Bidirectional Forwarding Detection

First Published: January 14, 2008
Last Updated: January 14, 2008

This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol. BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable.

Finding Feature Information in This Module
Your Cisco IOS software release may not support all of the features documented in this module. To reach links to specific feature documentation in this module and to see a list of the releases in which each feature is supported, use the “Feature Information for Bidirectional Forwarding Detection” section on page 51.

Finding Support Information for Platforms and Cisco IOS and Catalyst OS Software Images
Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for Bidirectional Forwarding Detection, page 2
- Restrictions for Bidirectional Forwarding Detection, page 2
- Information About Bidirectional Forwarding Detection, page 3
- How to Configure Bidirectional Forwarding Detection, page 8
- Configuration Examples for Bidirectional Forwarding Detection, page 33
- Additional References, page 48
- Feature Information for Bidirectional Forwarding Detection, page 51
Prerequisites for Bidirectional Forwarding Detection

- Cisco Express Forwarding (CEF) and IP routing must be enabled on all participating routers.
- You must enable Cisco Parallel eXpress Forwarding (PXF) on the Cisco 10720 Internet router in order for BFD to operate properly. PXF is enabled by default and is generally not turned off.
- One of the IP routing protocols supported by BFD must be configured on the routers before BFD is deployed. You should implement fast convergence for the routing protocol that you are using. See the IP routing documentation for your version of Cisco IOS software for information on configuring fast convergence. See the “Restrictions for Bidirectional Forwarding Detection” section on page 2 for more information on BFD routing protocol support in Cisco IOS software.

Restrictions for Bidirectional Forwarding Detection

- For the current Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, 12.4(4)T, 12.0(32)S, 12.2(33)SRA, and 12.2(33)SRB, only asynchronous mode is supported. In asynchronous mode, either BFD peer can initiate a BFD session.
- For Cisco IOS Release 12.2(33)SRC, echo mode is the default.
- BFD is not supported on VLAN interfaces. In releases prior to Cisco IOS Release 12.2(33)SXH, the software incorrectly allowed configuration of BFD on VLAN interfaces. This problem has been resolved in Cisco IOS Release 12.2(33)SXH and configuration of BFD on VLAN interfaces is no longer allowed.
- The Cisco IOS software incorrectly allows configuration of BFD on virtual-template and dialer interfaces, however, BFD functionality on virtual-template and dialer interfaces is not supported. Avoid configuring BFD on virtual-template and dialer interfaces.
- For the current Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, 12.4(4)T, 12.0(32)S, 12.2(33)SRA, 12.2(33)SRB, and 12.2(33)SRC, BFD is supported only for IPv4 networks.
- For Cisco IOS Release 12.2(33)SRB, the Cisco implementation of BFD supports only the following routing protocols: Border Gateway Protocol (BGP), Enhanced Interior Gateway Routing Protocol (EIGRP), Intermediate System-to-Intermediate System (IS-IS), and Open Shortest Path First (OSPF). In Cisco IOS Release 12.2(33)SRC, BFD supports static routing.
- For Cisco IOS Release 12.2(33)SRA, the Cisco implementation of BFD supports only the following routing protocols: BGP, IS-IS, and OSPF.
- For Cisco IOS Release 12.4(4)T, the Cisco implementation of BFD supports only the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.
- For Cisco IOS Release 12.4(11)T, the Cisco implementation of BFD introduced support for the Hot Standby Router Protocol (HSRP). BFD support is not available for all platforms and interfaces. In Cisco IOS Release 12.4(11)T, this feature was introduced on Cisco 7200 series, Cisco 7600 series, and Cisco 12000 series routers.
- For Cisco IOS Releases 12.0(31)S and 12.0(32)S, the Cisco implementation of BFD supports only the following routing protocols: BGP, IS-IS, and OSPF.
- For Cisco IOS Release 12.2(18)SXE, the Cisco implementation of BFD supports only the following routing protocols: EIGRP, IS-IS, and OSPF.
- For Cisco IOS Release 12.2(18)SXH, the Cisco implementation of BFD supports the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.
Bidirectional Forwarding Detection

- BFD works only for directly connected neighbors. BFD neighbors must be no more than one IP hop away. Multihop configurations are not supported.
- BFD support is not available for all platforms and interfaces. To confirm BFD support for a specific platform or interface and obtain the most accurate platform and hardware restrictions, see the Cisco IOS software release notes for your software version.
- For the following Cisco IOS Releases, BFD on PortChannel is not a supported configuration: 12.2 SXH, 12.2 SXF, 12.2 SRC, and 12.2 SRB.
- On the Cisco 10720 Internet router, BFD is supported only on Fast Ethernet, Gigabit Ethernet, and RPR-IEEE interfaces. BFD is not supported on Spatial Reuse Protocol (SRP) and Packet-over-SONET (POS) interfaces.
- When you configure the BFD session parameters on a Cisco 10720 interface using the `bfd` command (in interface configuration mode), the minimum configurable time period supported for the `milliseconds` argument in both the `interval milliseconds` and `min_rx milliseconds` parameters is 50 milliseconds.
- A maximum of 100 BFD sessions is supported on the Cisco 10720 Internet router. When BFD tries to set up a connection between routing protocols and establish a 101th session between a Cisco 10720 Internet router and adjacent routers, the following error message is displayed:

 00:01:24: %OSPF-5-ADJCHG: Process 100, Nbr 10.0.0.0 on RPR-IEEE1/1 from LOADING to FULL, Loading Done
 00:01:24: %BFD-5-SESSIONLIMIT: Attempt to exceed session limit of 100 neighbors.

- The Cisco 10720 Internet router does not support the following BFD features:
 - Demand mode
 - Echo packets
 - BFD over IP Version 6
- On the Cisco 12000 series router, asymmetrical routing between peer devices may cause a BFD control packet to be received on a line card other than the line card that initiated the session. In this special case, the BFD session between the routing peers will not be established.
- A maximum 100 sessions per line card are supported for the distributed Cisco 12000 series Internet router. The minimum hello interval is 50 ms with up to three Max retries for a BFD control packet to be received from a remote system before a session with a neighbor is declared down.

Note

For the most accurate platform and hardware restrictions, see the Cisco IOS software release notes for your software version.

Information About Bidirectional Forwarding Detection

Before you configure BFD, you should become familiar with the information in the following sections:

- BFD Operation, page 4
- Benefits of Using BFD for Failure Detection, page 8
BFD Operation

BFD provides a low-overhead, short-duration method of detecting failures in the forwarding path between two adjacent routers, including the interfaces, data links, and forwarding planes. BFD is a detection protocol that you enable at the interface and routing protocol levels. Cisco supports the BFD asynchronous mode, which depends on the sending of BFD control packets between two systems to activate and maintain BFD neighbor sessions between routers. Therefore, in order for a BFD session to be created, you must configure BFD on both systems (or BFD peers). Once BFD has been enabled on the interfaces and at the router level for the appropriate routing protocols, a BFD session is created, BFD timers are negotiated, and the BFD peers will begin to send BFD control packets to each other at the negotiated interval.

BFD provides fast BFD peer failure detection times independently of all media types, encapsulations, topologies, and routing protocols BGP, EIGRP, IS-IS, and OSPF. By sending rapid failure detection notices to the routing protocols in the local router to initiate the routing table recalculation process, BFD contributes to greatly reduced overall network convergence time. Figure 1 shows a simple network with two routers running OSPF and BFD. When OSPF discovers a neighbor (1) it sends a request to the local BFD process to initiate a BFD neighbor session with the OSPF neighbor router (2). The BFD neighbor session with the OSPF neighbor router is established (3).

Figure 1 Establishing a BFD Neighbor Relationship

Figure 2 shows what happens when a failure occurs in the network (1). The BFD neighbor session with the OSPF neighbor router is torn down (2). BFD notifies the local OSPF process that the BFD neighbor is no longer reachable (3). The local OSPF process tears down the OSPF neighbor relationship (4). If an alternative path is available the routers will immediately start converging on it.
BFD Detection of Failures

Once a BFD session has been established and timer negations are complete, BFD peers send BFD control packets that act in the same manner as an IGP hello protocol to detect liveliness, except at a more accelerated rate. The following information should be noted:

- BFD is a forwarding path failure detection protocol. BFD detects a failure, but the routing protocol must take action to bypass a failed peer.
- Typically, BFD can be used at any protocol layer. However, the Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, and 12.4(4)T supports only Layer 3 clients, in particular, the BGP, EIGRP, IS-IS, and OSPF routing protocols. For Cisco IOS Release 12.2(33)SRC, BFD is supported for static routing.
- Cisco devices will use one BFD session for multiple client protocols in the Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, and 12.4(4)T. For example, if a network is running OSPF and EIGRP across the same link to the same peer, only one BFD session will be established, and BFD will share session information with both routing protocols.

BFD Version Interoperability

Cisco IOS Release 12.4(9)T supports BFD Version 1 as well as BFD Version 0. All BFD sessions come up as Version 1 by default and will be interoperable with Version 0. The system automatically performs BFD version detection, and BFD sessions between neighbors will run in the highest common BFD version between neighbors. For example, of one BFD neighbor is running BFD Version 0 and the other BFD neighbor is running Version 1, the session will run BFD Version 0. The output from the `show bfd neighbors [details]` command will verify which BFD version a BFD neighbor is running.

See the “Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default: Example” section on page 33 for an example of BFD version detection.

BFD Support on Cisco 12000 Routers

The Cisco 12000 series routers support distributed BFD to take advantage of its distributed Route Processor (RP) and line card (LC) architecture. The BFD tasks will be divided and assigned to the BFD process on the RP and LC as described in the following sections:

- BFD Process on the RP
- BFD Process on the LC
Bidirectional Forwarding Detection

BFD Process on the RP

Client Interaction
The BFD process on the RP will handle the interaction with clients, which create and delete BFD sessions.

Session Management for the BFD Process on the RP
The BFD RP process will primarily own all BFD sessions on the router. It will pass the session creation and deletion requests to the BFD processes on all LCs. BFD LC sessions will have no knowledge of sessions being added or deleted by the clients. Only the BFD RP process will send session addition and deletion commands to the BFD LC process.

Session Database Management
The BFD RP process will maintain a database of all the BFD sessions on the router. This database will contain only the minimum required information.

Process EXEC Commands
The BFD RP process services the BFD `show` commands.

BFD Process on the LC

Session Management for the BFD Process on the LC
The BFD LC process manages sessions, adds and deletes commands from the BFD RP process, and creates and deletes new sessions based on the commands. In the event of transmit failure, receive failure, or session-down detection, the LC BFD instance will immediately notify the BFD RP process. It will also update transmit and receive counters. The BFD session is maintained completely on the LC. BFD control packets are received and processed, as well as sent, from the LC itself.

Session Database Management
The BFD LC process maintains a database of all the BFD sessions hosted on the LC.

Receive and Transmit
The BFD LC process is responsible for transmitting and receiving BFD packets for the sessions on the LC.

BFD Session Limits
In Cisco IOS Release 12.2(33)SRC, the number of BFD sessions that can be created has been increased to 128.

BFD Support for Non-Broadcast Media Interfaces
In Cisco IOS Release 12.2(33)SRC, the BFD feature is supported on non-broadcast media interfaces including ATM, POS, serial, and VLAN interfaces. BFD support extends to ATM, FR, POS, and serial subinterfaces as well.
The `bfd interval` command must be configured on the interface to initiate BFD monitoring.
BFD Support for VPN Routing and Forwarding Interfaces

The BFD feature is extended in Cisco IOS Release 12.2(33)SRC to be VPN Routing and Forwarding (VRF) aware to provide fast detection of routing protocol failures between provider edge (PE) and customer edge (CE) routers.

BFD Support for Nonstop Forwarding with Stateful Switchover

Typically, when a networking device restarts, all routing peers of that device detect that the device went down and then came back up. This transition results in a routing flap, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. Nonstop forwarding (NSF) helps to suppress routing flaps in devices that are enabled with stateful switchover (SSO), thereby reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored after a switchover. With NSF, peer networking devices do not experience routing flaps. Data traffic is forwarded through intelligent line cards or dual forwarding processors while the standby RP assumes control from the failed active RP during a switchover. The ability of line cards and forwarding processors to remain up through a switchover and to be kept current with the Forwarding Information Base (FIB) on the active RP is key to NSF operation.

In devices that support dual RPs, SSO establishes one of the RPs as the active processor while the other RP is designated as the standby processor, and then synchronizes information between them. A switchover from the active to the standby processor occurs when the active RP fails, when it is removed from the networking device, or when it is manually taken down for maintenance.

In Cisco IOS Release 12.2(33)SRC, BFD sessions are placed in an “Admin Down” state during a planned switchover. The BFD configuration is synched from the active to standby processor, and all BFD clients will re-register with the BFD process on the standby processor.

BFD Support for Static Routing

Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate RIB.

For a BFD session to be successfully established, BFD must be configured on the interface on the peer and there must be a BFD client registered on the peer for the address of the BFD neighbor. When an interface is used by dynamic routing protocols, the latter requirement is usually met by configuring the routing protocol instances on each neighbor for BFD. When an interface is used exclusively for static routing, this requirement must be met by configuring static routes on the peers.

If a BFD configuration is removed from the remote peer while the BFD session is in the up state, the updated state of the BFD session is not signaled to IPv4 static. This will cause the static route to remain in the RIB. The only workaround is to remove the IPv4 static BFD neighbor configuration so that the static route no longer tracks BFD session state. Also, if you change the encapsulation type on a serial interface to one that is unsupported by BFD, BFD will be in a down state on that interface. The workaround is to shut down the interface, change to a supported encapsulation type, and then reconfigure BFD.
Benefits of Using BFD for Failure Detection

When you deploy any feature, it is important to consider all the alternatives and be aware of any trade-offs being made.

The closest alternative to BFD in conventional EIGRP, IS-IS, and OSPF deployments is the use of modified failure detection mechanisms for EIGRP, IS-IS, and OSPF routing protocols.

If you set EIGRP hello and hold timers to their absolute minimums, the failure detection rate for EIGRP falls to within a one- to two-second range.

If you use fast hellos for either IS-IS or OSPF, these Interior Gateway Protocol (IGP) protocols reduce their failure detection mechanisms to a minimum of one second.

There are several advantages to implementing BFD over reduced timer mechanisms for routing protocols:

- Although reducing the EIGRP, IS-IS, and OSPF timers can result in minimum detection timer of one to two seconds, BFD can provide failure detection in less than one second.
- Because BFD is not tied to any particular routing protocol, it can be used as a generic and consistent failure detection mechanism for EIGRP, IS-IS, and OSPF.
- Because some parts of BFD can be distributed to the data plane, it can be less CPU-intensive than the reduced EIGRP, IS-IS, and OSPF timers, which exist wholly at the control plane.

How to Configure Bidirectional Forwarding Detection

You start a BFD process by configuring BFD on the interface. When the BFD process is started, no entries are created in the adjacency database; in other words, no BFD control packets are sent or received. BFD echo mode, which is supported in BFD Version 1 for Cisco IOS Release 12.4(9)T, is enabled by default. BFD echo packets are sent and received in addition to BFD control packets. The adjacency creation takes place once you have configured BFD support for the applicable routing protocols. This section contains the following procedures:

- Configuring BFD Session Parameters on the Interface, page 8 (required)
- Configuring BFD Support for Dynamic Routing Protocols, page 9 (required)
- Configuring BFD Support for Static Routing, page 25 (optional)
- Configuring BFD Echo Mode, page 27 (optional)
- Monitoring and Troubleshooting BFD, page 29 (optional)

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. `bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>- Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface FastEthernet 6/0</td>
</tr>
<tr>
<td>Enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# bfd interval 50 min_rx 50 multiplier 5</td>
</tr>
<tr>
<td>Enables BFD on the interface.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring BFD Support for Dynamic Routing Protocols

You can enable BFD support for dynamic routing protocols at the router level to enable BFD support globally for all interfaces or you can configure BFD on a per-interface basis at the interface level.

For Cisco IOS Release 12.2(18)SXE, you may configure BFD support for one or more of the following routing protocols: EIGRP, IS-IS, and OSPF.

For Cisco IOS Releases 12.2(33)SRA, you may configure BFD support for one or more of the following routing protocols: EIGRP, IS-IS, and OSPF.

For Cisco IOS Releases 12.2(33)SRB, you may configure BFD support for one or more of the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.

For Cisco IOS Release 12.2(33)SRC, you may configure BFD support for static routing.

For Cisco IOS Releases 12.0(31)S and 12.4(4)T, you may configure BFD support for one or more of the following routing protocols: BGP, IS-IS, and OSPF.

For Cisco IOS Release 12.0(32)S, for the Cisco 10720 platform, you may configure BFD for one or more of the following routing protocols: BGP, IS-IS, and OSPF.

For Cisco IOS Release 12.4(11)T, BFD support for HSRP was introduced.
This section describes the following procedures:

- Configuring BFD Support for BGP, page 10 (optional)
- Configuring BFD Support for EIGRP, page 12 (optional)
- Configuring BFD Support for IS-IS, page 14 (optional)
- Configuring BFD Support for OSPF, page 19 (optional)
- Configuring BFD Support for HSRP, page 23 (optional)

Configuring BFD Support for BGP

This section describes the procedure for configuring BFD support for BGP, so that BGP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD.

Prerequisites

BGP must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router bgp as-tag`
4. `neighbor ip-address fall-over bfd`
5. `end`
6. `show bfd neighbors [details]`
7. `show ip bgp neighbor`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router bgp as-tag</td>
<td>Specifies a BGP process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# router bgp as-tag</td>
<td></td>
</tr>
<tr>
<td>Step 4 neighbor ip-address fall-over bfd</td>
<td>Enables BFD support for fallover.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# neighbor 172.16.10.2 fall-over bfd</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits router configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show bfd neighbors [details]</td>
<td>(Optional) Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show bfd neighbors detail</td>
<td></td>
</tr>
<tr>
<td>Step 7 show ip bgp neighbor</td>
<td>(Optional) Displays information about BGP and TCP connections to neighbors.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip bgp neighbor</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for EIGRP, page 12
- Configuring BFD Support for IS-IS, page 14
Configuring BFD Support for EIGRP

This section describes the procedure for configuring BFD support for EIGRP, so that EIGRP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. There are two methods for enabling BFD support for EIGRP:

- You can enable BFD for all of the interfaces for which EIGRP is routing by using the `bfd all/interfaces` command in router configuration mode.
- You can enable BFD for a subset of the interfaces for which EIGRP is routing by using the `bfd interface type number` command in router configuration mode.

Prerequisites

EIGRP must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

Restrictions

BFD for EIGRP is not supported on the Cisco 12000 series routers for Cisco IOS Releases 12.0(31)S, 12.0(32)S, 12.4(4)T, and 12.2(33)SRA.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp as-number`
4. `log-adjacency-changes [detail]`
5. `bfd all/interfaces`
 or
 `bfd interface type number`
6. `end`
7. `show bfd neighbors [details]`
8. `show ip eigrp interfaces [type number] [as-number] [detail]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Enables privileged EXEC mode.

• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>router eigrp as-number
Configures the EIGRP routing process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp 123</td>
</tr>
<tr>
<td>Step 4</td>
<td>log-adjacency-changes [detail]
Configures the router to send a system logging (syslog) message when an EIGRP neighbor goes up or down.

• Entering the <code>log-adjacency-changes</code> command allows you to see the “BFD node down” syslog message whenever a neighbor is down due to receiving a BFD failure detection notification.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# log-adjacency-changes</td>
</tr>
<tr>
<td>Step 5</td>
<td>bfd all-interfaces
Enables BFD globally on all interfaces associated with the EIGRP routing process.

or

bfd interface type number
Enables BFD on a per-interface basis for one or more interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# bfd all-interfaces
or
Router(config-router)# bfd interface FastEthernet 6/0</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Exits router configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router) end</td>
</tr>
</tbody>
</table>
How to Configure Bidirectional Forwarding Detection

Configuring BFD Support for IS-IS

This section describes the procedures for configuring BFD support for IS-IS, so that IS-IS is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. There are two methods for enabling BFD support for IS-IS:

- You can enable BFD for all of the interfaces on which IS-IS is supporting IPv4 routing by using the `bfd all-interfaces` command in router configuration mode. You can then disable BFD for one or more of those interfaces using the `isis bfd disable` command in interface configuration mode.
- You can enable BFD for a subset of the interfaces for which IS-IS is routing by using the `isis bfd` command in interface configuration mode.

To configure BFD support for IS-IS, perform the steps in one of the following sections:

- Configuring BFD Support for IS-IS for All Interfaces, page 15
- Configuring BFD Support for IS-IS for One or More Interfaces, page 17

Prerequisites

IS-IS must be running on all participating routers.

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 10
- Configuring BFD Support for IS-IS, page 14
- Configuring BFD Support for OSPF, page 19
- Configuring BFD Support for HSRP, page 23

Command or Action	Purpose
Step 7 `show bfd neighbors [details]` | (Optional) Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.

Example:

Router# show bfd neighbors details

Note In order to see the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Step 8 `show ip eigrp interfaces [type number] [as-number] [detail]` | (Optional) Displays the interfaces for which BFD support for EIGRP has been enabled.

Example:

Router# show ip eigrp interfaces detail
The baseline parameters for BFD sessions on the interfaces that you want to run BFD sessions to BFD neighbors over must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

Configuring BFD Support for IS-IS for All Interfaces

To configure BFD on all IS-IS interfaces that support IPv4 routing, perform the steps in this section.

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis [area-tag]
4. bfd all-interfaces
5. exit
6. interface type number
7. ip router isis [tag]
8. isis bfd [disable]
9. end
10. show bfd neighbors [details]
11. show clns interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router isis area-tag</td>
<td>Specifies an IS-IS process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router isis tag1</td>
<td></td>
</tr>
<tr>
<td>Step 4 bfd all-interfaces</td>
<td>Enables BFD globally on all interfaces associated with the IS-IS routing process.</td>
</tr>
<tr>
<td>Example: Router(config-router)# bfd all-interfaces</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 5 | exit
Example:
Router(config-router)# exit
(Optional) Returns the router to global configuration mode.

Step 6 | interface type number
Example:
Router(config)# interface fastethernet 6/0
(Optional) Enters interface configuration mode.

Step 7 | ip router isis [tag]
Example:
Router(config-if)# ip router isis tag1
(Optional) Enables support for IPv4 routing on the interface.

Step 8 | isis bfd [disable]
Example:
Router(config-if)# isis bfd
(Optional) Enables or disables BFD on a per-interface basis for one or more interfaces associated with the IS-IS routing process.
Note You should use the disable keyword only if you enabled BFD on all of the interfaces that IS-IS is associated with using the bfd all-interfaces command in router configuration mode.

Step 9 | end
Example:
Router(config-if)# end
Exits interface configuration mode and returns the router to privileged EXEC mode.

Step 10 | show bfd neighbors [details]
Example:
Router# show bfd neighbors details
(Optional) Displays information that can be used to verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.
Note In order to display the full output of the show bfd neighbors details command on a Cisco 12000 series router, you must enter the command on the line card. Enter the attach slot-number command to establish a CLI session with a line card. The registered protocols are not shown in the output of the show bfd neighbors details command when it is entered on a line card.

Step 11 | show clns interface
Example:
Router# show clns interface
(Optional) Displays information that can be used to verify if BFD for IS-IS has been enabled for a specific IS-IS interface that is associated.

What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure only for a specific subset of interfaces, perform the tasks in the “Configuring BFD Support for IS-IS for One or More Interfaces” section on page 17.
Configuring BFD Support for IS-IS for One or More Interfaces

To configure BFD for only one or more IS-IS interfaces, perform the steps in this section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip router isis [tag]`
5. `isis bfd [disable]`
6. `end`
7. `show bfd neighbors [details]`
8. `show clns interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface type number</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet 6/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>ip router isis [tag]</code></td>
<td>Enables support for IPv4 routing on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip router isis tag1</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>isis bfd [disable]</code></td>
<td>Enables or disables BFD on a per-interface basis for one or more interfaces associated with the IS-IS routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# isis bfd</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>end</code></td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 7
`show bfd neighbors [details]`

Example:
```
Router# show bfd neighbors details
```

(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.

Note In order to display the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Step 8
`show clns interface`

Example:
```
Router# show clns interface
```

(Optimal) Displays information that can help verify if BFD for IS-IS has been enabled for a specific IS-IS interface that is associated.
What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and maintaining BFD. If you want to configure BFD support for another routing protocol, see one of the following sections:

- Configuring BFD Support for BGP, page 10
- Configuring BFD Support for EIGRP, page 12
- Configuring BFD Support for OSPF, page 19
- Configuring BFD Support for HSRP, page 23

Configuring BFD Support for OSPF

This section describes the procedures for configuring BFD support for OSPF, so that OSPF is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. You can either configure BFD support for OSPF globally on all interfaces or configure it selectively on one or more interfaces.

There are two methods for enabling BFD support for OSPF:

- You can enable BFD for all of the interfaces for which OSPF is routing by using the `bfd all-interfaces` command in router configuration mode. You can disable BFD support on individual interfaces using the `ip ospf bfd [disable]` command in interface configuration mode.
- You can enable BFD for a subset of the interfaces for which OSPF is routing by using the `ip ospf bfd` command in interface configuration mode.

See the following sections for tasks for configuring BFD support for OSPF:

- Configuring BFD Support for OSPF for All Interfaces, page 19 (optional)
- Configuring BFD Support for OSPF for One or More Interfaces, page 21 (optional)

Configuring BFD Support for OSPF for All Interfaces

To configure BFD for all OSPF interfaces, perform the steps in this section.

If you do not want to configure BFD on all OSPF interfaces and would rather configure BFD support specifically for one or more interfaces, see the “Configuring BFD Support for OSPF for One or More Interfaces” section on page 21.

Prerequisites

OSPF must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router ospf process-id`
4. `bfd all-interfaces`
5. `exit`
6. `interface type number`
7. `ip ospf bfd [disable]`
8. `end`
9. `show bfd neighbors [details]`
10. `show ip ospf`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router ospf process-id</td>
<td>Specifies an OSPF process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router ospf 4</td>
<td></td>
</tr>
<tr>
<td>Step 4 bfd all-interfaces</td>
<td>Enables BFD globally on all interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example: Router(config-router)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>(Optional) Returns the router to global configuration mode. Enter this command only if you want to perform Step 7 to disable BFD for one or more interfaces.</td>
</tr>
<tr>
<td>Example: Router(config-router)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface type number</td>
<td>(Optional) Enters interface configuration mode. Enter this command only if you want to perform Step 7 to disable BFD for one or more interfaces.</td>
</tr>
<tr>
<td>Example: Router(config)# interface fastethernet 6/0</td>
<td></td>
</tr>
<tr>
<td>Step 7 ip ospf bfd [disable]</td>
<td>(Optional) Disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip ospf bfd disable</td>
<td>Note You should use the disable keyword only if you enabled BFD on all of the interfaces that OSPF is associated with using the bfd all-interfaces command in router configuration mode.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 10
- Configuring BFD Support for EIGRP, page 12
- Configuring BFD Support for IS-IS, page 14
- Configuring BFD Support for HSRP, page 23

Configuring BFD Support for OSPF for One or More Interfaces

To configure BFD on one or more OSPF interfaces, perform the steps in this section.

Prerequisites

OSPF must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip ospf bfd [disable]
5. end
6. show bfd neighbors [details]
7. show ip ospf
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet 6/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip ospf bfd [disable]</td>
<td>Enables or disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td>You should use the disable keyword only if you enabled BFD on all of the interfaces that OSPF is associated with using the bfd all-interfaces command in router configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# ip ospf bfd</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show bfd neighbors [details]</td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Example:</td>
<td>In order to display the full output of the show bfd neighbors details command on a Cisco 12000 series router, you must enter the command on the line card. Enter the attach slot-number command to establish a CLI session with a line card. The registered protocols are not shown in the output of the show bfd neighbors details command when it is entered on a line card.</td>
</tr>
<tr>
<td>Router# show bfd neighbors details</td>
<td></td>
</tr>
<tr>
<td>Step 7 show ip ospf</td>
<td>(Optional) Displays information that can help verify if BFD support for OSPF has been enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip ospf</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 10
- Configuring BFD Support for EIGRP, page 12
- Configuring BFD Support for IS-IS, page 14
- Configuring BFD Support for HSRP, page 23

Configuring BFD Support for HSRP

Perform this task to enable BFD support for Hot Standby Router Protocol (HSRP.) Repeat the steps in this procedure for each interface over which you want to run BFD sessions to HSRP peers.

HSRP supports BFD by default. If HSRP support for BFD has been manually disabled, you can reenable it at the router level to enable BFD support globally for all interfaces or on a per-interface basis at the interface level.

Prerequisites

- HSRP must be running on all participating routers.
- Cisco Express Forwarding (CEF) must be enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip cef [distributed]
4. interface type number
5. ip address ip-address mask
6. standby [group-number] ip [ip-address [secondary]]
7. standby bfd
8. exit
9. standby bfd all-interfaces
10. exit
11. show standby [neighbors]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip cef [distributed]</td>
<td>Enables CEF or distributed CEF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip cef</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface FastEthernet 6/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip address ip-address mask</td>
<td>Configures an IP address for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.11 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 6 standby [group-number] ip [ip-address secondary]</td>
<td>Activates HSRP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# standby 1 ip 10.0.0.11</td>
<td></td>
</tr>
<tr>
<td>Step 7 standby bfd</td>
<td>(Optional) Enables HSRP support for BFD on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# standby bfd</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 standby bfd all-interfaces</td>
<td>(Optional) Enables HSRP support for BFD on all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# standby bfd all-interfaces</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

See the “Monitoring and Troubleshooting BFD” section on page 29 for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections:

- Configuring BFD Support for BGP, page 10
- Configuring BFD Support for EIGRP, page 12
- Configuring BFD Support for IS-IS, page 14
- Configuring BFD Support for OSPF, page 19

Configuring BFD Support for Static Routing

Perform this task to configure BFD support for static routing.

Repeat the steps in this procedure on each BFD neighbor. For more information, see the “Configuring BFD Support for Static Routing: Example” section on page 47.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip address ip-address mask`
5. `bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`
6. `ip route static bfd [vrf vrf-name] interface-type interface-number gateway`
7. `ip route prefix mask [ip-address | interface-type interface-number [ip-address]] [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]`
8. `end`
9. `show ip static route`

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11 show standby neighbors</td>
<td>(Optional) Displays information about HSRP support for BFD.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show standby neighbors</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config)# exit

Exits global configuration mode.

Example:

Router# show standby neighbors

(Optional) Displays information about HSRP support for BFD.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

enable

Example:

Router> enable

Enables privileged EXEC mode.

- Enter your password if prompted.

| **Step 2**

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

| **Step 3**

interface type number

Example:

Router(config)# interface serial 2/0

Configures an interface and enters interface configuration mode.

| **Step 4**

ip address ip-address mask

Example:

Router(config-if)# ip address 10.201.201.1 255.255.255.0

Configures an IP address for the interface.

| **Step 5**

bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier

Example:

Router(config-if)# bfd interval 500 min_rx 500 multiplier 5

Enables BFD on the interface.

| **Step 6**

ip route static bfd [vrf vrf-name] interface-type interface-number gateway

Example:

Router(config-if)# ip route static bfd Serial 2/0 10.201.201.2

Specifies a static route BFD neighbor.

- The `interface-type interface-number` and `gateway` arguments are required because BFD support exists only for directly connected neighbors.

| **Step 7**

ip route prefix mask (ip-address | interface-type interface-number [ip-address]) [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]

Example:

Router(config-if)# ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2

Specifies a static route BFD neighbor.

| **Step 8**

end

Example:

Router(config-if)# end

Exits interface configuration mode and returns to privileged EXEC mode.

| **Step 9**

show ip static route

Example:

Router# show ip static route

(Optional) Displays the static process local Routing Information Base (RIB) information.
Configuring BFD Echo Mode

BFD echo mode is enabled by default, but you can disable it such that it can run independently in each direction. Before you configure echo mode, you should be familiar with the following concepts:

- **BFD Echo Mode, page 27**
- **Prerequisites, page 27**
- **Restrictions, page 27**

BFD Echo Mode

Benefits of Running BFD Echo Mode

BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process, therefore the number of BFD control packets that are sent out between two BFD neighbors is reduced. And since the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.

Echo Mode Without Asymmetry

Echo mode is described as without asymmetry when it is running on both sides (both BFD neighbors are running echo mode).

Prerequisites

BFD must be running on all participating routers.

Before using BFD echo mode, you must disable the sending of Internet Control Message Protocol (ICMP) redirect messages by entering the `no ip redirects` command, in order to avoid high CPU utilization.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the “Configuring BFD Session Parameters on the Interface” section on page 8 for more information.

Restrictions

BFD echo mode which is supported in BFD Version 1, is available only in Cisco IOS Releases 12.4(9)T and 12.2(33)SRA.

This section contains the following configuration tasks for BFD echo mode:

- **Configuring the BFD Slow Timer, page 27**
- **Disabling BFD Echo Mode Without Asymmetry, page 28**

Configuring the BFD Slow Timer

The steps in this procedure show how to change the value of the BFD slow timer. Repeat the steps in this procedure for each BFD router.
SUMMARY STEPS

1. enable
2. configure terminal
3. bfd slow-timer milliseconds
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bfd slow-timer milliseconds</td>
<td>Configures the BFD slow timer.</td>
</tr>
<tr>
<td>Example: Router(config)# bfd slow-timer 12000</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Disabling BFD Echo Mode Without Asymmetry

The steps in this procedure show how to disable BFD echo mode without asymmetry —no echo packets will be sent by the router, and the router will not forward BFD echo packets that are received from any neighbor routers.

Repeat the steps in this procedure for each BFD router.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd echo
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bfd echo</td>
<td>Enables BFD echo mode.</td>
</tr>
<tr>
<td>Example: bfd echo</td>
<td>Use the no form to disable BFD echo mode.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Monitoring and Troubleshooting BFD

This section describes how to retrieve BFD information for maintenance and troubleshooting. The commands in these tasks can be entered as needed, in any order desired.

For more information about BFD session initiation and failure, refer to the “BFD Operation” section on page 4.

This section contains information for monitoring and troubleshooting BFD for the following Cisco platforms:

- Monitoring and Troubleshooting BFD for Cisco 7600 Series Routers, page 29
- Monitoring and Troubleshooting BFD for Cisco 12000 Series Routers, page 30
- Monitoring and Troubleshooting BFD for Cisco 10720 Internet Routers, page 32

Monitoring and Troubleshooting BFD for Cisco 7600 Series Routers

To monitor or troubleshoot BFD on Cisco 7600 series routers, perform one or more of the steps in this section.

SUMMARY STEPS

1. enable
2. show bfd neighbors [details]
3. debug bfd [packet | event]
How to Configure Bidirectional Forwarding Detection

To monitor or troubleshoot BFD on Cisco 12000 series routers, perform one or more of the steps in this section.

SUMMARY STEPS

1. `enable`
2. `attach slot-number`
3. `show bfd neighbors [details]`
4. `show monitor event-trace bfd [all]`
5. `debug bfd event`
6. `debug bfd packet`
7. `debug bfd ipc-error`
8. `debug bfd ipc-event`
9. `debug bfd oir-error`
10. `debug bfd oir-event`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** Router> enable | |
| **Step 2** attach slot-number | Connects you to a specific line card for the purpose of executing monitoring and maintenance commands on the specified line card. Slot numbers range from 0 to 11 for the Cisco 12012 and from 0 to 7 for the Cisco 12008.
- If the slot number is omitted, you are prompted for the slot number. |
| **Example:** Router# attach 6 | |
| **Note** In order to display the full output of the show bfd neighbors details command on a Cisco 12000 series router, you must enter the command on the line card. Enter the attach slot-number command to establish a CLI session with a line card. |
| **Step 3** show bfd neighbors [details] | Displays the BFD adjacency database.
- The details keyword shows all BFD protocol parameters and timers per neighbor. |
| **Example:** Router# show bfd neighbors details | |
| **Note** The registered protocols are not shown in the output of the show bfd neighbors details when it is entered on a line card. |
| **Step 4** show monitor event-trace bfd [all] | Displays logged messages for important events in “recent past” on BFD activities that occur on the line cards. This is a rolling buffer based log, so “distant past” events would be lost. Depending on traffic and frequency of events, these events could be seen over a variable time window. |
| **Example:** Router# show monitor event-trace bfd all | |
| **Step 5** debug bfd event | Displays debugging information about BFD state transitions. |
| **Example:** Router# debug bfd event | |
| **Step 6** debug bfd packet | Displays debugging information about BFD control packets. |
| **Example:** Router# debug bfd packet | |
| **Step 7** debug bfd ipc-error | Displays debugging information with IPC errors on the RP and LC. |
| **Example:** Router# debug bfd ipc-error | |
| **Step 8** debug bfd ipc-event | Displays debugging information with IPC events on the RP and LC. |
| **Example:** Router# debug bfd ipc-event | |
To monitor or troubleshoot BFD on Cisco 10720 Internet routers, perform one or more of the steps in this section.

SUMMARY STEPS

1. enable
2. show bfd neighbors [details]
3. debug bfd event
4. debug bfd packet

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 show bfd neighbors [details]</td>
<td>(Optional) Displays the BFD adjacency database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The details keyword will show all BFD protocol parameters and timers per neighbor.</td>
</tr>
<tr>
<td></td>
<td>Note The registered protocols are not shown in the output of the show bfd neighbors details when it is entered on a line card.</td>
</tr>
<tr>
<td>Step 3 debug bfd event</td>
<td>(Optional) Displays debugging information about BFD state transitions.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4 debug bfd packet</td>
<td>(Optional) Displays debugging information about BFD control packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Bidirectional Forwarding Detection

This section provides the following configuration examples:

- Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default: Example, page 33
- Configuring BFD in an OSPF Network: Example, page 38
- Configuring BFD in a BGP Network: Example, page 42
- Configuring BFD in an IS-IS Network: Example, page 44
- Configuring BFD in an HSRP Network: Example, page 46
- Configuring BFD Support for Static Routing: Example, page 47

Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default: Example

12.4(9)T Example

In the following example, the EIGRP network contains RouterA, RouterB, and RouterC. Fast Ethernet interface 0/1 on RouterA is connected to the same network as FastEthernet interface 0/1 on Router B. Fast Ethernet interface 0/1 on RouterB is connected to the same network as Fast Ethernet interface 0/1 on RouterC.

RouterA and RouterB are running BFD Version 1 which supports echo mode, and RouterC is running BFD Version 0, which does not support echo mode. The BFD sessions between RouterC and its BFD neighbors are said to be running echo mode with asymmetry because echo mode will run on the forwarding path for RouteA and RouterB, and their echo packets will return along the same path to for BFD sessions and failure detections, while their BFD neighbor RouterC runs BFD Version 0 and uses BFD controls packets for BFD sessions and failure detections.

Figure 3 EIGRP Network with Three BFD Neighbors Running V1 or V0

Figure 3 shows a large EIGRP network with several routers, three of which are BFD neighbors that are running EIGRP as their routing protocol.

The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for RouterA

interface FastEthernet0/0
no shutdown
ip address 10.4.9.14 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 172.16.1.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
 network 172.16.0.0
 bfd all-interfaces
 auto-summary
 !
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
no ip http server
!
logging alarm informational
!
control-plane
!
line con 0
 exec-timeout 30 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login
!
!
end

Configuration for RouterB
!
interface FastEthernet0/0
 no shutdown
 ip address 10.4.9.34 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet0/1
 ip address 172.16.1.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
 no shutdown
duplex auto
speed auto
!
router eigrp 11
 network 172.16.0.0
 bfd all-interfaces
 auto-summary
 !
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
Bidirectional Forwarding Detection

Configuration Examples for Bidirectional Forwarding Detection

ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
no ip http server
!
logging alarm informational
!
control-plane
!
line con 0
 exec-timeout 30 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login
!
!
end

Configuration for RouterC

!
!
interface FastEthernet0/0
 no shutdown
 ip address 10.4.9.34 255.255.255.0
duplex auto
 speed auto
!
interface FastEthernet0/1
 ip address 172.16.1.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
 no shutdown
 duplex auto
 speed auto
!
router eigrp 11
 network 172.16.0.0
 bfd all-interfaces
 auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
o ip http server
!
logging alarm informational
!
control-plane
!
line con 0
 exec-timeout 30 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login
!
!
end
The output from the `show bfd neighbors details` command on Router B verifies that BFD sessions have been created and that EIGRP is registered for BFD support. As previously noted, Router A runs BFD Version 1, therefore echo mode is running, and Router C runs BFD Version 0, so echo mode does not run. The relevant command output is shown in bold in the output.

Router A

Router A:

RouterA# show bfd neighbors details

```
OurAddr  NeighAddr  LD/RD  RH/RS  Holdown(mult)  State  Int
172.16.1.1  172.16.1.3  5/3  1(RH)  150 (3 )  Up  Fa0/1
```

Session state is UP and not using echo function.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(1364284)
Rx Count: 1351813, Rx Interval (ms) min/max/avg: 28/64/49 last: 4 ms ago
Tx Count: 1364289, Tx Interval (ms) min/max/avg: 40/68/49 last: 32 ms ago
Registered protocols: EIGRP
Uptime: 18:42:45

Last packet: Version: 0
- Diagnostic: 0
 I Hear You bit: 1
 Demand bit: 0
 Poll bit: 0
 Multiplier: 3
 Length: 24
 My Discr.: 3
 Your Discr.: 5
 Min tx interval: 50000
 Min rx interval: 50000
 Min Echo interval: 0

OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.1 6/1 Up 0 (3) Up Fa0/1
```

Session state is UP and using echo function with 50 ms interval.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(317)
Rx Count: 305, Rx Interval (ms) min/max/avg: 1/1016/887 last: 448 ms ago
Tx Count: 319, Tx Interval (ms) min/max/avg: 1/1008/880 last: 532 ms ago
Registered protocols: EIGRP
Uptime: 00:04:30

Last packet: Version: 1
- Diagnostic: 0
  State bit: Up
  Demand bit: 0
  Poll bit: 0
  Final bit: 0
  Multiplier: 3
  Length: 24
  My Discr.: 1
  Your Discr.: 6
  Min tx interval: 1000000
  Min rx interval: 1000000
  Min Echo interval: 50000

The output from the `show bfd neighbors details` command on Router B verifies that BFD sessions have been created and that EIGRP is registered for BFD support. As previously noted, Router A runs BFD Version 1, therefore echo mode is running, and Router C runs BFD Version 0, so echo mode does not run. The relevant command output is shown in bold in the output.

Router B

Router B:

Router B:

Router B# show bfd neighbors details

```
OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int
172.16.1.2 172.16.1.1 1/6 Up 0 (3) Up Fa0/1
```

Session state is UP and using echo function with 50 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00

Last packet: Version: 1
- Diagnostic: 0
- Demand bit: 0
Poll bit: 0
- Final bit: 0
Multiplier: 3
- Length: 24
My Discr.: 6
- Your Discr.: 1
Min tx interval: 1000000
- Min rx interval: 1000000
Min Echo interval: 50000

OurAddr  NeighAddr  LD/RD  RH/RS  Holdown(mult)  State  Int
172.16.1.2  172.16.1.3  3/6   1(RH)   118  (3 )   Up   Fa0/1

Session state is UP and not using echo function.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(5735)
Rx Count: 5731, Rx Interval (ms) min/max/avg: 32/72/49 last: 32 ms ago
Tx Count: 5740, Tx Interval (ms) min/max/avg: 40/64/50 last: 44 ms ago
Registered protocols: EIGRP
Uptime: 00:04:45

Last packet: Version: 0
- Diagnostic: 0
I Hear You bit: 1
- Demand bit: 0
Poll bit: 0
- Final bit: 0
Multiplier: 3
- Length: 24
My Discr.: 6
- Your Discr.: 3
Min tx interval: 50000
- Min rx interval: 50000
Min Echo interval: 0

Figure 4  Fast Ethernet interface 0/1 Failure

Figure 4 shows that Fast Ethernet interface 0/1 on RouterB has failed. Without this neighbor, there is no way to reach the network beyond RouterB.

When Fast Ethernet interface 0/1 on RouterB fails, BFD will no longer detect Router B as a BFD neighbor for RouterA or for RouterC. In this example, Fast Ethernet interface 0/1 has been administratively shut down on RouterB.
The following output from the `show bfd neighbors` command on RouterA now shows only one BFD neighbor for RouterA in the EIGRP network. The relevant command output is shown in bold in the output.

```
RouterA# show bfd neighbors
```

```
 OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
 172.16.1.1 172.16.1.3 5/3 1(RH) 134 (3) Up Fa0/1
```

The following output from the `show bfd neighbors` command on RouterC also now shows only one BFD neighbor for RouterC in the EIGRP network. The relevant command output is shown in bold in the output.

```
RouterC# show bfd neighbors
```

```
 OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
 172.16.1.3 172.16.1.1 3/5 1 114 (3) Up Fa0/1
```

### Configuring BFD in an OSPF Network: Example

#### 12.0(31)S

In the following example, the simple OSPF network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 in Router B. The example, starting in global configuration mode, shows the configuration of BFD. For both Routers A and B, BFD is configured globally for all interfaces associated with the OSPF process.

**Configuration for Router A**

```
configuration A

interface FastEthernet 0/1
 ip address 172.16.10.1 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
!
interface FastEthernet 3/0.1
 ip address 172.17.0.1 255.255.255.0
!
router ospf 123
 log-adjacency-changes detail
 network 172.16.0.0 0.0.0.255 area 0
 network 172.18.0.0 0.0.0.255 area 0
 bfd all-interfaces
```

**Configuration for Router B**

```
configuration B

interface FastEthernet 6/0
 ip address 172.16.10.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
!
interface FastEthernet 6/1
 ip address 172.18.0.1 255.255.255.0
!
router ospf 123
 log-adjacency-changes detail
 network 172.16.0.0 0.0.0.255 area 0
 network 172.18.0.0 0.0.0.255 area 0
 bfd all-interfaces
```
The output from the `show bfd neighbors details` command verifies that a BFD session has been created and that OSPF is registered for BFD support. The relevant command output is shown in bold in the output.

Router A

```
RouterA# show bfd neighbors details

OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.1 172.16.10.2 1/2 1 532 (3) Up Fa0/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(22), Hello (hits): 200(8453)
Rx Count: 49824, Rx Interval (ms) min/max/avg: 208/440/332 last: 68 ms ago
Tx Count: 84488, Tx Interval (ms) min/max/avg: 152/248/196 last: 192 ms ago
Registered protocols: OSPF
Uptime: 02:18:49
Last packet: Version: 0 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 0 - Length: 24
 My Discr.: 2 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0
```

The output from the `show bfd neighbors details` command from the line card on Router B verifies that a BFD session has been created:

```
Router B

```

```
Note

Router B is a Cisco 12000 series router. The `show bfd neighbors details` command must be run on the line cards. The `show bfd neighbors details` command will not display the registered protocols when it is entered on a line card.

```

Router B

```

```
RouterB# attach 6

Entering Console for 8 Port Fast Ethernet in Slot: 6
Type 'exit' to end this session

Press RETURN to get started!

LC-Slot6> show bfd neighbors details

Cleanup timer hits: 0

OurAddr       NeighAddr     LD/RD RH Holdown(mult)  State     Int
172.16.10.2   172.16.10.1    8/1  1   1000 (5 ) Up        Fa6/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
Last packet: Version: 0 - Diagnostic: 0
         I Hear You bit: 1 - Demand bit: 0
         Poll bit: 0 - Final bit: 0
         Multiplier: 5 - Length: 24
         My Discr.: 1 - Your Discr.: 8
```
Min tx interval: 200000 - Min rx interval: 200000
Min Echo interval: 0
Uptime: 00:33:13
SSO Cleanup Timer called: 0
SSO Cleanup Action Taken: 0
Pseudo pre-emptive process count: 239103 min/max/avg: 8/16/8 last: 0 ms ago
IPC Tx Failure Count: 0
IPC Rx Failure Count: 0
Total Adjs Found: 1

The output of the `show ip ospf` command verifies that BFD has been enabled for OSPF. The relevant command output is shown in bold in the output.

Router A

RouterA# `show ip ospf`

Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0000000
Number of opaque AS LSA 0. Checksum Sum 0x0000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
BFD is enabled
Area BACKBONE(0)
 Number of interfaces in this area is 2 (1 loopback)
 Area has no authentication
 SPF algorithm last executed 00:00:08.828 ago
 SPF algorithm executed 9 times
 Area ranges are
 Number of LSA 3. Checksum Sum 0x028417
 Number of opaque link LSA 0. Checksum Sum 0x0000000
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0

Router B

RouterB# `show ip ospf`

Routing Process "ospf 123" with ID 172.18.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFss 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque AS LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Number of areas transit capable is 0
External flood list length 0
BFD is enabled
Area BACKBONE(0)
Number of interfaces in this area is 2 (1 loopback)
Area has no authentication
SPF algorithm last executed 02:07:30.932 ago
SPF algorithm executed 7 times
Area ranges are
Number of LSA 3. Checksum Sum 0x28417
Number of opaque link LSA 0. Checksum Sum 0x0
Number of DCbitless LSA 0
Number of indiciation LSA 0
Number of DoNotAge LSA 0
Flood list length 0

The output of the `show ip ospf interface` command verifies that BFD has been enabled for OSPF on the interfaces connecting Router A and Router B. The relevant command output is shown in bold in the output.

Router A

RouterA# `show ip ospf interface fastethernet 0/1`

```
show ip ospf interface fastethernet 0/1
FastEthernet0/1 is up, line protocol is up
    Internet Address 172.16.10.1/24, Area 0
    Process ID 123, Router ID 172.16.10.1, Network Type BROADCAST, Cost: 1
    Transmit Delay is 1 sec, State BDR, Priority 1, **BFD enabled**
    Designated Router (ID) 172.18.0.1, Interface address 172.16.10.2
    Backup Designated router (ID) 172.16.10.1, Interface address 172.16.10.1
    Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:03
    Supports Link-local Signaling (LLS)
    Index 1/1, flood queue length 0
    Next 0x0(0)/0x0(0)
    Last flood scan length is 1, maximum is 1
    Last flood scan time is 0 msec, maximum is 0 msec
    Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 172.18.0.1  (Designated Router)
    Suppress hello for 0 neighbor(s)
```

Router B

RouterB# `show ip ospf interface fastethernet 6/1`

```
FastEthernet6/1 is up, line protocol is up
    Internet Address 172.18.0.1/24, Area 0
    Process ID 123, Router ID 172.18.0.1, Network Type BROADCAST, Cost: 1
    Transmit Delay is 1 sec, State DR, Priority 1, **BFD enabled**
    Designated Router (ID) 172.18.0.1, Interface address 172.18.0.1
```
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:01
Supports Link-local Signaling (LLS)
Index 1/1, flood queue length 0
 Next 0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)

Configuring BFD in a BGP Network: Example

12.0(31)S
In the following example, the simple BGP network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 in Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

Configuration for Router B

neighbor 172.16.10.1 activate
no auto-summary
no synchronization
network 172.17.0.0 mask 255.255.255.0
exit-address-family

The output from the `show bfd neighbors details` command from Router A verifies that a BFD session has been created and that BGP is registered for BFD support. The relevant command output is shown in bold in the output.

Router A

RouterA# show bfd neighbors details

OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.1 172.16.10.2 1/8 1 332 (3) Up Fa0/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(0), Hello (hits): 200(15491)
Rx Count: 9160, Rx Interval (ms) min/max/avg: 200/440/332 last: 268 ms ago
Tx Count: 15494, Tx Interval (ms) min/max/avg: 152/248/197 last: 32 ms ago
Registered protocols: BGP
Uptime: 00:50:45
Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 8 - Your Discr.: 1
Min tx interval: 50000 - Min rx interval: 1000
Min Echo interval: 0

The output from the `show bfd neighbors details` command from the line card on Router B verifies that a BFD session has been created:

Note

Router B is a Cisco 12000 series router. The `show bfd neighbors details` command must be run on the line cards. The `show bfd neighbors details` command will not display the registered protocols when it is entered on a line card.

Router B

RouterB# attach 6

Entering Console for 8 Port Fast Ethernet in Slot: 6
Type 'exit' to end this session

Press RETURN to get started!

LC-Slot6> show bfd neighbors details

Cleanup timer hits: 0

OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.2 172.16.10.1 8/1 1 1000 (5) Up Fa6/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
The output of the `show ip bgp neighbors` command verifies that BFD has been enabled for the BGP neighbors:

Router A

```bash
RouterA# show ip bgp neighbors
BGP neighbor is 172.16.10.2, remote AS 45000, external link
Using BFD to detect fast failover
```

Router B

```bash
RouterB# show ip bgp neighbors
BGP neighbor is 172.16.10.1, remote AS 40000, external link
Using BFD to detect fast failover
```

Configuring BFD in an IS-IS Network: Example

12.0(31)S

In the following example, the simple IS-IS network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 for Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

```bash
! interface FastEthernet 0/1
 ip address 172.16.10.1 255.255.255.0
 ip router isis
 bfd interval 50 min_rx 50 multiplier 3
! interface FastEthernet 3/0.1
 ip address 172.17.0.1 255.255.255.0
 ip router isis
! router isis
 net 49.0001.1720.1600.1001.00
 bfd all/interfaces
```
Configuration for Router B

!
interface FastEthernet 6/0
 ip address 172.16.10.2 255.255.255.0
ip router isis
bfd interval 50 min_rx 50 multiplier 3
!
interface FastEthernet 6/1
 ip address 172.18.0.1 255.255.255.0
ip router isis
!
router isis
net 49.0000.0000.0002.00
bfd all-interfaces
!

The output from the show bfd neighbors details command from Router A verifies that a BFD session has been created and that IS-IS is registered for BFD support:

Router A

RouterA# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.1</td>
<td>172.16.10.2</td>
<td>1/8</td>
<td>1</td>
<td>536 (3)</td>
<td>Up</td>
<td>Fa0/1</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(0), Hello (hits): 200(23543)
Rx Count: 13877, Rx Interval (ms) min/max/avg: 200/448/335 last: 64 ms ago
Tx Count: 23546, Tx Interval (ms) min/max/avg: 152/248/196 last: 32 ms ago
Registered protocols: ISIS
Uptime: 01:17:09
Last packet: Version: 0 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 8 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0

The output from the show bfd neighbors details command from the line card on Router B verifies that a BFD session has been created:

Note
Router B is a Cisco 12000 series router. The show bfd neighbors details command must be run on the line cards. The show bfd neighbors details command will not display the registered protocols when it is entered on a line card.

Router B

RouterB# attach 6

Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session

Press RETURN to get started!

LC-Slot6> show bfd neighbors details
Bidirectional Forwarding Detection

Configuration Examples for Bidirectional Forwarding Detection

Cleanup timer hits: 0

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.2</td>
<td>172.16.10.1</td>
<td>8/1</td>
<td>1</td>
<td>1000 (5)</td>
<td>Up</td>
<td>Fa6/0</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
Last packet: Version: 0
I Hear You bit: 1
Poll bit: 0
Multiplier: 5
Min tx interval: 200000
Min Echo interval: 0
Uptime: 00:33:13
SSO Cleanup Timer called: 0
SSO Cleanup Action Taken: 0
Pseudo pre-emptive process count: 239103 min/max/avg: 8/16/8 last: 0 ms ago
IPC Tx Failure Count: 0
IPC Rx Failure Count: 0
Total Adjs Found: 1

Configuring BFD in an HSRP Network: Example

In the following example, the HSRP network consists of Router A and Router B. Fast Ethernet interface 2/0 on Router A is connected to the same network as Fast Ethernet interface 2/0 on Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Note
In the following example, the **standby bfd** and the **standby bfd all-interfaces** commands are not displayed. HSRP support for BFD peering is enabled by default when BFD is configured on the router or interface using the **bfd interval** command. The **standby bfd** and **standby bfd all-interfaces** commands are needed only if BFD has been manually disabled on a router or interface.

Router A

```plaintext
ip cef
interface FastEthernet2/0
no shutdown
ip address 10.0.0.2 255.0.0.0
ip router-cache cef
bfd interval 200 min_rx 200 multiplier 3
standby 1 ip 10.0.0.11
standby 1 preempt
standby 1 priority 110
standby 2 ip 10.0.0.12
standby 2 preempt
standby 2 priority 110
```

Router B

```plaintext
interface FastEthernet2/0
ip address 10.1.0.22 255.255.0.0
no shutdown
bfd interval 200 min_rx 200 multiplier 3
```
The output from the `show standby neighbors` command verifies that a BFD session has been created:

```
RouterA# show standby neighbors
HSRP neighbors on FastEthernet2/0
  10.1.0.22
    No active groups
    Standby groups: 1
    BFD enabled!

RouterB# show standby neighbors
HSRP neighbors on FastEthernet2/0
  10.0.0.2
    Active groups: 1
    No standby groups
    BFD enabled!
```

Configuring BFD Support for Static Routing: Example

In the following example, the network consists of Router A and Router B. Serial interface 2/0 on Router A is connected to the same network as serial interface 2/0 on Router B. In order for the BFD session to come up, Router B must be configured.

Router A

```
configure terminal
interface Serial 2/0
ip address 10.201.201.1 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.2
ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2
```

Router B

```
configure terminal
interface Serial 2/0
ip address 10.201.201.2 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.1
ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.1
```

Note that the static route on Router B exists solely to enable the BFD session between 10.201.201.1 and 10.201.201.2. If there is no useful static route that needs to be configured, select a prefix that will not affect packet forwarding, for example, the address of a locally configured loopback interface.
The following sections provide references related to the BFD feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring and monitoring EIGRP</td>
<td>“EIGRP” module of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4</td>
</tr>
<tr>
<td>Configuring and monitoring OSPF</td>
<td>“OSPF” module of the Cisco IOS IP Routing Protocols Configuration Guide, Release 12.4</td>
</tr>
<tr>
<td>Configuring and monitoring HSRP</td>
<td>“Configuring HSRP” module of the Cisco IOS IP Application Services Configuration Guide, Release 12.4T</td>
</tr>
</tbody>
</table>

- BFD commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples

- BGP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples
 - “BGP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.4T
 - “BGP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SR
 - “BGP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SX

- EIGRP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples
 - “EIGRP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.4T
 - “EIGRP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SR
 - “EIGRP Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SX
<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
| IS-IS commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples | • “Integrated IS-IS Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.4T
• “Integrated IS-IS Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SX |
| OSPF commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples | • “OSPF Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.4T
• “OSPF Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SR
• “OSPF Commands” chapter of the *Cisco IOS IP Routing Protocols Command Reference*, Release 12.2SX |
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register on Cisco.com.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Feature Information for Bidirectional Forwarding Detection

Table 1 lists the release history for this feature.

Not all commands may be available in your Cisco IOS software release. For release information about a specific command, see the command reference documentation.

Cisco IOS software images are specific to a Cisco IOS software release, a feature set, and a platform. Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note: Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Table 1 Feature Information for Bidirectional Forwarding Detection

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional Forwarding Detection</td>
<td>12.2(18)SXE</td>
<td>This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol. BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable.</td>
</tr>
<tr>
<td></td>
<td>12.0(31)S</td>
<td>In Release 12.0(31)S, support was added for the Cisco 12000 series Internet router.</td>
</tr>
<tr>
<td></td>
<td>12.0(32)S</td>
<td>In Release 12.0(32)S, support was added for the Cisco 10720 Internet router and IP Services Engine (Engine 3) and Engine 5 shared port adapters (SPAs) and SPA interface processors (SIPs) on the Cisco 12000 series Internet router.</td>
</tr>
</tbody>
</table>
In Release 12.4(9)T, support for Version 1 BFD and support for BFD Echo Mode was added. BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process, therefore the number of BFD control packets that are sent out between two BFD neighbors is reduced. And since the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.

In Release 12.4(11)T, support for HSRP was added.

In Release 12.2(33)SRB, BFD standard implementation, Version 1, and echo mode is supported on the Cisco 7600 router.

In Release 12.4(15)T, BFD is supported on the Integrated Services Router (ISR) family of Cisco routers, for example, the Cisco 3800 ISR series routers.

In Release 12.2(33)SXH, BFD standard implementation is supported on the Cisco 6500 router. BFD standard implementation is supported for ION and Multi-Topology Routing (MTR).

In Release 12.2(33)SRC, the number of BFD sessions that can be created has been increased, BFD support has been extended to ATM, FR, POS, and serial subinterfaces, the BFD feature has been extended to be VRF-aware, BFD sessions are placed in an “Admin Down” state during a planned switchover, and BFD support has been extended to static routing.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.4(9)T</td>
<td>In Release 12.4(9)T, support for Version 1 BFD and support for BFD Echo Mode was added.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRB</td>
<td>BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process, therefore the number of BFD control packets that are sent out between two BFD neighbors is reduced. And since the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.</td>
</tr>
<tr>
<td></td>
<td>12.4(11)T</td>
<td>In Release 12.4(11)T, support for HSRP was added.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRB</td>
<td>In Release 12.2(33)SRB, BFD standard implementation, Version 1, and echo mode is supported on the Cisco 7600 router.</td>
</tr>
<tr>
<td></td>
<td>12.4(15)T</td>
<td>In Release 12.4(15)T, BFD is supported on the Integrated Services Router (ISR) family of Cisco routers, for example, the Cisco 3800 ISR series routers.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXH</td>
<td>In Release 12.2(33)SXH, BFD standard implementation is supported on the Cisco 6500 router. BFD standard implementation is supported for ION and Multi-Topology Routing (MTR).</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRC</td>
<td>In Release 12.2(33)SRC, the number of BFD sessions that can be created has been increased, BFD support has been extended to ATM, FR, POS, and serial subinterfaces, the BFD feature has been extended to be VRF-aware, BFD sessions are placed in an “Admin Down” state during a planned switchover, and BFD support has been extended to static routing.</td>
</tr>
</tbody>
</table>
Bidirectional Forwarding Detection

Feature Information for Bidirectional Forwarding Detection

CCDE, CCVP, Cisco Eos, Cisco StadiumVision, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn is a service mark; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MedioTone, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0801R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2007–2008 Cisco Systems, Inc. All rights reserved.