfully complete this exam. Cisco publishes them as an exam blueprint for Implementing Cisco Wireless Networking Fundamentals (WIFUND), exam 200-355. Table I-1 lists each exam topic listed in the blueprint along with a reference to the book chapter that covers the topic. These are the same topics you should be proficient in when working with Cisco wireless LANs in the real world.

Tip At the time this book is being published, the WIFUND exam is based on Cisco Wireless LAN Controller software release 8.0 and Cisco Prime Infrastructure release 2.2.

<table>
<thead>
<tr>
<th>WIFUND 200-355 Exam Topic</th>
<th>Chapter(s) in Which Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 RF Fundamentals</td>
<td></td>
</tr>
<tr>
<td>1.1 Describe the propagation of radio waves</td>
<td></td>
</tr>
<tr>
<td>1.1.a Frequency, amplitude, phase, wavelength (characteristics)</td>
<td>1</td>
</tr>
<tr>
<td>1.1.b Absorption, reflection, diffraction, scattering, refraction, fading, free space path loss, multipath</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Interpret RF signal measurements</td>
<td></td>
</tr>
<tr>
<td>1.2.a Signal strength (RSSI, Transmit power, receive sensitivity)</td>
<td>1</td>
</tr>
<tr>
<td>1.2.b Differentiate interference vs. noise</td>
<td>1, 3, 19</td>
</tr>
<tr>
<td>1.2.c Device capabilities (smartphones, laptops, tablets)</td>
<td>17</td>
</tr>
<tr>
<td>1.2.d Define SNR</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Explain the principles of RF mathematics</td>
<td></td>
</tr>
<tr>
<td>1.3.a Compute dBm, mW, Law of 3s and 10s,</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Describe Wi-Fi antenna characteristics</td>
<td></td>
</tr>
<tr>
<td>1.4.a Ability to read a radiation pattern chart</td>
<td>4</td>
</tr>
<tr>
<td>1.4.b Antenna types and uses</td>
<td>4</td>
</tr>
<tr>
<td>WIFUND 200-355 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1.4.c dBi, dBd, EIRP</td>
<td>1, 4</td>
</tr>
<tr>
<td>2.0 802.11 Technology Fundamentals</td>
<td></td>
</tr>
<tr>
<td>2.1 Describe basic Wi-Fi governance</td>
<td></td>
</tr>
<tr>
<td>2.1.a Describe regional regulatory bodies (such as, FCC / ETSI/NTT)</td>
<td>2</td>
</tr>
<tr>
<td>2.1.b IEEE 802.11</td>
<td>2</td>
</tr>
<tr>
<td>2.1.c Wi-Fi Alliance</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Describe usable channel and power combination</td>
<td></td>
</tr>
<tr>
<td>2.2.a Regional EIRP limitation examples</td>
<td>2</td>
</tr>
<tr>
<td>2.2.b ISM, UNII frequency bands</td>
<td>2</td>
</tr>
<tr>
<td>2.2.c Describe RRM fundamental</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Describe 802.11 fundamentals</td>
<td></td>
</tr>
<tr>
<td>2.3.a Modulation techniques</td>
<td>1, 2</td>
</tr>
<tr>
<td>2.3.b Channel width</td>
<td>2</td>
</tr>
<tr>
<td>2.3.c MIMO / MU-MIMO</td>
<td>2</td>
</tr>
<tr>
<td>2.3.c (i) MRC</td>
<td>2</td>
</tr>
<tr>
<td>2.3.c (ii) Beam forming</td>
<td>2</td>
</tr>
<tr>
<td>2.3.c (iii) Spatial streams</td>
<td>2</td>
</tr>
<tr>
<td>2.3.d Wireless topologies</td>
<td>5</td>
</tr>
<tr>
<td>2.3.d (i) IBSS</td>
<td>5</td>
</tr>
<tr>
<td>2.3.d (ii) BSS</td>
<td>5</td>
</tr>
<tr>
<td>2.3.d (iii) ESS</td>
<td>5</td>
</tr>
<tr>
<td>2.3.e Frame types</td>
<td>6</td>
</tr>
<tr>
<td>2.3.e (i) Management</td>
<td>6</td>
</tr>
<tr>
<td>2.3.e (ii) Control</td>
<td>6</td>
</tr>
<tr>
<td>2.3.e (iii) Data</td>
<td>6</td>
</tr>
<tr>
<td>3.0 Implementing a Wireless Network</td>
<td></td>
</tr>
<tr>
<td>3.1 Describe the various Cisco wireless architectures</td>
<td></td>
</tr>
<tr>
<td>3.1.a Cloud</td>
<td>8</td>
</tr>
<tr>
<td>3.1.b Autonomous</td>
<td>8</td>
</tr>
<tr>
<td>3.1.c Split MAC</td>
<td>8</td>
</tr>
<tr>
<td>WIFUND 200-355 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>3.1.c (i) FlexConnect</td>
<td>8</td>
</tr>
<tr>
<td>3.1.c (ii) Centralized</td>
<td>8</td>
</tr>
<tr>
<td>3.1.c (iii) Converged</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Describe physical infrastructure connections</td>
<td></td>
</tr>
<tr>
<td>3.2.a Wired infrastructure (AP, WLC, access/trunk ports, LAG)</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Describe AP and WLC management access connections</td>
<td></td>
</tr>
<tr>
<td>3.3.a Management connections (Telnet, SSH, HTTP, HTTPS, console)</td>
<td>9, 10</td>
</tr>
<tr>
<td>3.3.b IP addressing: IPv4 / IPv6</td>
<td>9, 10</td>
</tr>
<tr>
<td>3.3.c Management via wireless</td>
<td>15</td>
</tr>
<tr>
<td>4.0 Operating a Wireless Network</td>
<td></td>
</tr>
<tr>
<td>4.1 Execute initial setup procedures Cisco wireless infrastructures</td>
<td></td>
</tr>
<tr>
<td>4.1.a Cloud</td>
<td>9</td>
</tr>
<tr>
<td>4.1.b Converged</td>
<td>10</td>
</tr>
<tr>
<td>4.1.c Centralized</td>
<td>10</td>
</tr>
<tr>
<td>4.1.d Autonomous</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Describe the Cisco implementation of the CAPWAP discovery and join process</td>
<td></td>
</tr>
<tr>
<td>4.2.a DHCP</td>
<td>11</td>
</tr>
<tr>
<td>4.2.b DNS</td>
<td>11</td>
</tr>
<tr>
<td>4.2.c Master-controller</td>
<td>11</td>
</tr>
<tr>
<td>4.2.d Primary-secondary-tertiary</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Distinguish different lightweight AP modes</td>
<td>8</td>
</tr>
<tr>
<td>4.4 Describe and configure the components of a wireless LAN access for client connectivity using GUI only</td>
<td>15</td>
</tr>
<tr>
<td>4.5 Identify wireless network and client management and configuration platform options</td>
<td></td>
</tr>
<tr>
<td>4.5.a Controller GUI and CLI</td>
<td>10</td>
</tr>
<tr>
<td>4.5.b Prime infrastructure</td>
<td>18</td>
</tr>
<tr>
<td>4.5.c Dashboard</td>
<td>9</td>
</tr>
<tr>
<td>4.5.d ISE</td>
<td>18</td>
</tr>
<tr>
<td>4.6 Maintain wireless network</td>
<td></td>
</tr>
<tr>
<td>WIFUND 200-355 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>4.6.a Perform controller configuration backups</td>
<td>10</td>
</tr>
<tr>
<td>4.6.b Perform code updates on controller, APs, and converged access switches</td>
<td>10</td>
</tr>
<tr>
<td>4.6.b (i) AireOS: boot loader (FUS), image</td>
<td>10</td>
</tr>
<tr>
<td>4.6.b (ii) IOS-XE: bundle, unbundle</td>
<td>10</td>
</tr>
<tr>
<td>4.6.b (iii) Autonomous</td>
<td>9</td>
</tr>
<tr>
<td>5.0 Configuration of Client Connectivity</td>
<td></td>
</tr>
<tr>
<td>5.1 Identify authentication mechanisms</td>
<td></td>
</tr>
<tr>
<td>5.1.a LDAP, RADIUS, local authentication, WebAuth, 802.1X, PSK</td>
<td>14, 16</td>
</tr>
<tr>
<td>5.2 Configuring WLAN authentication mechanisms on the controller</td>
<td></td>
</tr>
<tr>
<td>5.2.a WebAuth, 802.1X, PSK</td>
<td>14, 16</td>
</tr>
<tr>
<td>5.2.b TKIP deprecation</td>
<td>14</td>
</tr>
<tr>
<td>5.3 Configure client connectivity in different operating systems</td>
<td></td>
</tr>
<tr>
<td>5.3.a Android, MacOS, iOS, Windows</td>
<td>17</td>
</tr>
<tr>
<td>5.4 Describe roaming</td>
<td></td>
</tr>
<tr>
<td>5.4.a Layer 2 and Layer 3</td>
<td>12</td>
</tr>
<tr>
<td>5.4.b Intracontroller and intercontroller</td>
<td>12</td>
</tr>
<tr>
<td>5.4.c Centralized mobility</td>
<td>12</td>
</tr>
<tr>
<td>5.4.d Converged mobility</td>
<td>12</td>
</tr>
<tr>
<td>5.5 Describe wireless guest networking</td>
<td></td>
</tr>
<tr>
<td>5.5.a Anchor controller</td>
<td>16</td>
</tr>
<tr>
<td>5.5.b Foreign controller</td>
<td>16</td>
</tr>
<tr>
<td>6.0 Performing Client Connectivity Troubleshooting</td>
<td></td>
</tr>
<tr>
<td>6.1 Validating WLAN configuration settings at the infrastructure side</td>
<td></td>
</tr>
<tr>
<td>6.1.a Security settings</td>
<td>20</td>
</tr>
<tr>
<td>6.1.b SSID settings</td>
<td>20</td>
</tr>
<tr>
<td>6.2 Validating AP infrastructure settings</td>
<td></td>
</tr>
<tr>
<td>6.2.a Port level configuration</td>
<td>20</td>
</tr>
<tr>
<td>6.2.b Power source</td>
<td>20</td>
</tr>
<tr>
<td>6.2.c AP and antenna orientation and position</td>
<td>20</td>
</tr>
<tr>
<td>WIFUND 200-355 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>6.3 Validate client settings</td>
<td></td>
</tr>
<tr>
<td>6.3.a SSID</td>
<td>17, 20</td>
</tr>
<tr>
<td>6.3.b Security</td>
<td>17, 20</td>
</tr>
<tr>
<td>6.3.c Device driver version</td>
<td>17</td>
</tr>
<tr>
<td>6.4 Employ appropriate controller tools to assist troubleshooting</td>
<td></td>
</tr>
<tr>
<td>6.4.a GUI logs</td>
<td>20</td>
</tr>
<tr>
<td>6.4.b CLI show commands</td>
<td>20</td>
</tr>
<tr>
<td>6.4.c Monitor pages</td>
<td></td>
</tr>
<tr>
<td>6.4.c (i) CleanAir (controller GUI)</td>
<td>19</td>
</tr>
<tr>
<td>6.5 Identify appropriate third-party tools to assist troubleshooting</td>
<td></td>
</tr>
<tr>
<td>6.5.a OS-based Client utilities</td>
<td>20</td>
</tr>
<tr>
<td>6.5.b Wi-Fi scanners</td>
<td>20</td>
</tr>
<tr>
<td>6.5.c RF mapping tool</td>
<td>20</td>
</tr>
<tr>
<td>7.0 Site Survey Process</td>
<td></td>
</tr>
<tr>
<td>7.1 Describe site survey methodologies and their purpose</td>
<td></td>
</tr>
<tr>
<td>7.1.a Offsite (predictive / plan)</td>
<td>7</td>
</tr>
<tr>
<td>7.1.b Onsite</td>
<td>7</td>
</tr>
<tr>
<td>7.1.b (i) Predeployment (AP on a stick)</td>
<td>7</td>
</tr>
<tr>
<td>7.1.b (ii) Post deployment (validation)</td>
<td>7</td>
</tr>
<tr>
<td>7.2 Describe passive and active site surveys</td>
<td>7</td>
</tr>
<tr>
<td>7.3 Identify proper application of site survey tools</td>
<td></td>
</tr>
<tr>
<td>7.3.a Spectrum analyzer</td>
<td>19</td>
</tr>
<tr>
<td>7.3.b Site surveying software</td>
<td>7</td>
</tr>
<tr>
<td>7.4 Describe the requirements of client real-time and non-real-time applications</td>
<td>17</td>
</tr>
</tbody>
</table>

Each version of the exam can have topics that emphasize different functions or features, and some topics can be rather broad and generalized. The goal of this book is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. Although some chapters might not address specific exam topics, they provide a
foundation that is necessary for a clear understanding of important topics. Your short-
term goal might be to pass this exam, but your long-term goal should be to become a
qualified wireless networking professional.

It is also important to understand that this book is a “static” reference, whereas the exam
topics are dynamic. Cisco can and does change the topics covered on certification exams
often.

This exam guide should not be your only reference when preparing for the certification
exam. You can find a wealth of information available at Cisco.com that covers each
topic in great detail. If you think that you need more detailed information on a specific
topic, read the Cisco documentation that focuses on that topic.

Note that as wireless technologies continue to develop, Cisco reserves the right to
change the exam topics without notice. Although you can refer to the list of exam
topics in Table I-1, always check Cisco.com to verify the actual list of topics to ensure
that you are prepared before taking the exam. You can view the current exam topics on
any current Cisco certification exam by visiting the Cisco.com website, hovering over
Training & Events, and selecting from the Certifications list. Note also that, if needed,
Cisco Press might post additional preparatory content on the web page associated with
this book at http://www.ciscopress.com/title/9781587144578. It’s a good idea to check
the website a couple of weeks before taking your exam to be sure that you have up-to-
date content.

Taking the CCNA Wireless Certification Exam

As with any Cisco certification exam, you should strive to be thoroughly prepared
before taking the exam. There is no way to determine exactly what questions are on the
exam, so the best way to prepare is to have a good working knowledge of all subjects
covered on the exam. Schedule yourself for the exam and be sure to be rested and ready
to focus when taking the exam.

The best place to find out the latest available Cisco training and certifications is under
the Training & Events section at Cisco.com.

Tracking Your Status

You can track your certification progress by checking http://www.cisco.com/go/
certifications/login. You must create an account the first time you log in to the site.

How to Prepare for an Exam

The best way to prepare for any certification exam is to use a combination of the
preparation resources, labs, and practice tests. This guide has integrated some practice
questions and example scenarios to help you better prepare. If possible, get some hands-
on experience with CUWN equipment. There is no substitute for real-world experience;
it is much easier to understand the designs, configurations, and concepts when you can
actually work with a live wireless network.
Cisco.com provides a wealth of information about wireless LAN controllers, access points (APs), and wireless management products, and wireless LAN technologies and features.

Assessing Exam Readiness
Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30 percent of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Cisco Wireless Certifications in the Real World
Cisco has one of the most recognized names on the Internet. Cisco Certified wireless specialists can bring quite a bit of knowledge to the table because of their deep understanding of wireless technologies, standards, and networking devices. This is why the Cisco certification carries such high respect in the marketplace. Cisco certifications demonstrate to potential employers and contract holders a certain professionalism, expertise, and dedication required to complete a difficult goal. If Cisco certifications were easy to obtain, everyone would have them.

Exam Registration
The CCNA Wireless WIFUND 200-355 exam is a computer-based exam, with around 60 to 70 multiple-choice, fill-in-the-blank, list-in-order, and simulation-based questions. You can take the exam at any Pearson VUE (http://www.pearsonvue.com) testing center. According to Cisco, the exam should last about 90 minutes. Be aware that when you register for the exam, you might be told to allow a certain amount of time to take the exam that is longer than the testing time indicated by the testing software when you begin. This discrepancy is because the testing center will want you to allow for some time to get settled and take the tutorial about the test engine.

Book Content Updates
Because Cisco occasionally updates exam topics without notice, Cisco Press might post additional preparatory content on the web page associated with this book at http://www.ciscopress.com/title/9781587144578. It is a good idea to check the website a couple of weeks before taking your exam, to review any updated content that might be posted online. We also recommend that you periodically check back to this page on the Cisco Press website to view any errata or supporting book files that may be available.
This chapter covers the following topics:

- **Configuring 802.11 Support**—This section explains how to configure the data rates in the 2.4- and 5-GHz bands and support for 802.11n high throughput (HT) and 802.11ac very high throughput (VHT) functionality.

- **Understanding RRM**—This section describes the algorithms that can monitor and adjust radio frequency parameters automatically in a wireless network.

This chapter covers the following exam topics:

- 2.2—Describe usable channel and power combination
- 2.2c—Describe RRM fundamentals
CHAPTER 13

Understanding RRM

In Chapter 7, “Planning Coverage with Wireless APs,” you learned how to size access point (AP) cells appropriately by disabling data rates and changing the transmit power levels. You also learned how important a proper channel layout is to promote efficient roaming and minimize co-channel interference. You probably also realized how difficult these tasks are when you have to tune the radio frequency (RF) parameters manually across a large number of APs.

In this chapter, you learn about Cisco Radio Resource Management (RRM), a flexible and automatic mechanism that Cisco Wireless LAN controllers can use to make your life much easier.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 13-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 13-1 “Do I Know This Already?” Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring 802.11 Support</td>
<td>1–4</td>
</tr>
<tr>
<td>Understanding RRM</td>
<td>5–10</td>
</tr>
</tbody>
</table>

Caution The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.
1. Which one of the following correctly describes a mandatory data rate?
 a. A data rate that must be used by wireless clients all the time
 b. The highest data rate used by an AP and its clients
 c. A data rate that must be supported by a client before it can associate with an AP
 d. A data rate required by the IEEE 802.11 standards body

2. You can configure only one data rate as mandatory on an AP. True or false?
 a. True
 b. False

3. An AP sends 802.11 broadcast management frames at which one of the following data rates?
 a. The highest mandatory data rate
 b. The lowest mandatory data rate
 c. The lowest supported data rate
 d. All supported data rates

4. Which one of the following is the default state of 802.11n and 802.11ac support and the default channel width on a Cisco wireless LAN controller?
 a. Disabled; 20-MHz channels
 b. Enabled; 20-MHz channels
 c. Enabled; 40-MHz channels
 d. Disabled; 40-MHz channels
 e. Enabled; 80-MHz channels

5. Which one of the following correctly identifies the scope of the RRM algorithms?
 a. All APs joined to one controller
 b. All APs joined to all controllers
 c. All APs joined to controllers in an RF group
 d. All APs of a specific model

6. An RF group is automatically formed by which one of the following?
 a. All APs that share the same channel
 b. All clients that share the same SSID
 c. Any controllers that can overhear neighbor messages with identical RF group names sent between their APs
 d. All controllers that can overhear neighbor messages with identical mobility group names sent between their APs
7. The TPC algorithm is used for which one of the following purposes?
 a. To adjust the transmission control protocol rate
 b. To detect problems in transmission perimeter coverage
 c. To adjust the transmitting primary channel
 d. To adjust the transmit power level

8. If the DCA algorithm detects that an AP is experiencing interference or excessive noise, what might it do to mitigate the problem?
 a. Increase the AP's transmit power level
 b. Decrease the AP's transmit power level
 c. Change the AP's channel number
 d. Direct the client to a different band

9. Which one of the following runs the DCA algorithm?
 a. RF group leader
 b. Master controller
 c. Each controller
 d. NCS or Cisco Prime Infrastructure

10. The 5-GHz radio in one of several APs in a building has failed. Which one of the following algorithms should be able to detect the failure?
 a. CCA
 b. DCA
 c. Dead radio detection
 d. Coverage hole detection
Configuring 802.11 Support

Cisco controllers and most APs can support wireless LANs in both the 2.4- and 5-GHz bands. By default, both bands are enabled; however, you can view or change a number of parameters by browsing to the Wireless tab in the controller, shown in Figure 13-1.

The wireless parameters are organized under a list of links that are found on the left side of the web page. At the CCNA level, you should be familiar with the following links:

- **Access Points**—Used to verify and configure RF things like transmit power level and channel number on individual APs
- **802.11a/n/ac**—Used to configure global parameters for the 5-GHz band
- **802.11b/g/n**—Used to configure global parameters for the 2.4-GHz band

The initial web page displays a list of all APs that are currently joined to the controller, as if you had selected **Wireless > Access Points > All APs**. The remaining configuration is covered in the sections that follow.
Configuring Data Rates

You can enable or disable the 2.4- or 5-GHz bands by selecting 802.11b/g/n or 802.11a/n/ac, respectively, and then clicking the Network link. Figures 13-2 and 13-3 show the two network configuration pages. Make sure that the 802.11b/g or 802.11a Network Status check box is checked to enable the 2.4- or 5-GHz radios on all APs.

![Figure 13-2 Configuring 2.4-GHz Radios](image)

On the right side of the network web pages, as shown in Figures 13-2 and 13-3, you can configure the individual data rates (and the corresponding modulation and coding schemes) that are supported on each band. Each data rate can have one of the following states:

- **Mandatory**—A client must be able to use the data rate and Modulation Coding Scheme (MCS) to associate with an AP.
- **Supported**—A client can associate with an AP even if it cannot use the data rate.
- **Disabled**—An AP will not use the data rate with any clients.

By default, all data rates are enabled and supported. In the 2.4-GHz band, the 1-, 2-, 5.5-, and 11-Mbps rates are all marked as mandatory, based on the initial IEEE requirement that all clients be able to support each possible modulation type defined in 802.11b. In the 5-GHz band, the 6-, 12-, and 24-Mbps rates are marked as mandatory.
You can change the state of any data rate by selecting a new state from the drop-down menu. Remember that you can disable lower data rates to decrease the AP cell size and make channel use more efficient. Just make sure that your actions do not shrink the cells too much, leaving holes or gaps in the coverage between APs. Also be sure that all of your wireless clients can use the same set of mandatory and supported data rates.

Be sure to click the Apply button to make any configuration changes active. Any wireless networks that are already in production on the controller might be disrupted while the new configuration takes effect.

Configuring 802.11n and 802.11ac Support

You might have noticed that you can configure plenty of data rates, but 802.11n and 802.11ac are never mentioned on the wireless network configuration pages. That is because 802.11n and 802.11ac are considered to be rich sets of high-throughput enhancements and must be configured separately.

By default, 802.11n and 802.11ac are enabled. To check or change their state, go to Wireless > 802.11a/n/ac or 802.11b/g/n > High Throughput (802.11n/ac). Figure 13-4 shows the 5-GHz 802.11n/ac configuration page. Check the 11n Mode and 11ac Mode check boxes to enable 802.11n and 802.11ac, respectively. By default, every possible MCS is enabled and supported.
Recall that 802.11n can bond one 20-MHz channel to an adjacent 20-MHz channel to effectively double the channel width; 802.11ac can scale even further. By default, the controller will use only a single 20-MHz channel on each AP. You can configure channel bonding as a part of the dynamic channel allocation (DCA) configuration for the 5-GHz band only, as covered in the following section.

Understanding RRM

Suppose that you need to provide wireless coverage in a rectangular-shaped building. Using the information you have learned from this book, you decide to use six APs and locate them such that they form a staggered, regular pattern. The pattern shown in Figure 13-5 should create optimum conditions for roaming and channel use. (The building dimensions have not been mentioned, just to keep things simple.)
So far, you have considered the layout pattern and an average cell size, but you still have to tackle the puzzle of selecting the transmit power level and channel number for each AP. The transmit power level will affect the final cell size, and the channel assignment will affect co-channel interference and roaming handoff. At this point, if all the APs are powered up, they might all end up transmitting at maximum power on the same channel. Figure 13-6 shows one possible scenario; each of the AP cells overlaps its neighbors by about 50 percent, and all the APs are fighting to use channel 1!

![Poorly Configured RF Coverage](image)

Figure 13-6 Poorly Configured RF Coverage

Where do you begin to prevent such mayhem? Because the AP locations are already nailed down, you can figure out the transmit power level that will give the proper cell overlap. Then you can work your way through the AP layout and choose an alternating pattern of channel numbers. With six APs, that might not be a daunting task.

Do not forget to repeat the task for both 2.4- and 5-GHz bands.

Also, if you plan on using 802.11n or 802.11ac with channel widths greater than 20 MHz, do not forget to reserve the extra channels needed for that. Be aware that only the 5-GHz band is capable of supporting wide channels.

If you happen to notice that an AP fails one day, you could always reconfigure its neighboring APs to increase their transmit power level to expand their cells and cover the hole.

If you introduce another AP or two in the future, do not forget to revisit the entire configuration again to make room for cells and channels.
Did your life as the wireless LAN administrator just become depressing and tedious? Cisco Radio Resource Management (RRM) can handle all these tasks regularly and automatically. RRM consists of several algorithms that can look at a large portion of a wireless network and work out an optimum transmit power level and channel number for each AP. If conditions that affect the RF coverage change over time, RRM can detect that and make the appropriate adjustments.

RF Groups

RRM works by monitoring a number of APs and working out optimal RF settings for each one. The APs that are included in the RRM algorithms are contained in a single RF group. An RF group is formed for each band that is supported—one group for 2.4-GHz AP radios and another for 5-GHz AP radios. By default, an RF group contains all the APs that are joined to a single controller.

You can also configure a controller to automatically populate its RF group. In that case, the RF group can expand to include APs from multiple controllers, provided the following two conditions are met:

- The controllers share a common RF group name.
- At least one AP from one controller can be overheard by an AP on another controller.

When an RF group touches more than one controller, the controllers form a type of cluster so that they all participate in any RF adjustments that are needed. Every AP sends a Neighbor Discovery Packet (NDP) at maximum transmit power and at 60-second intervals, by default. If two controllers are close enough in proximity for an AP on one to hear an AP on the other at a received signal strength indicator (RSSI) of –80 dBm or greater, they are close enough to belong to the same RF group. Up to 20 controllers and 1000 APs can join to form a single RF group.

Figure 13-7 shows a simple scenario with four controllers and four APs, resulting in two separate RF groups. AP-1 and AP-2 are both joined to controller WLC-1, so they are members of one RF group by default. AP-3, joined to WLC-2, is located near enough to AP-1 and AP-2 that neighbor advertisements are overheard. As a result, controller WLC-2 joins the RF group with WLC-1. However, AP-4, joined to controller WLC-3, is not close enough to pass the neighbor test. Even though AP-4’s cell intersects the cells of AP-2 and AP-3, the APs themselves are not within range. Therefore, controller WLC-3 resides in a different RF group by itself.
Figure 13-7 Automatic RF Group Discovery and Formation

One controller in each group is elected as an RF group leader, although you can override that by configuring one controller as a static leader. The leader collects and analyzes information from all APs in the group about their RF conditions in real time. You can access the RF group leader configuration information by selecting Wireless > 802.11a/n/ac or 802.11b/g/n > RRM > RF Grouping. In Figure 13-8, the controller is in automatic RF group mode and is a member of an RF group along with two other controllers. The RF group leader is controller WLC-1.

Figure 13-8 Displaying RF Group Information
Radio resource monitoring is used to gather and report information from the APs. Each AP is assigned to transmit and receive on a single channel, so it can easily detect noise and interference on that channel, as well as the channel utilization. The AP can also keep a list of clients and other APs that it hears transmitting on that channel.

Each AP can also spend a short bit of time (less than 60 ms) tuning its receiver to all of the other channels that are available. By scanning channels other than the one normally used, an AP can measure noise and interference all across the band from its own vantage point. The AP can also detect unexpected transmissions coming from rogue clients and APs, or devices that are not formally joined to the Cisco wireless network.

Based on the radio resource monitoring data, RRM can make the following decisions about APs in an RF group:

- **Transmit power control (TPC)**—RRM can set the transmit power level of each AP.
- **Dynamic channel allocation (DCA)**—RRM can select the channel number for each AP.
- **Coverage hole detection mitigation (CHDM)**—Based on information gathered from client associations, RRM can detect an area with weak RF coverage and increase an AP's transmit power level to compensate.

The RRM algorithms are designed to keep the entire wireless network as stable and efficient as possible. The TPC and DCA algorithms run independently because they perform very different functions. By default, the algorithms are run every 600 seconds (10 minutes). If conditions in the RF environment change, such as interference or the addition or failure of an AP, RRM can discover and react to the changes at the next interval. The RRM algorithms are discussed in more detail in the following sections.

TPC

The TPC algorithm focuses on one goal: setting each AP's transmit power level to an appropriate value so that it offers good coverage for clients while avoiding interference with neighboring APs that are using the same channel. Figure 13-9 illustrates this process. APs that were once transmitting too strongly and overlapping each other's cells are adjusted for proper coverage, reducing the cell size more appropriately to support clients.

Figure 13-9 Basic Concept of the TPC Algorithm

Controllers have no knowledge of the physical location of each AP. By looking at Figure 13-9, you can see that the APs are arranged in a nice, evenly spaced pattern,
but the controller cannot see that. When an AP joins a controller, only the AP’s MAC address, IP address, and some basic information are advertised to the controller. If the locations of neighboring APs cannot be known, each AP must resort to using the RSSI of its neighbors as a measure of how closely their cells touch or overlap its own.

During the time each AP scans the channels to listen for RF conditions and other APs, it forms a list of its neighbors and their RSSI values. Each of those lists is sent to the local controller and on to the RF group leader where they are used by the TPC algorithm.

TPC works on one band at a time, making adjustments to APs as needed. If an AP has been heard with an RSSI above a threshold (–70 dBm by default) by at least three of its neighbors, TPC considers the AP’s cell to be overlapping the cells of its three neighbors too much. The AP’s transmit power level will be decreased by 3 dB, and then its RSSI will be evaluated again. This process is repeated for all APs at regular intervals until the neighbor that is measuring the third-strongest RSSI value for the AP no longer measures the RSSI greater than the threshold.

Although you probably will not have to make any configuration changes for the TPC algorithm, it is still useful to understand its settings. TPC runs on the 2.4- and 5-GHz bands independently. You can see the settings by selecting Wireless > 802.11a/n/ac or 802.11b/g/n > RRM > TPC. Figure 13-10 shows the TPC configuration for the 5-GHz band.

![Figure 13-10 Adjusting the RRM TPC Algorithm Parameters](image)

Actually, there are two different TPC algorithms as you can see in the figure. TPCv1 (the default), also known as Coverage Optimal Mode, works toward making adjustments that give the best RF coverage, while keeping signals sufficient and stable. TPCv2, also known as Interference Optimal Mode, focuses on avoiding negative impacts that TPCv1 might have had, where the power among AP cells ends up being imbalanced, causing some cells to interfere with others. TPCv2 requires proper tuning of RF parameters in order to work
properly. While TPCv2 might sound superior, it should only be enabled in specific cases that are outside the scope of the CCNA Wireless exam or when directed by Cisco TAC.

By default, TPC runs automatically every 10 minutes. This is the recommended mode because any changes in the RF environment can be detected and compensated for without any intervention. As an alternative, you can select On Demand to run the algorithm immediately; then the resulting transmit power levels will be frozen until TPC is manually triggered again. If you would rather have the controller set the transmit power level on all APs to one fixed value, you can select Fixed and choose the power level from the drop-down menu.

Cisco controllers determine the transmit power level according to an index from 1 to 8, rather than discrete dBm or mW values. A value of 1 corresponds to the maximum power level that is allowed in the AP's regulatory domain. Each increment in the power level number reduces the transmit power by 3 dBm. You might remember from Chapter 1 that reducing by 3 dBm also means that the power in mW is cut in half. As an example, Table 13-2 lists the power levels used in the 2.4-GHz and 5-GHz bands on a Cisco 3700 AP in the Americas or European domains.

<table>
<thead>
<tr>
<th>Power Level</th>
<th>dBm (2.4 GHz)</th>
<th>dBm (5 GHz)</th>
<th>mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>23</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>6.25</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>Unused</td>
<td>3.125</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Unused</td>
<td>1.56</td>
</tr>
</tbody>
</table>

With every iteration, the TPC algorithm can continue adjusting the transmit power levels until no further changes are needed. As a result, some APs might end up higher or lower than you might want. For example, it is usually best to match the AP transmit power level with that of the clients. Suppose that some of the clients have a fixed power level of 25 mW; if TPC ends up reducing some APs to 10 mW, the AP and client power levels will be mismatched.

To prevent such a condition, you can set minimum and maximum power level boundaries for the TPC algorithm. By default, the minimum level is set to –10 dBm and the maximum to 30 dBm, as shown in Figure 13-10.

Whenever you change the TPC parameters in a controller configuration, remember to make the same changes to all controllers that might be members of the same RF group. No matter which controller might become the RF group leader, the parameters should be identical.
Tip What transmit power level does an AP use when it first powers up? A new AP right out of the box will power up at its maximum power level. After the TPC algorithm has run and adjusted an AP’s power level, that level is remembered the next time the AP is power cycled.

DCA

Recall from Chapter 7, “Planning Coverage with Wireless APs,” and Chapter 12, “Understanding Roaming,” that a proper channel assignment is vital for efficient use of air time and for client mobility. When neighboring APs use the same channel, they can interfere with each other. Ideally, adjacent APs should use different, non-overlapping channels. Working out a channel layout for many APs can be a difficult puzzle, but the DCA algorithm can work out optimum solutions automatically for all APs in an RF group.

When a new AP first powers up, it uses the first non-overlapping channel in each band—channel 1 for 2.4 GHz and channel 36 for 5 GHz. Consider a simplistic scenario where all APs are new and powered up for the first time. You would end up with a building full of overlapping cells competing for the use of 2.4-GHz channel 1, as shown in simplified form in Figure 13-11. The DCA algorithm works to correct this situation by finding a channel that each AP in the RF group can use without overlapping or interfering with other APs. Like TPC, DCA works out one channel layout in the 2.4-GHz band and another layout in the 5-GHz band.

DCA does not just solve the channel layout puzzle once for all APs. The algorithm runs every 10 minutes by default, so that it can detect any conditions that might require an AP’s channel to change. APs in the RF group are monitored for the metrics listed in Table 13-3 that can influence the channel reassignment decision.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Default State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSSI of neighboring APs</td>
<td>Always enabled</td>
<td>If DCA detects co-channel interference, it may move an AP to a different channel.</td>
</tr>
<tr>
<td>802.11 interference</td>
<td>Enabled</td>
<td>If transmissions from APs and devices that are not part of the wireless network are detected, DCA may choose to move an AP to a different channel.</td>
</tr>
</tbody>
</table>
The DCA algorithm tends to look at each AP individually to find the ones with the worst RF conditions. Changing the channel of even one AP can affect many other APs if there are not other alternative channels available. Channel layout is a puzzle that may require several iterations to solve. For this reason, the controller that is the RF group leader will undergo an RRM startup mode after it is elected. The startup mode consists of ten DCA iterations at 10-minute intervals, or a total of 100 minutes before the channel layout reaches a steady state.

The end result of DCA is a channel layout that takes a variety of conditions into account. The channel layout is not just limited to the two dimensions of a single floor space in a building; it also extends to three-dimensional space because the RF signals from one floor can bleed through to another. As long as the APs on different floors belong to the same RF group, co-channel interference between them should be minimized.

You can display and configure the DCA parameters of either the 2.4- or 5-GHz band by selecting Wireless > 802.11a/n/ac or 802.11b/g/n > RRM > DCA. Figure 13-12 shows the 802.11a/n/ac configuration.

By default, the DCA algorithm runs automatically at 10-minute intervals. You can change the interval time, select Freeze to run DCA manually on demand, or turn it Off completely. You can also select the conditions to avoid, which will trigger a channel change on an AP.

The DCA parameters also include the 802.11n channel width. By default, 20-MHz channels will be used. If you have enabled 802.11n in the 5-GHz band and want to enable 40-MHz channels, be sure to select 40 MHz as the channel width. If you have 802.11ac enabled, you can choose between 20-, 40-, and 80-MHz channel width. The DCA algorithm will solve the channel assignment puzzle automatically, even with wide channels.

Tip You might be wondering why 802.11ac can support 80- and 160-MHz channel widths, but 160 MHz is not an option on the controller depicted in Figure 13-12. The reason is twofold: (1) Full 160-MHz channel width is not supported until 802.11ac Wave 2; and (2) the CCNA Wireless 200-355 exam uses AireOS 8.0, which supports only Wave 1. In addition, the available spectrum does not currently support more than two 160-MHz channels. Both reasons will be solved over time, as new hardware is developed and as new spectrum is reclaimed and set aside in the 5-GHz band.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Default State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-802.11 noise</td>
<td>Enabled</td>
<td>If excessive noise is present on a channel, DCA may choose to avoid using it.</td>
</tr>
<tr>
<td>AP traffic load</td>
<td>Disabled</td>
<td>If an AP is heavily used, DCA may not change its channel to keep client disruption to a minimum.</td>
</tr>
<tr>
<td>Persistent interference</td>
<td>Disabled</td>
<td>If an interference source with a high duty cycle is detected on a channel, DCA may choose to avoid using it.</td>
</tr>
</tbody>
</table>
The bottom portion of the web page contains a list of channels that DCA can use as it assigns channels to APs in the respective band. This list is populated with channel numbers by default, but you can edit the list as needed. You can also enable or disable individual channel use by using the list of Select check boxes.

The DCA algorithm normally runs on an automatic schedule or manually on demand. Event-Driven RRM (ED-RRM) takes this a step further; DCA can be triggered based on RF events that occur in real time. The CleanAir feature, covered in more detail in Chapter 19, “Dealing with Wireless Interference,” provides the triggers for ED-RRM. By default, ED-RRM is disabled. You can enable it with the EDRRM check box at the very bottom of the web page.

Coverage Hole Detection Mitigation

The TPC algorithm normally reduces AP transmit power levels to make cell sizes appropriate. Sometimes you might find that your best intentions at providing RF coverage with a good AP layout still come up short. For example, you might discover that signals are weak in some small area of a building due to the building construction or surrounding obstacles. You might also have an AP radio that happens to fail, causing a larger coverage hole. How would you discover such a condition? You could make a habit of surveying the RF coverage often. More likely, your wireless users will discover a weakness or hole in the coverage and complain to you about it.
A Cisco controller-based wireless network offers an additional RRM algorithm that can detect coverage holes and take action to address them. Coverage hole detection mitigation (CHDM) can alert you to a hole that it has discovered and it can increase an AP's transmit power level to compensate for the hole.

CHDM is useful in two cases:

- Extending coverage in a weak area
- Rapidly healing a coverage hole caused by an AP or radio failure, sooner than the TPC algorithm can detect and correct

The algorithm does not run at regular intervals like TPC and DCA do. Instead, it monitors the RF conditions of wireless clients and decides when to take action. In effect, the algorithm leverages your wireless users who are out in the field and tries to notice a problem before they do.

Every controller maintains a database of associated clients and their RSSI and signal-to-noise ratio (SNR) values. It might seem logical to think that a low RSSI or SNR would mean a client is experiencing a hole in coverage. Assuming the client and its AP are using the same transmit power levels, if the AP is receiving the client at a low level, the client must also be receiving the AP at a low level. This might not be true at all; the client might just be exiting the building and getting too far away from the AP. The client might also have a “sticky” roaming behavior, where it maintains an association with one AP until the RSSI falls to a very low level before reassociating elsewhere.

CHDM tries to rule out conditions that are experienced by small numbers of clients and signal conditions due to client roaming behavior. A valid coverage hole is detected when some number of clients, all associated to the same AP, have RSSI values that fall below a threshold. In addition, the coverage hole condition must exist longer than a threshold of time without the client roaming to a different AP.

By default, the following conditions must all be met for a coverage hole to be detected:

- Client RSSI at the AP is at or below –80 dBm.
- The low RSSI condition must last at least 60 seconds over the past 180 seconds.
- The condition must affect at least three clients or more than 25 percent of the clients on a single AP.

Be aware that CHDM runs on a per-band basis. Unlike TPC and DCA, which operate on the entire RF group of controllers, CHDM runs on each controller independently, on a per-AP radio basis.

You can display and configure the CHDM thresholds by selecting Wireless > 802.11a/n/ac or 802.11b/g/n > RRM > Coverage. Figure 13-13 shows the threshold parameters for the 5-GHz 802.11a band.
You might sometimes want to keep RRM from changing the RF conditions in parts of your wireless network. For instance, you might have client devices that operate at a fixed transmit power level. Ideally, the AP and client power levels should be identical or matched. If RRM raises or lowers AP power levels at a later time, then asymmetric power levels would result.

You can override RRM on a per-AP basis by selecting Wireless > Access Points > Radios > 802.11a/n/ac or 802.11b/g/n. From the list of APs displayed, choose a specific AP and select the drop-down menu at the far-right side of the list. From this menu, select Configure, as shown in Figure 13-14.

Figure 13-13 Displaying Coverage Threshold Parameters for the 5-GHz 802.11a Band

Manual RF Configuration

You might sometimes want to keep RRM from changing the RF conditions in parts of your wireless network. For instance, you might have client devices that operate at a fixed transmit power level. Ideally, the AP and client power levels should be identical or matched. If RRM raises or lowers AP power levels at a later time, then asymmetric power levels would result.

You can override RRM on a per-AP basis by selecting Wireless > Access Points > Radios > 802.11a/n/ac or 802.11b/g/n. From the list of APs displayed, choose a specific AP and select the drop-down menu at the far-right side of the list. From this menu, select Configure, as shown in Figure 13-14.

Figure 13-14 Selecting an AP for Manual Configuration
On the AP configuration page, as shown in Figure 13-15, you can set the channel under RF Channel Assignment or the transmit power under Tx Power Level Assignment. By default, the Global radio button is selected for each, which allows the value to be determined globally within the RF group. You can set a specific channel or power level by selecting the Custom radio button and then choosing a value from the drop-down list. In the figure, the AP's transmit power level has been manually set to 3.

![Figure 13-15 Manually Setting the Transmit Power Level of an AP](image)

Tip You should let RRM automatically adjust both channels and transmit power levels whenever possible.

Verifying RRM Results

The RRM algorithms can either run at regular intervals or on demand. You can display the channel number and transmit power level that are being used on every AP by selecting Wireless > Access Points > Radios > 802.11a/n/ac or 802.11b/g/n, as shown in Figure 13-15. The controller displays an asterisk next to values that have been set through RRM. Otherwise, if no asterisk appears, the value has been set manually.

To get a much better feel for the RRM results, you can use the Cisco Prime Infrastructure management system (covered in Chapter 18, “Managing Cisco Wireless Networks”) to view APs on a graphical representation of an area. The map in Figure 13-16 displays each AP’s location on a building floor plan, along with its channel number and transmit power level for the 2.4-GHz band. Figure 13-17 shows the same map for the 5-GHz band. Seeing the physical arrangement of APs and their cells can help you get a much better idea how the channels are assigned and reused.
Figure 13-16 Displaying 2.4-GHz RRM Results in Cisco Prime Infrastructure Maps

Figure 13-17 Displaying 5-GHz RRM Results in Cisco Prime Infrastructure Maps
Exam Preparation Tasks

As mentioned in the section, “How to Use This Book,” in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 21, “Final Review,” and the exam simulation questions on the DVD.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 13-4 lists a reference of these key topics and the page numbers on which each is found.

Table 13-4 Key Topics for Chapter 13

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Data rate states</td>
<td>309</td>
</tr>
<tr>
<td>Figure 13-7</td>
<td>RF group formation</td>
<td>314</td>
</tr>
<tr>
<td>Figure 13-9</td>
<td>TPC operation</td>
<td>315</td>
</tr>
<tr>
<td>Table 13-2</td>
<td>AP transmit power level numbers</td>
<td>317</td>
</tr>
<tr>
<td>Figure 13-11</td>
<td>DCA operation</td>
<td>318</td>
</tr>
<tr>
<td>List</td>
<td>Coverage hole detection criteria</td>
<td>321</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary: coverage hole, dynamic channel allocation (DCA), mandatory data rate, Radio Resource Management (RRM), RF group, RF group leader, supported data rate, transmit power control (TPC)
Symbols

1-Mbps data rate, 28
2-Mbps data rate, 28
2.4-GHz bands, 10
 802.11 channels, 47-48
 802.11n channel aggregation, 57
 configuring, 309
 ETSI requirements, 44
 FCC requirements, 43
 free space path loss, 78
 interference, 74-76
 RRM results, displaying, 323
5-GHz band, 11
 802.11 channels, 49-50
 802.11ac channels, 61
 802.11n channel aggregation, 56
 configuring, 309
 ETSI requirements, 44
 FCC requirements, 44
 free space path loss, 78
 neighboring channel interference, 76
 RRM results, displaying, 323
5.5-Mbps data rate, 29-30
11-Mbps data rate, 30
19-dB separation, 75
802.1 standard, 46
802.1x
 EAP integration, 338
 WPA2 enterprise authentication, 346
802.2 standard, 46
802.3 frames, 132
802.3 standard, 46
802.4 standard, 46
802.5 standard, 46
802.11 standards, 46, 50
 2.4-GHz ISM channel definitions, 47-48
 5-GHz U-NII channel definitions, 49-50
 amendments, 51
 BSSs, 116-118
 centralized controllers, configuring, 245
 converged WLCs, enabling, 252
 data rates, configuring, 309
 device interference, 432
 DSs, 118-120
 ESSs, 120-121
 frames
 802.3 frames, compared, 132
 addressing, 134-135
 control, 141-142
 CSMA, 137
 data, 142
 format, 133
 management, 140-141
 moving to/from DSs, 133
 not moving to/from DSs, 134
 timing schemes, 138
 transmission failures, 139
IBSSs, 122
protocols, 68
802.11-1997, 51
802.11a, 53-54
802.11ac, 60
 channel aggregation, 61-63
 configuring, 310-311
 DCA algorithm, 319
 implementation, 65
 MAC layers, 63
 modulation, 63
 MU-MIMO, 65
 spatial multiplexing, 64
 transmit beamforming, 64
802.11ad, 66
802.11af, 66
802.11ah, 66
802.11b, 51
802.11g, 52-53
802.11i, 342-343
802.11n, 54-55
 channel aggregation, 55-57
 configuring, 310-311
 DCA algorithm, 319
 MAC layer efficiency, 58
 maximal-ratio combining, 60
 modulation and coding schemes, 60
 spatial multiplexing, 57-58
 transmit beamforming, 59-60
802.11r, 290
802.11w, 344
802.15 standard, 46
8021X_REQD state, 455
(A) (lambda symbol), 14

A

absolute power measurements, 16
absorption (RF signals), 82-83
access point. See AP
access switches, 201
accessing
iOS device Wi-Fi settings, 400
MacOS X configuration utility, 397
Meraki Dashboard, 224
PI maps, 421
protected credentials, 339
SNMP, 240
SSIDs, controlling, 226
switch management web page, 247
Wi-Fi Protected. See WPA2
wireless medium
 carrier sense multiple access, 137
 collision avoidance, 137-139
 timing schemes, 138
 transmission failures, 139
ACK frames, 141
actions
 alarms, 419
 frames, 141
activating exam engine, 483
active scans, 143
active site surveys, 171, 176-178
 AP signal strength, displaying, 177
 client roaming behaviors, 178
 methods, 176
 ping round-trip times measured,
 displaying, 177
ad hoc wireless networks, 122, 391
adapters, 392
adaptive modulation and coding
 (AMC), 79, 160
addresses
802.11 frames, 134-135
DAs, 135
fields, 135
IP
 autonomous APs, finding, 216
centralized controller
 parameters, 256
client problems troubleshooting,
 458
guest WLANs, 377
management, 189
MAC, 442
primed, 271
RAs, 135
SAs, 135
sender MAC, 341
TAs, 135
adjacent channel interference, 75-76
administrative users, creating, 249
Advanced Encryption Standard (AES),
 342
advice for exam event
pre-exam suggestions, 481-482
question types, learning, 475
drag-and-drop, 477-479
fill in the blank, 477
multiple choice, 476-479
simlets, 478-479
simulation, 478-479
testlets, 478-479
time budget, 480-481
AES (Advanced Encryption Standard),
 342
air-quality index (AQI), 443-444
AirMagnet
 spectrum analysis, 437
 Spectrum XT, 172
Alarm Browser, 418
alarms, 417
 actions, 419
 browsing, 418
 managing, 418
 severity levels, 417
 summary, displaying, 417
algorithms
AES, 342
CCMP, 342
CHDM, 321
DCA, 318-320
cchannel layout, solving, 319
cchannel list, editing, 320
metrics affecting, 318
parameters, 319
time intervals, setting, 319
triggering with ED-RRM, 320
wide channels, 319
key mixing, 341
RC4 cipher, 337
TPC, 315-317
parameters, configuring, 316
running, 317
transmit power, 317
versions, 316
AMC (adaptive modulation and coding), 79, 160
amplifiers, 107
amplitude (signals), 15
analyzing
packets, 470
Wi-Fi
 activity, 469
 frames, 470
anchors
controllers, 293-295
mobility, 376, 380-381
Android devices, 395-396
- available networks, displaying, 395
- connections, verifying, 396
- manually adding networks, 395
- security, 396
- Wifi Analyzer, 468

Annotations (alarms), 419

Antennas
- accessories, 107-108
- beamwidth, 97-98
- Cisco, 99
- directional, 103
 - parabolic dish, 105-106
 - patch, 103-104
 - Yagi, 104-105
- ETSI requirements, 44
- FCC regulations, 43
- gain, 97, 107
- isotropic, 21
- omnidirectional, 99
 - dipole, 100-101
 - integrated, 101-102
 - monopole, 101
- orientation, verifying, 467
- polarization, 98-99
- radiation patterns, 94-97
 - cutting with two planes, 95
 - H/E polar plots, recording, 96
 - plotting, 94
- summary, 107
- TNC/RP-TNC connectors, 43

AP (access point), 116
- adjacent AP channels, reusing, 162
- air-quality ratings, displaying, 443
- AP-on-a-stick surveys, 175
- association frames, 141
- authentication/deauthentication, 140, 333
- autonomous, 187, 190, 217
 - channel selection, 220
 - connecting, 215-217
 - data paths, 188
 - data VLAN, 189
 - Easy Setup page, 218-219
 - GUI tabs, 220
 - lightweight, compared, 192
 - management IP addresses, 189
 - optimizing, 220
 - radios, enabling, 220
 - roaming between, 285-286
 - security, 219
 - single, supporting, 188
 - upgrading, 221-223
 - web interface, 217
- beacons, 140
- BSSIDs, 117
- cell size, tuning
 - data rates, 159-161
 - transmit power, 157-159
- channel layout, 165-168
 - alternating pattern holes, 166
 - channel reuse, 167
 - honeycomb pattern, 167
 - three dimensions, 168
- Cisco, 206-207
- CleanAir, 439-440
- clients
 - associations, 162-163, 458
 - roaming, 163-165
 - scans, 143
- cloud-based, 190-191
 - adding/claiming, 224
 - client roaming, 227
 - connectors, 223
Meraki Dashboard, accessing, 224, 227
security, 226
SSIDs, configuring, 225-226
connectivity, verifying, 464
antenna orientation, 467
AP orientation, 467
AP-to-network, 465-466
AP-to-WLC, 464-465
counts, monitoring, 419
data rates, 142-143
deployment phases, 178-179
disassociation frames, 141
ESSs, 120-121
fake, 333
heatmap contributors, 423
IBSSs, 122
information, displaying on PI maps, 424
layout, 311
lightweight. See LAPs
management frames, 343-344
manual configuration
selecting, 322
transmit power, 323
multiple SSIDs, supporting, 119
noninfrastructure modes
mesh networks, 125
outdoor bridges, 124
repeater, 122-123
WGB, 123
orientation, verifying, 467
passing from one to another. See roaming
passing through, 117
PI map locations, 421
probes, 140
reassociation frames, 141
rogue
detecting/containing, 335-336
interference, 432
PI maps, 426
signal strength, displaying, 177
SSIDs, 117
SSIDs to VLANs, bridging, 214
states, 268-270
AP-manager interfaces (controllers), 237
AP-to-network connectivity, verifying, 465-466
AP-to-WLC connectivity, verifying, 464-465
Apple iOS devices, 400
available networks, displaying, 401
connection information, 402
security, 402
Wi-Fi settings, accessing, 400
applications
location services, 170
real-time/non-real-time, 388
wireless requirements, 169-170
AQL (air-quality index), 443-444
architectures
autonomous, 187-190
data paths, 188
data VLAN, 189
management IP addresses, 189
single autonomous APs, supporting, 188
centralized, 197-200
traffic paths, 198-199
user mobility, 198
WLC location, 197
Cisco Unified Access, 412-413
cloud-based, 190-191
converged, 200-202
access switch capacities, 201
scalability, 202
traffic paths, 202
user mobility, 202
WLC location, 201
FlexConnect, 204-205
split-MAC, 192-197
CAPWAP, 193
centralized, 197-200
converged, 200-202
digital certificates, 194
FlexConnect, 204-205
LAPs to central WLC, connecting, 195
VLAN 100, 194
WLC activities, 196
AS (authentication server), 339
Association tab, 221
associations
BSSs, 117
clients, managing, 461
request frames, 141
asymmetric power problems, 158
attacks
detecting, 336
man-in-the-middle, 333
protection against, 335
attenuators, 108
AUTHCHECK state, 455
authentication
APs, 333
central web, 375
clients, 332, 347
EAP, 338-339
802.1x integration, 338
EAP-FAST, 339-340
EAP-TLS, 340
LEAP, 339
PEAP, 340
frames, 140
local EAP, enabling, 350
local web, 375
open, 336, 379
servers (ASs), 339
web, 336, 375, 379
WEP, 337-338
WLANs, 346, 363
WLCs, 197
WPA/WPA2, 343, 346
authenticators, 339
autonomous APs, 187, 190
configuring, 217
cchannel selection, 220
Easy Setup page, 218-219
GUI tabs, 220
optimization, 220
radios, enabling, 220
security, 219
web interface, 217
connecting, 215
BVI, 217
CDP neighbor information, displaying, 216
IP address, finding, 216
port availability, 215
data paths, 188
management IP addresses, 189
roaming between, 285-286
single, supporting, 188
upgrading, 221-223
VLAN, 189
autonomous architecture, 187-190
data paths, 188
management IP addresses, 189
single APs, supporting, 188
VLANs, 189
avoiding collisions, 137-139
timing schemes, 138
transmission failures, 139

B
backoff timers, 138
bands
2.4-GHz
 802.11 channels, 47-48
 802.11n channel aggregation, 57
correlation, 47-48
 co-channel interference, 74
 configuring, 309
 ETSI requirements, 44
 FCC requirements, 43
 free space path loss, 78
 neighboring channel interference, 76
 non-802.11 device interference, 76
 RRM results, displaying, 323
5-GHz
 802.11 channels, 49-50
 802.11ac channels, 61
 802.11n channel aggregation, 56
 configuring, 309
 ETSI requirements, 44
 FCC requirements, 43
 free space path loss, 78
 neighboring channel interference, 76
 RRM results, displaying, 323
extended, 44
frequencies, 10
 2.4-GHz, 10
 5-GHz, 11
 channels, 12-13
ISM (industrial, scientific, and medical), 42
licensed, 41
U-NII, 42
unlicensed, 42
bandwidth, 12, 25
Barker 11 code, 28
base-10 logarithm (log10), 17
basic service area (BSA), 117. See also cells
basic service sets. See BSSs
beacons, 140
beamwidth, 97-98
bidirectional communication, 115
BLE (Bluetooth Low Energy), 433
block ACK frames, 141
block acknowledgment, 58
Bluetooth
 interference, 432-433
 Low Energy (BLE), 433
 Special Interest Group (SIG), 433
bridged-virtual interface (BVI), 217
bridges, 219
broadcasting SSIDs, 362
BSA (basic service area), 117. See also cells
BSSIDs (BSS identifiers), 117, 176
BSSs (basic service sets), 116-118
 APs, 116
 associations, 117
 clients
 joining, 144-145
 leaving, 145-146
 roaming between, 146
discovering, 143
DSs, 118-120
stations, 117
traffic flows, 117
building blocks, 207
BVI (bridged-virtual interface), 217

C

CA (certificate authority), 340
calculating
 antenna beamwidth, 98
dB, 17
free space path loss, 78
canopy interference, 435
CAPWAP (Control and Provisioning of Wireless Access Points) tunneling protocol
 Discovery Requests, 270
 Join Requests, 271
LAPs
 central WLC, connecting, 195
 WLCs, linking, 193
carrier sense multiple access (CSMA), 137
carrier signals, 24
 constant frequency, 24
 modulation/demodulation, 25-26
CCA (clear channel assessment), 137
CCK (Complementary Code Keying), 30, 51
CCKM (Cisco Centralized Key Management), 290
CCMP (Counter/CBC-MAC Protocol), 342
CCX (Cisco Compatibility Extensions), 403
goals, 403
Lite, 404
MFP, 403
security support, 404-405
Version 5 (CCXv5), 344
versions, 403-404

CDP (Cisco Discovery Protocol), 216
cells
 channel layout, 165-168
 alternating pattern holes, 166
 channel reuse, 167
 honeycomb pattern, 167
 three dimensions, 168
 client associations, 162-163
 optimizing, 220
 overlap, 165
 size, tuning
 data rates, 159-161
 transmit power, 157-159
central web authentication (CWA), 375
centralized architectures, 197-200
traffic paths, 198-199
user mobility, 198
WLC location, 197
centralized controllers
dynamic interfaces, creating, 358-360
initial setup with CLI, 257
initial setup with Configuration Wizard, 239-247
802.11 support, 245
LAG mode, 241
management interface, 241
RADIUS server, 244
rebooting, 246
RF mobility domain, 242
service port, 240
SNMP access, 240
system access, 239
system clock, 246
virtual interface, 243
WLAN, 243
initial setup with WLAN Express Setup, 254
controller identification, 254
starting, 254
verifying, 256
VLAN/IP address parameters, 256
WLANs, 255
RADIUS servers, configuring, 356
roaming
coordination, 298-300
Layer 2, 290-292
Layer 3, 292-296
mobility groups, 296-298
WLAN security, 364
certificate authorities (CAs), 340
Chanalyzer, 437
channels, 12
2.4-GHz ISM band, 47-48
5-GHz U-NII band, 49-50
802.11ac, 61-63
802.11n, 55-57
adjacent APs, reusing, 162
dynamic allocation. See DCA
dynamic assignment, 196
interference
co-channel, 74-75
neighboring channel, 75-76
non-802.11 devices, 76
invalid, 435
layout, 165-168
alternating pattern holes, 166
channel reuse, 167
honeycomb pattern, 167
three dimensions, 168
quality information, 439
reusing, 167
scanning
client roaming, 165
tools, 468
selecting, 220
spacing, 13
transmission requirements, 138
CHDM (coverage hole detection mitigation), 315, 321
chips, 27
Cisco
APs, 206-207
Centralized Key Management (CCKM), 290
Certification Exam Tutorial, 475
drag-and-drop, 477-479
fill in the blank, 477
multiple choice, 476-479
simlets, 478-479
simulation, 478-479
testlets, 478-479
CleanAir. See CleanAir
ClientLink, 60
Compatibility Extensions. See CCX
Discovery Protocol, 216
LAPs, 207-208
Learning Network website, 485
Meraki, 190
Meraki Dashboard
accessing, 224
tabs, 227
Mobility Services Engine (MSE), 208, 412
Prime Infrastructure. See PI
Prime Infrastructure Maps, 323
Unified Access architecture, 412-413
WLC/WCM platforms/capabilities, 205-206
CleanAir, 439-440
detection reports, 442
enabling, 440
interference types, 441
overview, 440
clear channel assessment (CCA), 137
CLI, 257
click-and-go mode (passive site surveys), 175
client-based OS troubleshooting tools, 468
ClientLink, 60
clients
Android, 395-396
 available networks, displaying, 395
 connections, verifying, 396
 manually adding networks, 395
 security, 396
AP
 associations, 162-163
 scanning, 143
Apple iOS, 400
 available networks, displaying, 401
 connection information, 402
 security, 402
 Wi-Fi settings, accessing, 400
associations, managing, 461
authentication, 332
 EAP, 338-340
 open, 336
 WEP, 337-338
 WLANs, 347
channel layout, 165-168
 alternating pattern holes, 166
 channel reuse, 167
 honeycomb pattern, 167
 three dimensions, 168
connectivity, troubleshooting, 454
 AP associations, 458
 client locations, displaying, 457
 controller logs, viewing, 463
 from controllers, 461
 device inspection, 453
 displaying clients in PI, 454
 information gathering, 453
 IP addressing problems, 458
 mobility details, 456
 PI client searches, 454
 policy states, 455
 RF history, 457
 RF problems, 458
 RF statistics, 456
 RSSI/SNR problems, 459
 successful wireless association conditions, 453
 testing clients from PI, 459-460
 WLAN settings, verifying, 462-463
 counts, monitoring, 419
Layer 3 roam, 294-295
load balancing, 196
locations, 424
MacOS X, 397
 configuration utility, accessing, 397
 discovered networks, displaying, 397
 new network profiles, creating, 399
 preferred networks list, displaying, 398
 system information, displaying, 399
MFP, 343
mobility details, displaying, 456
networks
 joining, 144-145
 leaving, 145-146
 roaming between, 146
clients

PI

- AP associations, 458
- details, displaying, 455
- displaying, 454
- location, 457
- RF history, 457
- RF statistics, 456
- searching, 454

Policy states, 455

Power, saving, 147-150
- DTIMs, 149
- legacy method, 147
- radio sleeping, 147
- U-APSD method, 149
- whole device sleeping, 147

Roaming, 163-165
- behaviors, displaying, 178
- cell overlap, 165
- cloud-based APs, 227
- conditions, 164
- correctly between APs, 164
- flexibility, 196
- scanning other channels, 165

Rogue, 335, 426

Status information, 461

Testing from PI, 459-460

Windows, 389-390
- ad hoc networks, 391
- adapter settings, 392
- available SSIDs, 389
- connections, verifying, 393
- drivers, 394
- manually configuring, 391
- preferred networks list, manually populating, 391
- wireless status icon, finding, 389

Wireless requirements, 388-389

WLAN, 365

Clocks
- centralized controllers, synching, 246
- converged WLCs, 253

Cloud-based
- APs, configuring
 - adding/claiming, 224
 - client roaming, 227
 - connectors, 223
 - Meraki Dashboard, accessing, 224, 227
 - security, 226
 - SSIDs, 225-226
 - architecture, 190-191
 - site survey tools, 171

Cluster IDs, 442

Co-channel interference, 74-75

Code images (controllers), updating, 259-262

Coders, 27

Coding schemes, 60

Collisions
- avoidance, 137-139
 - timing schemes, 138
 - transmission failures, 139

Wireless medium, 136

Communication
- bidirectional, 115
- passing through, 117
- unidirectional, 115

Complementary Code Keying (CCK), 30, 51

Configuration Wizard
- centralized controllers initial setup, 239-247
 - 802.11 support, 245
- LAG mode, 241
management interface, 241
RADIUS server, 244
rebooting, 246
RF mobility domain, 242
service port, 240
SNMP access, 240
system access, 239
system clock, 246
virtual interface, 243
WLAN, 243

converged controllers initial setup, 247-253
802.11, 252
administrative users, creating, 249
clock, 253
management ports, 250
mobility, 251
RF mobility, 251
SNMP parameters, 249
switch management web page, 247
verifying, 253
web-based management switch configuration, 247
wireless management, 250
WLAN, 252
WLC management page, 248

configuring
2.4-GHz bands, 309
5-GHz bands, 309
802.11ac, 310-311
802.11n, 310-311
Android Wi-Fi, 395-396
available networks, displaying, 395
connections, verifying, 396
manually adding networks, 395
security, 396

APs manually
selecting, 322
transmit power, 323
Apple iOS Wi-Fi, 400
available networks, displaying, 401
connection information, 402
security, 402
settings, accessing, 400

autonomous APs, 217
channel selection, 220
connecting, 215-217
Easy Setup page, 218-219
GUI tabs, 220
optimization, 220
radios, enabling, 220
security, 219
web interface, 217

centralized controllers with CLI, 257

centralized controllers with Configuration Wizard, 239-247
802.11 support, 245
management interface, 241
RADIUS server, 244
rebooting, 246
RF mobility domain, 242
service port, 240
SNMP access, 240
system access, 239
system clock, 246
virtual interface, 243
WLAN, 243

centralized controllers with WLAN Express Setup, 254
controller identification, 254
starting, 254
verifying, 256
configuring

VLAN/IP address parameters, 256
WLANs, 255
cloud-based APs
adding/claiming, 224
client roaming, 227
connectors, 223
Meraki Dashboard, accessing, 224, 227
security, 226
SSIDs, 225-226
converged controllers with Configuration Wizard, 247, 253
802.11, 252
administrative users, creating, 249
clock, 253
management ports, 250
mobility, 251
RF mobility, 251
SNMP parameters, 249
switch management web page, 247
verifying, 253
web-based management switch configuration, 247
wireless management, 250
WLAN, 252
WLC management page, 248
data rates, 309
devices with PI, 426
guest WLANs
dynamic interface, 377
interface, assigning, 378
IP address information, 377
mobility anchors, 380-381
open authentication, 379
SSID, 378
web authentication, 379
MacOS X Wi-Fi, 397
configuration utility, accessing, 397
discovered networks, displaying, 397
new network profiles, creating, 399
preferred networks list, displaying, 398
system information, displaying, 399
RADIUS servers, 356-357
centralized controllers, 356
converged controllers, 357
RRM TPC algorithm parameters, 316
security, 344
Windows Wi-Fi, 389-390
ad hoc networks, 391
adapter settings, 392
available SSIDs, 389
connections, verifying, 393
drivers, 394
manually configuring, 391
preferred networks list, manually populating, 391
wireless status icon, finding, 389
WLANs
advanced settings, 365-366
client session timeouts, 365
displaying, 366
general parameters, 361
management access, 367
QoS, 364-365
security, 362-364
WPA2
enterprise mode, 346-348
Local EAP, 348-350
personal mode, 344-345
controllers 541

connected mode (FlexConnect), 205
connectivity
APs, verifying, 464
antenna orientation, 467
AP orientation, 467
AP-to-network, verifying, 465-466
AP-to-WLC, verifying, 464-465
autonomous APs, 215
BVI, 217
CDP neighbor information, displaying, 216
IP address, finding, 216
port availability, 215
clients, troubleshooting, 454
AP associations, 458
client locations, displaying, 457
controller logs, viewing, 463
from controllers, 461
device inspection, 453
displaying clients in PI, 454
information, gathering, 453
IP addressing problems, 458
mobility details, 456
PI client searches, 454
policy states, 455
RF history, 457
RF problems, 458
RF statistics, 456
RSSI/SNR problems, 459
successful wireless association conditions, 453
testing clients from PI, 459-460
WLAN settings, verifying, 462-463
iOS devices, 402
LAPs to central WLC, 195

verifying
Android devices, 396
Windows wireless, 393
connectors, 223
console ports, 235
contention windows, 138
continuous scan mode (passive site surveys), 175
continuous transmitter interference, 435
Control and Provisioning of Wireless Access Points. See CAPWAP
control frames, 141-142
controllers
air-quality ratings, 443
anchor, 293
AP
 connectivity, verifying, 464-465
 states, 268-270
backing up, 258-259
centralized
 dynamic interfaces, creating, 358-360
 initial setup with CLI, 257
 initial setup with Configuration Wizard, 239-247
 initial setup with WLAN Express Setup, 254-256
 RADIUS servers, configuring, 356
 WLAN security, 364
clients, troubleshooting, 461
corverged. See WCMs
failures, detecting, 274
identifying, 254
IDSs, 335
interfaces, 237-238, 362
LAPs RTT between, 199
Local EAP profiles, 348
logs, viewing, 463
mobility (MCs), 298
multiple, discovering, 272-273
platforms/capabilities, 205-206
ports, 235-236
primed addresses, 271
rebooting, 261
redundancy, 274
 N+1, 274-275
 N+N, 275-276
 N+N+1, 276-277
 SSO, 277-278
roaming
 converged controllers, 301
 coordination, 298-300
 intracontroller, 288-290
 Layer 2, 290-292
 Layer 3, 292-296
 mobility groups, 296-298
 WCMs, 300-302
rogue APs, 335-336
updating, 259-262
VLANs, mapping, 237
WCMs, 300-302
wireless parameters, 308
WLCs. See WLCs
converged architectures, 200-202
access switch capacities, 201
scalability, 202
traffic paths, 202
user mobility, 202
WLC location, 201
converged controllers. See WCM
cordless phone interference, 434
Counter/CBC-MAC Protocol (CCMP), 342
coverage
 holes, detecting, 315, 321
 poorly configured RF, 312
 self-healing, 196
verification
 active site surveys, 176-178
 AP deployment phases, 178-179
 AP-on-a-stick surveys, 175
 device/application requirements, 169-170
 location services, 170
 passive site surveys, 174-175
 planning surveys, 172-173
 site surveys, 171-172
Coverage Optimal Mode (TPCv1), 316
critical alarms, 417
CSMA (carrier sense multiple access), 137
CSMA/CA (CSMA/collision avoidance), 138
CSMA/CD (CSMA/collision detection), 137
CWA (central web authentication), 375
cycles (waves), 9

D

DA (destination address), 135
dashboard (PI)
 alarms, 417
 actions, 419
 browsing, 418
 managing, 418
 severity levels, 417
 summary, displaying, 417
dashlets, 416
data
frames, 142
paths, 188
privacy/integrity, 333-334
CCMP, 342
TKIP, 341-342
rates
802.11a, 53
802.11b, 51
802.11g, 52
AP cell size, tuning, 159-161
APs, 142-143
configuring, 309
disabled, 309
lower, disabling, 160
mandatory, 309
supported, 309
sending over RF signals, 24-26
dB (decibel), 17-18
dBi (dB-isotropic), 20-23
dBm (dB-milliwatt), 19-20
DBPSK (differential binary phase shift keying), 28
DCA (dynamic channel allocation), 315, 318-319
channel layout, solving, 319
channel list, editing, 320
defined, 315
metrics affecting, 318
parameters, 319
RRM, 320
time intervals, setting, 319
triggering with ED-RRM, 320
wide channels, 319
DCF (distributed coordination function), 136
deauthentication
BSSs, leaving, 145
frames, 140
decibel (dB), 17-18
decryption, 333
DECT (Digital Enhanced Cordless Telecommunications), 434
deleting alarms, 419
delivery traffic indication messages (DTIM), 149
demodulation, 25
destination address (DA), 135
detecting
controller failures, 274
interference
AQL, 443-444
channel quality, 439
CleanAir, 439-442
ED-RRM, 445
spectrum analyzers, 436-438
devices
802.11, 432
Android, 395-396
available networks, displaying, 395
connections, verifying, 396
manually adding networks, 395
security, 396
Apple iOS, 400
available networks, displaying, 401
connection information, 402
security, 402
Wi-Fi settings, accessing, 400
interference
Bluetooth, 432-433
canopy, 435
channel quality, 439
continuous transmitters, 435
cordless phones, 434
detecting with AQI, 443-444
devices

detecting with CleanAir, 439-442
detecting with ED-RRM, 445
detecting with spectrum analyzers, 436-438
invalid channels, 435
inverted signals, 435
jammers, 435
microwave ovens, 434
SuperAG, 435
video cameras, 435
WiMAX, 434
Xbox, 435
ZigBee, 433

location services, 170
MacOS X, 397
configuration utility, accessing, 397
discovered networks, displaying, 397
new network profiles, creating, 399
preferred networks list, displaying, 398
system information, displaying, 399

PI
configuration, 426
maps, selecting, 422
power, saving, 147-150
DTIMs, 149
legacy method, 147
radio sleeping, 147
U-APSD method, 149
whole device sleeping, 147

transmission requirements, 138
Windows, 389-390
ad hoc networks, 391
adapter settings, 392
available SSIDs, 389

connections, verifying, 393
drivers, 394
manually configuring, 391
preferred networks list, manually populating, 391
wireless status icon, finding, 389
wireless requirements, 169-170

DFS (dynamic frequency selection), 44
DHCP_REQD state, 455
differential binary phase shift keying (DBPSK), 28
differential quadrature phase shift keying (DQPSK), 28
diffraction, 84
DIFS (distributed interframe space), 138
digital certificates, 194
Digital Enhanced Cordless Telecommunications (DECT), 434
dipole antennas, 100-101
direct-sequence spread spectrum. See DSSS
directional antennas, 103
parabolic dish, 105-106
patch, 103-104
Yagi, 104-105
disabled state, 142
disabling
data rates, 309
lower data rates, 160
WLANs, 362
disassociating
BSSs, leaving, 145
frames, 141
discovery
collectors
AP states, 268-270
failures, detecting, 274
multiple, 272-273
redundancy, 274-278
WLCs, 270-271
RF groups, 313
displaying
alarm summary, 417
AP information on PI maps, 424
available networks
Android devices, 395
iOS devices, 401
MacOS X, 397
clients
locations, 424, 457
mobility details, 456
PI, 454-455
status, 461
controller logs, 463
interference sources on PI maps, 425
MacOS X system information, 399
PI maps, 423
WLANs
controller configured, 366
list, 360
distributed architectures
autonomous, 187-190
data paths, 188
data VLAN, 189
management IP addresses, 189
single autonomous APs, supporting, 188
cloud-based, 190-191
distributed coordination function (DCF), 136
distributed interframe space (DIFS), 138
distribution systems. See DSs
domains, 242, 302
DQPSK (differential quadrature phase shift keying), 28
drag-and-drop questions, 477-479
drivers, verifying, 394
DRS (dynamic rate shifting), 79, 160
DSs (distribution systems), 118-120
802.11 frames, moving to/from, 133
802.11 frames, not moving to/from, 134
ports, 235-236
DSSS (direct-sequence spread spectrum), 27-30
1-Mbps data rate, 28
2-Mbps data rate, 28
5.5-Mbps data rate, 29-30
11-Mbps data rate, 30
DTIM (delivery traffic indication message), 149
duty cycles, 436, 442
DVD questions. See exam engine
dynamic channel allocation. See DCA
dynamic frequency selection (DFS), 44
dynamic interfaces
controllers, 238
creating, 358-360
guest WLANs, 377
dynamic rate shifting (DRS), 79, 160

E
E (elevation) planes, 96
EAP (Extensible Authentication Protocol), 338-339
802.1x integration, 338
EAP-FAST, 339-340
EAP-TLS, 340
LEAP, 339
Local, configuring, 348-350
 enabling, 350
PEAP configuration, 349
profiles, 348
RADIUS servers, 349
WLANs, 349
PEAP, 340
EAP-FAST (EAP Flexible Authentication by Secure Tunneling), 339-340
EAP-TLS (EAP Transport Layer Security), 340
Easy Setup page (APs), 218-219
ED-RRM (Event-Driven RRM), 320, 445
EIFS (extended interframe space), 138
EIRP (effective isotropic radiated power), 21-22, 43
electric waves, traveling, 8
elevation (E) planes, 96
email notification alarms, 419
enabling
 802.11 converged WLCs, 252
 CleanAir, 440
 ED-RRM, 445
 Local EAP authentication, 350
 radios, 220
 WLANs, 362
encryption, 333
enterprise mode (WPA2), 346-348
enterprise with Local EAP mode (WPA2), 348-350
enabling, 350
PEAP configuration, 349
profiles, 348
RADIUS servers, 349
WLANs, 349
equations
dB, 17
free space path loss, 78
ESS (extended service set), 120-121
APs, adding
 channel layout, 165-168
 client associations, 162-163
 roaming, 163-165
 predictive surveys, 173
ETSI (European Telecommunication Standards Institute), 44
Event-Driven RRM (ED-RRM), 320, 445
Event Log tab, 221
exam engine, 482
 activating, 483
 installing, 482
 modes, 484
 new exams, activating, 483
 Premium Edition, 484
 updating, 483
exam event advice
 pre-exam suggestions, 481-482
 question types, learning, 475-479
 time budget, 480-481
extended bands, 44
extended interframe space (EIFS), 138
extended service set. See ESS
Extensible Authentication Protocol. See EAP

F

failures
 controllers, 274
 transmission, 139
fake APs, 333
FCC (Federal Communication Commission), 42
5-GHz U-NII bands requirements, 44
DFS, 44
power, 43
transmitting equipment, 43
U-NII frequency space, 42
website, 42
FHSS (frequency-hopping spread spectrum), 26
fill in the blank questions, 477
filtering client status information, 461
finding
autonomous AP IP addresses, 216
wireless status icon (Windows devices), 389
FlexConnect, 204-205
Fluke AirMagnet WiFi Analyzer, 469
foreign controllers, 295
foundation module (CCX), 404
frames
802.11
 802.3 frames, compared, 132
 addressing, 134-135
 control, 141-142
 CSMA, 137
 data, 142
 format, 133
 management, 140-141
 moving to/from DSs, 133
 not moving to/from DSs, 134
 timing schemes, 138
 transmission failures, 139
aggregation, 63
direction bits, 135
management, 343-344
transmissions, 63
Wi-Fi, 470
free space path loss, 77
 2.4-GHz versus 5-GHz bands, 78
calculating, 78
solutions, 79-80
wave spreading, 77
frequency, 9
 5-GHz band, 11
 bands, 10
 2.4-GHz band, 10
 5-GHz band, 11
 channels, 12-13
dynamic selection, 44
hertz, 10
ISM (industrial, scientific, and medical), 42
radio (RF), 10
signal bandwidth, 12
spectrum, 10
U-NII, 42
unit names, 10
frequency-hopping spread spectrum (FHSS), 26
Fresnel zones, 85-86

G

gain
 antennas, 97
 increasing, 107
Generic Token Cards (GTCs), 340
GHz (gigahertz), 10
GI (guard interval), 58
groups
 mobility, 296-298
 RF, 313-315
 automatic discovery/formation, 313
 information, displaying, 314
 leaders, 314
 radio resource monitoring, 315
SPGs, 302
GTC (Generic Token Card), 340
guard interval (GI), 58
guest users, 374
guest WLANs
 configuring
dynamic interface, 377
interface, assigning, 378
IP address information, 377
mobility anchors, 380-381
open authentication, 379
SSID, 378
web authentication, 379
isolation, 375
Layer 3 roaming, 376
mobility anchors, 376
scaling, 375-376
web authentication, 375
GUI, 220

H

H (horizontal) planes, 96
H-REAP (Hybrid Remote Edge Access Point), 204-205
hardware (Cisco)
 APs, 206-207
 controllers, 205-206
 LAPs, 207-208
heartbeat messages, 274
heatmaps
 active site surveys, 177-178
 passive site surveys, 175
 PI computation, 423-424
hertz (Hz), 10
hierarchy
 mobility, 300-301
 mobility groups, 297
high throughput (HT), 54
holes (coverage), 321
home page (PI), 415
horizontal (H) planes, 96
HT (high throughput), 54
Hz (hertz), 10

IBSS (independent basic service set), 122, 391
Identity Services Engine (ISE), 413
ID numbers (WLANs), 361
IDSs (intrusion detection systems), 335
IEEE (Institute of Electric and Electronic Engineers), 45
 802.1x, 338
 802.11. See 802.11 standards
 amendments, 46
 website, 45
 working groups, 45
independent basic service set (IBSS), 122, 391
industrial, scientific, and medical (ISM) frequencies, 42
infrastructure MFP, 343
infrastructure mode, 116
initial setup
 centralized controllers with CLI, 257
 centralized controllers with Configuration Wizard, 239-247
 802.11 support, 245
 LAG mode, 241
 management interface, 241
 RADIUS server, 244
 rebooting, 246
 RF mobility domain, 242
 service port, 240
interference

SNMP access, 240
system access, 239
system clock, 246
virtual interface, 243
WLAN, 243
centralized controllers with WLAN
Express Setup, 254
controller identification, 254
starting, 254
verifying, 256
VLAN/IP address parameters, 256
WLANs, 255
converged controllers with Configuration
Wizard, 247-253
802.11, 252
administrative users, creating, 249
clock, 253
management ports, 250
mobility, 251
RF mobility, 251
SNMP parameters, 249
switch management web page, 247
verifying, 253
web-based management switch
configuration, 247
wireless management, 250
WLAN, 252
WLC management page, 248
initialization vector (IV), 341
installing, exam engine, 482
Institute of Electric and Electronic
Engineers. See IEEE
integrated omnidirectional antennas, 101-102
integrity, 334, 341-342
intercontroller roaming
Layer 2, 290-292
Layer 3, 292-296
after, 293
before, 292
clients details on anchor controller, displaying, 295
clients details on foreign controllers, displaying, 295
clients, displaying, 294
mobility groups, 296-298
interfaces
BVI, 217
collectors, 237-238, 362
dynamic, 358-360
converged controllers, 358-360
guest WLANs, 377
name/VLAN ID, defining, 358
parameters, editing, 358
guest WLANs, assigning, 378
management, 241
ports, compared, 235
virtual, 243
web, 217
interference
802.11 devices, 432
Bluetooth, 432-433
canopy, 435
channel quality information, 439
co-channel, 74-75
continuous transmitters, 435
cordless phones, 434
detecting
AQI, 443-444
CleanAir, 439-442
ED-RRM, 445
spectrum analyzers, 436-438
invalid channels, 435
inverted signals, 435
jammers, 435
microwave ovens, 434
neighboring channel, 75-76
noise, 432
non-802.11 devices, 76
rogue APs, 432
simultaneous transmissions, 115
sources, 425, 432
SuperAG, 435
video cameras, 435
WiMAX, 434
Xbox, 435
ZigBee, 433

Interference Optimal Mode (TPCv2), 316
interframe space periods, 138
interleavers, 27
International Telecommunication Union Radiocommunication Sector (ITU-R), 41
intersymbol interference (ISI), 58
intracontroller roaming, 288-290
intrusion detection systems (IDSs), 335
intrusion protection, 335-336
attacks, detecting, 336
IDSs, 335
PI, 335
rogue APs, 335-336
WLCs, 197
invalid channel interference, 435
inverted signals, 435
iOS devices, 400
available networks, displaying, 401
connection information, 402
security, 402
Wi-Fi settings, accessing, 400

IP addresses
attacks, detecting, 336
autonomous APs, finding, 216
centralized controller parameters, 256
client problems, troubleshooting, 458
guest WLANs, 377
management, 189
ISE (Identity Services Engine), 413
ISI (intersymbol interference), 58
ISM (industrial, scientific, and medical) frequencies, 42
isotropic antennas radiation patterns, 21
cutting with two planes, 95
H/E polar plots, recording, 96
plotting, 94
ITU-R (International Telecommunication Union Radiocommunication Sector), 41
IVs (initialization vectors), 341

J
jammer interference, 435
jitter, 389
joining BSSs, 144-145

K
keepalive messages, 274
keys
caching, 290
exchanges, 290
mixing algorithm, 341
PKIs, 341
shared-key security, 337
TKIP, 341-342
WEP, 337
kHz (kilohertz), 10
L

L2AUTHCOMPLETE state, 455
labels (PI maps), 422
LAG (link aggregation group), 236, 241
lambda symbol (λ), 14
LAP (lightweight access point), 193
autonomous, compared, 192
central WLC, connecting, 195
Cisco, 207-208
client load balancing, 196
client roaming, 196
RTT controllers, 199
self-healing coverage, 196
WLCs, linking, 193
latency, 388
law of 3s (dB), 18
law of 10s, 18
law of zero (dB), 18
Layer 2 roaming, 290-292
Layer 2 WLAN security types, 362-363
Layer 3 roaming, 292-296
after, 293
before, 292
client details on anchor controller, displaying, 295
client details on foreign controller, displaying, 295
clients, displaying, 294
guest WLANs, 376
layout
APs, 311
channels, 165-168
alternating pattern holes, 166
channel reuse, 167
honeycomb pattern, 167
three dimensions, 168
LEAP (Lightweight EAP), 339
leaving BSSs, 145-146
legacy power saves, 147
licenses, 41-42
lightning arrestors, 108
lightweight access point. See LAP
Lightweight Access Point Protocol (LWAPP), 194
line-of-sight paths, 85
links
adaptation, 79, 160
aggregation group, 236, 241
budgets, 22
load balancing, 196
Local EAP, 348-350
local-to-local roams, 290-292
local web authentication (LWA), 375
locations
centralized WLCs, 197
clients
AP associations, 458
displaying, 457
PI maps, 424
devices/applications, 170
module (CCX), 404
WLCs, 201
log10 (base-10 logarithm), 17
logging in (PI), 414
logical networks, 355
logs, 463
LWA (local web authentication), 375
LWAPP (Lightweight Access Point Protocol), 194

M

MA (Mobility Agent), 298
MAC (media access control), 192
Counter/CBC-MAC Protocol (CCMP), 342
layers
802.11ac, 63
802.11n, 58
pseudo addresses, 442
sender MAC addresses, 341
split-MAC architectures, 192-197
CAPWAP, 193
centralized, 197-200
converged, 200-202
digital certificates, 194
FlexConnect, 204-205
LAPs to central WLC, connecting, 195
VLAN 100, 194
WLC activities, 196
MacOS X devices, 397
configuration utility, accessing, 397
discovered networks, displaying, 397
new network profiles, creating, 399
preferred networks list, displaying, 398
system information, displaying, 399
magnetic waves, traveling, 8
major alarms, 417
man-in-the-middle attacks, 333
management
alarms, 418
frames, 140-141, 343-344
interfaces, 237, 241
IP addresses, 189
module (CCX), 404
ports, 250
WLANs, allowing, 367
Management Frame Protection (MFP), 343, 403
Management tab, 221
mandatory data rates, 309
mandatory state, 142
mapping VLANs, 237
maps (PI), 421
accessing, 421
AP
information, 424
locations, 421
building example, 421
client locations, 424
devices/labels, selecting, 422
display settings, 423
heatmap computation, 423-424
interference sources, 425
rogue APs/clients, 426
RRM results, 323
maximal-ratio combining (MRC), 60
MC (Mobility Controller), 298
MCS (modulation and coding scheme), 60, 63
media access control. See MAC
megahertz (MHz), 10
Meraki, 190, 438
Meraki Dashboard
accessing, 224
tabs, 227
mesh networks, 125
messages
integrity, 334, 341
keepalive, 274
logs, 463
privacy/integrity methods, 333-334, 341-342
sending, 8-9
MetaGeek Chanalyzer, 172, 437
MetaGeek in SSIDer Office tool, 468
MFP (Management Frame Protection), 343, 403
MHZ (megahertz), 10
MIC (message integrity check), 334, 341
Microsoft Challenge Authentication Protocol version 2 (MSCHAPv2), 340
microwave oven interference, 434
MIMO (multiple-input, multiple-output), 55-57
minor alarms, 417
mobility
agents, 298
anchors, 376, 380-381
client details, displaying, 456
controllers (MCs), 298
converged WLCs, 251
domains/subdomains, 302
groups, 296-298
hierarchy, 300-301
RF
converged WLCs, 251
mobility domain, 242
Services Engine (MSE), 208, 412
users
centralized architectures, 198
converged architectures, 202
modulation, 25
802.11ac, 63
802.11n, 60
bandwidth, 25
coding scheme (MCS), 60, 63
DSSS, 27-28
1-Mbps data rate, 28
2-Mbps data rate, 28
5.5-Mbps data rate, 29-30
11-Mbps data rate, 30
FHSS, 26
goals, 25
OFDM, 30-32
spread spectrum, 26
summary, 32-33
modulators, 27
monitoring
alarms, 417
actions, 419
browsing, 418
managing, 418
severity levels, 417
summary, 417
AP/client counts, 419
PL maps, 421
accessing, 421
AP information, 424
AP locations, 421
building example, 421
client locations, 424
devices/labels, selecting, 422
display settings, 423
heatmap computation, 423-424
interference sources, 425
rogue APs/clients, 426
RF, 196
tasks, 420
monopole antennas, 101
MRC (maximal-ratio combining), 60
MSCHAPv2 (Microsoft Challenge Authentication Protocol version 2), 340
MSE (Mobility Services Engine), 208, 412
MU-MIMO (multi-user MIMO), 65
multipath transmissions, 81-82
multiple choice questions, 476-479
multiple-input, multiple-output (MIMO), 55-57
N

N+1 redundancy, 274-275
N+N redundancy, 275-276
N+N+1 redundancy, 276-277

names
802.11 standards, 46
dynamic interfaces, defining, 358
WLANs, 361
narrowband transmissions, 25
NAV (network allocation vector) timer, 137
NDP (Null Data Packet), 64
Near Field Communication (NFC), 436
neighboring channel interference, 75-76
Network and Sharing Center (Windows), 391
Network tab, 221
Network-wide tab (Meraki Dashboard), 227
NFC (Near Field Communication), 436
noise, 23, 432
non-802.11 device interference, 76
non-real-time applications, 388
non-root bridges, 219
Null Data Packets (NDPs), 64

O

OFDM (orthogonal frequency-division multiplexing), 30-32
omnidirectional antennas, 99
dipole, 100-101
integrated, 101-102
monopole, 101
One Management, 412
One Network, 412
One Policy, 412
open authentication, 336, 379
Open System authentication, 140
optimizing
autonomous APs, 220
transmit power, 196
Organization tab (Meraki Dashboard), 227
orthogonal frequency-division multiplexing (OFDM), 30-32
outdoor bridges, 124
overriding RRM, 322

P

packets
analyzers, 470
loss, 389
PACs (protected access credentials), 339
parabolic dish antennas, 105-106
parameters
CHDM, 321
controller wireless, 308
DCA, 319
dynamic interfaces, editing, 358
RRM TPC, configuring, 316
SNMP converged WLC, 249
WLANs
broadcasting SSIDs, 362
controller interfaces, 362
enabling/disabling, 362
general, 361
radio selection, 362
passing through (communications), 117
passive scanning, 140, 143
passive site surveys, 171, 174-175
patch antennas, 103-104
PEAP (Protected EAP), 340, 349
Pearson Cert Practice Test engine, 482
activating, 483
installing, 482
modes, 484
new exams, activating, 483
Premium Edition, 484
updating, 483
performance verification
active site surveys, 176-178
AP deployment phases, 178-179
AP-on-a-stick surveys, 175
device/application requirements, 169-170
location services, 170
passive site surveys, 174-175
planning surveys, 172-173
site surveys, 171-172
personal mode (WPA2), 344-345
physical carrier sense, 137
physical objects effects on RF signals
absorption, 82-83
diffraction, 84
earth curvature, 85
Fresnel zones, 85-86
line-of-sight paths, 85
reflection, 81-82
refraction, 83
scattering, 83
standing obstacle diffraction, 84
PI (Prime Infrastructure), 335, 412
alarms, 417
actions, 419
browsing, 418
managing, 418
severity levels, 417
summary, displaying, 417
benefits, 414
dashlets, 416
defined, 412
devices, configuring, 426
home page, 415
intrusion protection system, 335
login screen, 414
maps, 421
accessing, 421
AP information, 424
AP locations, 421
building example, 421
client locations, 424
devices/labels, selecting, 422
display settings, 423
heatmap computation, 423-424
interference sources, 425
rogue APs/clients, 426
monitoring
AP/client counts, 419
tasks, 420
rogue APs, 335-336
Task Area, 415
testing clients, 459-460
troubleshooting clients, 454
AP associations, 458
details, displaying, 455
displaying clients, 454
IP addressing problems, 458
location, 457
mobility details, 456
policy states, 455
RF history, 457
RF problems, 458
RF statistics, 456
RSSI/SNR problems, 459
searching for clients, 454
piconets, 433
ping round-trip times measured, displaying, 177
PKI (Public Key Infrastructure), 341
planning surveys, 171-173
PMF (Protected Management Frames), 344
PoA (Point of Attachment), 299
PoE (Power over Ethernet), 465
point-to-multipoint
 links, 44
 outdoor bridges, 124
point-to-point
 links, 44
 outdoor bridges, 124
polar plots, 96
polarization, 98-99
policies, 365
PoP (Point of Presence), 299
ports
 autonomous APs, availability, 215
 controllers, 235-236
 interfaces, compared, 235
 management, 250
 service, 240
 switch, 466
post-deployment site surveys, 179
power
 asymmetric power problems, 158
 changes along path, measuring, 20-23 dB, 17-18
 EIRP, 21-22
 FCC regulations, 43
 levels, comparing, 18
 link budgets, 22
 received signal strength, calculating, 22
 receivers, 23-24
 references, comparing, 19-20
 saving, 147-150
 DTIMs, 149
 legacy method, 147
 radio sleeping, 147
 U-APSD method, 149
 whole device sleeping, 147
 signals, 17
 absolute, 16
 reducing, 108
 transmitters, comparing, 16
 watts, 16
 transmit
 AP cell size, tuning, 157-159
 APs, setting manually, 323
 optimizing, 196
 RRM TPC algorithm, 317
Power over Ethernet (PoE), 465
Power Save Poll (PS-Poll), 141
Practice exam mode (exam engine), 484
pre-deployment site surveys, 179
predictive surveys, 171-173
pre-exam suggestions, 481-482
Prime Infrastructure. See PI
primed addresses, 271
privacy
 CCMP, 342
 data, 333-334
 TKIP, 341-342
probes, 140
protected access credentials (PAC), 339
Protected EAP (PEAP), 340
Protected Management Frames (PMF), 344
protection
 802.11g devices, 52
antennas from lightning, 108
integrity, 334
intrusion, 335-336
attacks, detecting, 336
IDSs, 335
PI, 335
rogue APs, 335-336
WLCs, 197
management frames, 343-344
privacy, 333-334
protocols
802.11, 68
CAPWAP
 Discovery Requests, 270
 Join Requests, 271
 LAPs/WLCs, linking, 193
CCMP, 342
CDP, 216
EAP, See EAP
LWAPP, 194
TKIP, 341-342
PS-Poll (Power Save Poll) frames, 141
pseudo-MAC addresses, 442
Public Key Infrastructure (PKI), 341

QAM (quadrature amplitude modulation), 31
QoS (Quality of Service), 364-365
question types, learning, 475
drag-and-drop, 477-479
fill in the blank, 477
multiple choice, 476-479
simlets, 478-479
simulation, 478-479
testlets, 478-479

R

RA (receiver address), 135
radiation patterns
antennas, 94-97
cutting with two planes, 95
H/E polar plots, recording, 96
plotting, 94
dipole antennas, 100
integrated omnidirectional antennas, 102
parabolic dish antennas, 106
patch antennas, 104
Yagi antennas, 105
radios
frequency. See RF
Resource Management. See RRM
resource monitoring, 315
sleeping, 147
WLANs, selecting, 362
RADIUS servers
centralized controllers, configuring, 244
client authentication, selecting, 347
configuring, 356-357
Local EAP configuration, 349
WLAN authentication, 363
WPA2 enterprise authentication, 346
rate adaptation, 79, 160
RC4 cipher algorithm, 337
real-time applications, 388
real-time location services (RTLS), 170
reassociation frames, 141
rebooting controllers, 246, 261
received signal strength indicator (RSSI), 23-24, 389
receivers
 addresses, 135
 bidirectional communication, 115
 power, 23-24
 unidirectional communication, 115
reduced interframe space (RIFS), 138
redundancy, 274
 N+1, 274-275
 N+N, 275-276
 N+N+1, 276-277
 ports, 235
 SSO, 277-278
reflection, 81-82
refraction, 83
regulatory agencies
 ETSI, 44
 FCC, 42
 5-GHz U-NII bands requirements, 44
 DFS, 44
 power, 43
 transmitting equipment, 43
 U-NII frequency space, 42
 website, 42
 ITU-R, 41
regulatory domains, 45
repeaters, 122-123, 219
requirements
 client wireless, 388-389
 devices/applications wireless, 169-170
 open authentication, 336
 transmissions, 138
reusing channels, 167
reverse polarity TNC (RP-TNC) connectors, 43
RF (radio frequency), 10
 amplitude, 15
clients
 history, displaying, 457
 problems, troubleshooting, 458
 statistics, 456
coverage. See coverage
duty cycle, 436, 442
free space path loss, 77
 2.4-GHz versus 5-GHz bands, 78
 calculating, 78
 solutions, 79-80
 wave spreading, 77
groups, 313-315
 automatic discovery/formation, 313
 information, displaying, 314
 leaders, 314
 radio resource monitoring, 315
mobility
 converged WLCs, 251
 domain, configuring, 242
monitoring, 196
phases, 14
physical object effects
 absorption, 82-83
 diffraction, 84
 earth curvature, 85
 Fresnel zones, 85-86
 line-of-sight paths, 85
 reflection, 81-82
 refraction, 83
 scattering, 83
 standing obstacle diffraction, 84
power, 17
 absolute, 16
 changes along path, measuring, 20-23
dB, 17-18
EIRP, 21-22
link budgets, 22
received signal strength, calculating, 22
receivers, 23-24
references, comparing, 19-20
transmitters, comparing, 16
watts, 16
regulatory agencies
ETSI, 44
FCC, 42-44
ITU-R, 41
regulatory domains, 45
signals. See signals
RIFS (reduced interframe space), 138
roaming
autonomous APs, 285-286
between BSSs, 146
centralized controller coordination, 298-300
channel layout, 165
alternating pattern holes, 166
described in this chapter, 166
cell reuse, 167
honeycomb pattern, 167
three dimensions, 168
clients, 163-165
behaviors, displaying, 178
cell overlap, 165
cloud-based APs, 227
correctly deploying, 164
definitions, 164
described in this chapter, 164
flexibility, 196
scanning other channels, 165
converged controllers, 301
defined, 121, 162
guest WLANs, 376
intercontroller
Layer 2, 290-292
Layer 3, 292-296
intracontroller, 288-290
mobility groups, 296-298
WCMs, 300-302
rogue APs
detecting/containing, 335-336
interference, 432
PI maps, 426
rogue clients, 335, 426
root bridges, 219
round-trip time (RTT), 199
RP-TNC (reverse polarity-TNC), 43
RRM (Radio Resource Management), 313, 439
AP manual configuration, 322-323
CHDM algorithm, 321
DCA algorithm, 318-320
overriding, 322
results, verifying, 323
RF groups, 313-315
TPC algorithm, 315-317
RSSI (received signal strength indicator), 23-24, 389
client roaming, 164
client problems, troubleshooting, 459
RTLS (real-time location services), 170
RTS/CTS frames, 141
RTT (round-trip time), 199
RUN state, 455
S
SA (source address), 135
saving
power, 147-150
DTIMs, 149
legacy method, 147
radio sleeping, 147
U-APSD method, 149
whole device sleeping, 147
Savvius OmniPeek, 470
scalability
 converged architectures, 202
guest WLANs, 375-376
mobility groups, 296-298
scanning
 active, 143
 APs, 143
 autonomous APs, 219
 channels
 client roaming, 165
tools, 468
 passive, 140-143
scattering RF signals, 83
scramblers, 27
searching clients, 454
security
 alarms, 417
 actions, 419
 browsing, 418
 managing, 418
 severity levels, 417
 summary, displaying, 417
Android devices, 396
attacks
 detecting, 336
 man-in-the-middle, 333
 protection against, 335
authentication
 APs, 333
 central web, 375
 clients, 332
 local web, 375
 open, 379
 web, 375, 379
 WLANs, 363
 WPA/WPA2, 343
autonomous APs, 219
CCX support, 404-405
cloud-based APs, 226
configuring, 344
encryption/decryption, 333
fake APs, 333
guest WLANs, 379
integrity/privacy, 333-334, 341-342
intrusion protection, 335-336
 attacks, detecting, 336
 IDSs, 335
 PI, 335
 rogue APs, 335-336
 WLCs, 197
iOS devices, 402
management frames, 343-344
MICs, 334
shared-key, 337
transmissions reaching unintended recipients, 331
WLANs, 362-364
 authentication, 363
 centralized controllers, 364
 client exclusion policies, 365
 converged controllers, 364
 Layer 2 types, 362-363
WLC authentication, 197
WPA/WPA2, 342-343
 enterprise mode, 346-348
 Local EAP, 348-350
 personal mode, 344-345
Security tab, 221
self-healing coverage, 196
sender MAC addresses, 341
sending
data over RF signals, 24-26
messages, 8-9

sensitivity levels, 23

sequence counters (TKIP), 341

server-based site survey tools, 171

servers
authentication (ASs), 339

RADIUS
centralized controllers, configuring, 244
client authentication, selecting, 347
configuring, 356-357
Local EAP configuration, 349
WLAN authentication, 363
WPA2 enterprise authentication, 346

service ports, 235-236, 238-240

service set identifiers. See SSIDs

Services tab, 221

session timeouts (WLANs), 365

shared key authentication, 140

shared-key security, 337

SIFS (short interframe space), 138

signal-to-noise ratio. See SNR

signals
amplitude, 15
AP strength, displaying, 177
bandwidth, 12
carrier, 24
free space path loss, 77
2.4-GHz versus 5-GHz bands, 78
calculating, 78
solutions, 79-80
wave spreading, 77

interference
Bluetooth, 432-433

channel quality, 439
co-channel, 74-75
continuous transmitter, 435
cordless phones, 434
detecting with AQI, 443-444
detecting with CleanAir, 439-442
detecting with ED-RRM, 445
detecting with spectrum analyzers, 436-438
invalid channels, 435
inverted signals, 435
jammers, 435
microwave ovens, 434
neighboring channel, 75-76
non-802.11 devices, 76
SuperAG, 435
video cameras, 435
WiMAX, 434
Xbox, 435
ZigBee, 433

inverted, 435

modulation/demodulation, 25-26

narrowband transmissions, 25

phases, 14

physical object effects
absorption, 82-83
diffraction, 84
earth curvature, 85
Fresnel zones, 85-86
line-of-sight paths, 85
reflection, 81-82
refraction, 83
scattering, 83
standing obstacle diffraction, 84

power, 17
absolute, 16
changes along path, measuring, 20-23

dB, 17-18

EIRP, 21-22

FCC regulations, 43

levels, comparing, 18

link budgets, 22

received signal strength, calculating, 22

receivers, 23-24

references, comparing, 19-20

transmitters, comparing, 16

watts, 16

sending messages, 8

strength, reducing, 108

waves

continuous pattern, 8

cycles, 9

electric/magnetic, traveling, 8

electromagnetic, 9

frequency, 9-13

propagation with idealistic antenna, 9

wavelength, 14

simlets questions, 478-479

simulation questions, 478-479

SISO (single-in, single-out), 55

site surveys, 171-172

active, 176-178

AP signal strength, displaying, 177

client roaming behaviors, 178

methods, 176

ping round-trip times measured, displaying, 177

AP deployment phases, 178-179

AP-on-a-stick, 175

passive, 174-175

predictive, 172-173

review, 180

tools, 171

types, 171

SNMP

centralized controller access, configuring, 240

converged WLC parameters, 249

SNR (signal-to-noise ratio), 24

clients

problems, troubleshooting, 459

RF statistics, 457

roaming, 164

co-channel interference, minimizing, 75

Software tab, 221

source address (SA), 135

spacing channels, 13

spatial multiplexing

802.11ac, 64

802.11n, 57-58

spatial streams, 57

spectrum analyzers, 172

AirMagnet, 437

interference detection, 436-438

SPG (Switch Peer Group), 302

split-MAC architectures, 192-197

CAPWAP, 193

centralized, 197-200

traffic paths, 198-199

user mobility, 198

WLC location, 197

converged, 200-202

access switch capacities, 201

scalability, 202

traffic paths, 202

user mobility, 202

WLC location, 201
digital certificates, 194
FlexConnect, 204-205
LAPs to central WLC, connecting, 195
VLAN 100, 194
WLC activities, 196
spread spectrum, 26-28
 1-Mbps data rate, 28
 2-Mbps data rate, 28
 5.5-Mbps data rate, 29-30
 11-Mbps data rate, 30
FHSS, 26
OFDM, 30-32
SSID (service set identifier), 117
access, controlling, 226
active site surveys, 176
available, listing, 468
broadcasting, 362
cloud-based APs, configuring, 225-226
guest WLANs, 378
multiple on one AP, supporting, 119
VLANs, bridging, 214
Windows device availability, 389
SSO (stateful switchover), 277-278
standalone site survey tools, 171
standards
 802.11. See 802.11 standards
regulatory agencies
 ETSI, 44
 FCC, 42-44
 ITU-R, 41
regulatory domains, 45
Wi-Fi Alliance, 66-67
START state, 455
stateful switchover (SSO), 277-278
states
 APs, 268-270
 common sequence, 268
data rates, 142
machine, 268
software image releases, 269
client policy, displaying, 455
stations, 117
status
 alarms, changing, 419
 clients, 461
streams, 57
Study mode (exam engine), 484
subdomains mobility, 302
SuperAG interference, 435
supplicants, 339
supported data rates, 309
supported state, 142
Switch Peer Group (SPG), 302
switches
 access, 201
 management web page, 247
 ports, 466
 web-based management configuration, 247
symbols, 27

T

TxBF (transmit beamforming)
 802.11ac, 64
 802.11n devices, 59-60
TA (transmitter address), 135
tabs
 Association, 221
 Event Log, 221
 Management, 221
 Meraki Dashboard, 227
 Network, 221
Security, 221
Services, 221
Software, 221
Wireless, 221, 308

Task Area (PI), 415
tasks, monitoring, 420

Temporal Key Integrity Protocol (TKIP), 341
testing clients (PI), 459-460
testlet questions, 478-479
third-party troubleshooting tools, 471
threaded Neill-Concelman (TNC) connectors, 43

TIM (traffic indication map), 148
time budget (exam event), 480-481
time stamps, 341
timeslots, 138
timing schemes, 138
TKIP (Temporal Key Integrity Protocol), 341-342

TNC (threaded Neill-Concelman) connectors, 43
tools
MICs, 334
site surveys, 171
spectrum analyzers, 172
troubleshooting
activity analyzers, 469
client-based OS, 468
frame analyzers, 470
third-party, 471
Wi-Fi scanning, 468
topologies
AP noninfrastructure modes
mesh networks, 125
outdoor bridges, 124
repeater, 122-123
WGB, 123

WLANs
BSSs, 116-118
DSs, 118-120
ESSs, 120-121
IBSSs, 122

TPC (transmit power control), 315-317
defined, 315
parameters, 316
RRM, 317
running, 317
transmit power, 317
versions, 316

TPCv1 (Coverage Optimal Mode), 316
TPCv2 (Interference Optimal Mode), 316
traffic
centralized architectures, 198-199
converged architectures, 202
FLexConnect, 204
flows, 117
indication maps, 148
untagged, 241
transmissions
bidirectional communication, 115
collision avoidance, 137-139
CSMA, 137
DSSS, 27
failures, 139
FHSS, 26
frame, 63
interference, 115
multipath, 81-82
narrowband, 25
power
APs, 157-159, 323
control. See TPC
optimizing, 196
RRM TPC algorithm, 317
requirements, 138
timing schemes, 138
transmit beamforming, 64
types
IEEE 802.11-1997, 51
IEEE 802.11a, 53
IEEE 802.11b, 51
IEEE 802.11g, 52
unidirectional communication, 115
unintended recipients, 331
voice, 28
transmit beamforming. See TxBF transmitters
addresses, 135
bidirectional communication, 115
ETSI requirements, 44
FCC regulations, 43
interference
coop-channel, 74-75
neighbor channel, 75-76
non-802.11 devices, 76
signal strength, reducing, 108
unidirectional communication, 115
trap logs, 463
troubleshooting
AP connectivity, 464
 antenna orientation, 467
 AP orientation, 467
 AP-to-network, verifying, 465-466
 AP-to-WLC, verifying, 464-465
asymmetric power problems, 158
client connectivity, 454
 AP associations, 458
 client locations, displaying, 457
controller logs, viewing, 463
 from controllers, 461
device inspection, 453
displaying clients in PI, 454
information, gathering, 453
IP addressing problems, 458
mobility details, 456
PI client searches, 454
policy states, 455
RF logry, 457
RF problems, 458
RF statistics, 456
RSSI/SNR problems, 459
successful wireless association conditions, 453
testing clients from PI, 459-460
WLAN settings, verifying, 462-463
frame transmission failures, 139
free space path loss, 79-80
tools
 activity analyzers, 469
 client-based OS, 468
 frame analyzers, 470
third-party, 471
Wi-Fi scanning, 468
tunneling
 LAPs to central WLC, connecting, 195
 LAPs/WLCs, linking, 193

U

U-APSD (unscheduled automatic power save delivery), 149
U-NII (Unlicensed National Information Infrastructure) frequency space, 42, 49-50
unidirectional communication, 115
Unified Access architecture, 412-413
universal workgroup bridge (uWGB), 124, 219
untagged traffic, 241
updating
 autonomous APs, 221-223
 controllers, 259-262
 exam engine, 483
users
 administrative, 249
 guest, 374
 mobility
 centralized architectures, 198
 converged architectures, 202
 segregating into logical networks, 355
uWGB (universal workgroup bridge), 124, 219

V

verifying
 Android connections, 396
 AP connectivity
 antenna orientation, 467
 AP orientation, 467
 AP-to-network, 465-466
 AP-to-WLC, 464-465
 centralized controller configuration, 256
 client WLAN settings, 462-463
 converged WLC configuration, 253
 coverage/performance
 active site surveys, 176-178
 AP deployment phases, 178-179
 AP-on-a-stick surveys, 175
device/application surveys, 169-170
 location services, 170
 passive site surveys, 174-175
 planning surveys, 172-173
 site surveys, 171-172
 RRM results, 323
 Windows
 devices, 394
 Wi-Fi connections, 393
 VHT (very high throughput), 61
 video camera interference, 435
 virtual carrier sense, 137
 virtual interfaces, 237, 243
VLANs
 autonomous APs, 189
 centralized controller parameters, 256
 converged controllers, defining, 358
 dynamic interface ID, defining, 358
 mapping, 237
 split-MAC architecture, 194
 SSIDs, bridging, 214
voice
 module (CCX), 404
 transmissions, 28

W

W (watts), 16
wavelength, 14
waves
 amplitude, 15
 continuous pattern, 8
cycles, 9
electric/magnetic, 8
electromagnetic, 9
frequency, 9
 2.4-GHz band, 10
 5-GHz band, 11
 bands, 10
channels, 12-13
hertz, 10
radio (RF), 10
signal bandwidth, 12
spectrum, 10
unit names, 10
propagation with idealistic antenna, 9
spreading, 77
wavelength, 14
WCM (Wireless Controller Module), 201, 300
access switch capacities, 201
dynamic interfaces, creating, 358-360
initial setup with Configuration Wizard, 247, 253
802.11, 252
administrative users, creating, 249
clock, 253
management ports, 250
mobility, 251
RF mobility, 251
SNMP parameters, 249
switch management web page, 247
verifying, 253
web-based management switch configuration, 247
wireless management, 250
WLAN, 252
WLC management page, 248
platforms/capabilities, 205-206
RADIUS servers, configuring, 357
roaming, 300-302
domains/subdomains, 302
mobility hierarchy, 300-301
SPGs, 302
updating, 262
WLAN security, 364
web-based management, 247
web interfaces, 217
WebAuth (web authentication), 336, 375, 379
WEBAUTH_REQD state, 455
websites
AirMagnet Spectrum XT, 172
Bluetooth SIG, 433
Cisco antennas, 99
Cisco Learning Network, 485
ETSI, 44
FCC, 42
IEEE, 45
ITU-R, 41
Meraki Dashboard, 224
MetaGeek Chanalyzer, 172
Wi-Fi Alliance, 66
WiMiMAX Forum, 435
ZigBee Alliance, 434
WEP (Wired Equivalent Privacy), 337-338
WEP_REQD, 455
WGB (workgroup bridge), 123, 219
whole device sleeping, 147
Wi-Fi
Alliance, 66-67
Analyzer, 469
Android clients, 395-396
available networks, displaying, 395
connections, verifying, 396
manually adding networks, 395
security, 396
Apple iOS clients, 400-402
available networks, displaying, 401
connection information, 402
security, 402
Wi-Fi settings, accessing, 400
Direct, 396
MacOS X clients, 397
configuration utility, accessing, 397
discovered networks, displaying, 397
new network profiles, creating, 399
preferred networks list, displaying, 398
system information, displaying, 399
Multimedia (WMM), 149
Protected Access (WPA), 342-343
scanning tools, 468
Windows clients, 389-390
ad hoc networks, 391
adapter settings, 392
available SSIDs, 389
connections, verifying, 393
drivers, 394
manually configuring, 391
preferred networks list, manually populating, 391
wireless status icon, finding, 389
wIPS (wireless intrusion protection system), 335-336
Wired Equivalent Privacy (WEP), 337-338
wired networks, 7
Wireless
Controller Modules. See WCM
intrusion protection system (wIPS), 335-336
LAN controllers. See WLC
local-area networks. See WLAN
mediums, accessing
carrier sense multiple access, 137
collision avoidance, 137-139
timing schemes, 138
transmission failures, 139
metropolitan-area networks (WMANs), 114
personal-area networks (WPANs), 114
status icon (Windows devices), 389
wide-area networks (WWANs), 114
Wireless tab, 221, 227, 308
Wireshark, 470
WLAN (wireless local-area network), 114
advanced settings, 365-366
authentication, 346
centralized controllers, configuring, 243
channel layout, 165-168
alternating pattern holes, 166
cchannel reuse, 167
honeycomb pattern, 167
three dimensions, 168
clients
session timeouts, 365
settings, verifying, 462-463
controller configured, displaying, 366
converged WLCs, configuring, 252
coverage/performance verification
active site surveys, 176-178
AP deployment phases, 178-179
AP-on-a-stick surveys, 175
device/application requirements, 169-170
location services, 170
passive site surveys, 174-175
planning surveys, 172-173
site surveys, 171-172
defining, 355
dynamic interface, creating, 358-360
Express Setup, 254-256
guest
dynamic interface, 377
interface, assigning, 378
IP address information, 377
isolation, 375
Layer 3 roaming, 376
mobility anchors, 376, 380-381
open authentication, 379
scaling, 375-376
SSID, 378
web authentication, 375, 379
limiting, 356
listing of, displaying, 360
Local EAP, 349-350
management access, allowing, 367
new, creating
broadcasting SSIDs, 362
controller interfaces, 362
enabling/disabling, 362
general parameters, 361
names/ID numbers, 361
radio selection, 362
WLAN list, displaying, 360
open authentication, 336
QoS, 364-365
RADIUS server, configuring, 356-357
security, 362-364
authentication, 363
centralized controllers, 364
client exclusion policies, 365
configuring, 344
converged controllers, 364
Layer 2 types, 362-363
too many, creating, 355
topologies
BSSs, 116-118
distribution systems, 118-120
ESSs, 120-121
IBSSs, 122
user segregation into logical networks, 355
WPA2, configuring
enterprise mode, 346-348
Local EAP, 348-350
personal mode, 344-345
WLC (wireless LAN controller), 193
activities, 196
centralized, 200
location, 197
traffic paths, 198-199
user mobility, 198
client states, 455
Configuration wizard
802.11, 252
administrative users, creating, 249
clock, 253
management ports, 250
mobility, 251
RF mobility, 251
SNMP parameters, 249
starting, 248
verifying, 253
wireless management, 250
WLAN, 252
converged location, 201
discovery, 270-271
LAPs, linking, 193
LAPs to central WLC, connecting, 195
platforms/capabilities, 205-206
selecting, 271
WMAN (wireless metropolitan-area network), 114
WMM (Wi-Fi Multimedia), 149
working groups, 45
Worldwide interoperability for Microwave Access (WiMAX) interference, 434
WPA (Wi-Fi Protected Access), 342-343
WPA2 (WPA Version 2), 342-343
enterprise mode, 346-348
Local EAP, 348-350
personal mode, 344-345
WPAN (wireless personal-area network), 114
WWAN (wireless wide-area network), 114

X – Z

Xbox interference, 435
Yagi antennas, 104-105
ZigBee Alliance, 434
ZigBee interference, 433