Configuring 802.1X

The three principal conceptual components of 802.1X are the supplicant, the authenticator, and the authentication server. Each of these components must be configured correctly for successful 802.1X authentication to occur.

Of the three key components, the authenticator is the only one from which configuration is completely independent of the EAP method. A Cisco Catalyst switch will be configured in the same way regardless of whether EAP-TLS, PEAP-MSCHAP, or EAP-FAST (or any EAP method) is used to authenticate the supplicant. In contrast, the supplicant and the authentication server are configured differently depending on the chosen EAP method.

The configuration steps listed in this guide are for a standard reference topology that represents a typically Enterprise environment. This topology is represented in Figure 3-1.

Figure 3-1 Standard Campus Design

<table>
<thead>
<tr>
<th>Access</th>
<th>Distribution/Core</th>
<th>Data Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP</td>
<td>Cisco 3750</td>
<td>ACS</td>
</tr>
<tr>
<td>CSSC</td>
<td>Cisco 4509</td>
<td>DNS</td>
</tr>
<tr>
<td>XP</td>
<td>Cisco 6506</td>
<td>DHCP</td>
</tr>
<tr>
<td>CSSC</td>
<td></td>
<td>CA</td>
</tr>
<tr>
<td>XP</td>
<td></td>
<td>Active Directory</td>
</tr>
</tbody>
</table>
The processes and procedures presented in this guide make the following assumptions:

- The network has been deployed following current best practices for Campus Design.
- Basic network connectivity exists between all components.
- DNS and DHCP are fully operational.
- The Windows domain has been configured in Active Directory. The domain controller is a Windows 2003 Server.
- For certificate auto-enrollment to work, the Windows Certificate Authority must run on a Windows 2003 Enterprise Edition domain member server.
- Cisco ACS runs on a domain member server. Cisco ACS software has been installed.
- Client machines with Windows XP Service Pack 2 with CSSC (if used) are installed.

Authenticators

This section details the basic configuration of the Cisco Catalyst switch deployed as an authenticator in an 802.1X deployment. The authenticator controls physical access to the network based on the authentication status of the client. The authenticator acts as an intermediary between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The authenticator communicates with the client via EAPoL and with the authentication server via RADIUS.

The basic configuration of the Cisco Catalyst switch remains constant within any IEEE 802.1X deployment regardless of the EAP method chosen for authentication. The EAP method is agreed upon by the client and authentication server and the authenticator simply proxies the information between the two of them.

Cisco IOS

Cisco Catalyst switches running Cisco IOS require certain commands to enable IEEE 802.1X. Additional commands can be configured to enable optional functionality or change default parameters. The necessary global and interface commands are explained in the following sections. A basic example is also provided to highlight the recommended configuration requirements. These configurations are valid for the versions listed in Table 3-1.

<table>
<thead>
<tr>
<th>Platform and OS</th>
<th>Minimum Supported OS Version</th>
<th>OS Version Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Catalyst 6500 CatOS</td>
<td>6.2(2)</td>
<td>8.6(1)</td>
</tr>
<tr>
<td>Cisco Catalyst 6500 Cisco IOS</td>
<td>12.1(12b)E</td>
<td>12.2(33)SXH</td>
</tr>
<tr>
<td>Cisco Catalyst 4500 Cisco IOS</td>
<td>12.1(12c)EW</td>
<td>12.2(37)SE</td>
</tr>
<tr>
<td>Cisco Catalyst 3750 Cisco IOS</td>
<td>12.1(11)AX</td>
<td>12.2(40)SG</td>
</tr>
</tbody>
</table>
RADIUS Configuration for Cisco IOS

RADIUS is the protocol the switch uses to communicate with the ACS server during 802.1X authentication. The RADIUS commands required to configure IEEE 802.1X on a Cisco Catalyst switch running Cisco IOS are provided in this section. These commands are all entered at the CLI configuration mode.

Step 1 Enable AAA globally with the following command:

```
switch(config)# aaa new-model
```

Step 2 Configure the switch to use RADIUS as the sole method for 802.1X authentication with the following command:

```
switch(config)# aaa authentication dot1x [default] group radius
```

Note

Though other methods appear as configuration options, only `group radius` is supported.

Step 3 Configure the RADIUS server parameters. Use the command below to specify the IP address (or hostname if the switch is configured for DNS) and the key of the RADIUS server. This key must match the key that is configured on the ACS.

```
switch(config)# radius-server host [host name | IP address]key [string]
```

Globally Enable IEEE 802.1X for Cisco IOS

IEEE 802.1X must be globally enabled on the switch. If 802.1X is not enabled with the following command, then the interface configurations will have no effect and the switch will not authenticate hosts connecting to its ports.

Enable IEEE 802.1X globally with the following command:

```
switch(config)# dot1x system-auth-control
```

Interface IEEE 802.1X Configuration for Cisco IOS

Once RADIUS has been configured and 802.1X has been globally enabled, each interface must also be configured to perform 802.1X.

Note

To configure multiple ports at the same time, use the `interface range` command.

Step 1 Select the ports that will run IEEE 802.1X with the following command.

```
switch(config)# interface range GigabitEthernet 1/0/10-11
```

Step 2 Configure a port-type that is compatible with 802.1X. IEEE 802.1X can only be configured on static Layer-2 access ports and the voice VLAN port; IEEE 802.1X is not supported on dynamic access ports, trunk ports, or EtherChannel.

```
switch(config-if-range)# switchport mode access
```
Step 3
Enable 802.1X on the port. Note that this command is added automatically if the port control is configured (as shown in the next step).

```
switch(config-if-range)# dot1x pae authenticator
```

Step 4
Configure the method of port control. To enable the 802.1X default security level, select `auto`.

```
switch(config-if-range)# dot1x port-control auto
```

⚠️ **Caution**
Once `dot1x port-control auto` is configured, the switch will revert to the default security level for 802.1X. All traffic except for EAP will be dropped until a successful authentication has occurred. To prevent unexpected loss of network access, ensure that the rest of the solution has been properly configured before enabling this command. This includes proper PKI deployment and complete configurations of the switch, supplicants, ACS and Active Directory.

IEEE 802.1X Timer Configuration for Cisco IOS

There are multiple timers that affect the operation of 802.1X. These timers should not be modified without a careful consideration of the impact on the operation of your network. See the *Baseline Identity Design Overview Guide* for a detailed discussion of these timers.

```
(config-if)# dot1x timeout ?
quiet-period       QuietPeriod in Seconds
ratelimit-period   Ratelimit Period in seconds
reauth-period      Time after which an automatic reauthentication should be initiated
server-timeout     Timeout for Radius Retries
supp-timeout       Timeout for supplicant reply
tx-period          Timeout for supplicant retries
```

IEEE 802.1X Re-Authentication Configuration for Cisco IOS [Optional]

By default, 802.1X reauthentication is disabled on Cisco IOS switches. If needed, it can be enabled on the switch on a per-port basis. The switch can be configured to use a locally configured reauthentication timer or to use values sent down by the RADIUS server in the attributes of the Access-Accept that is sent after a successful authentication. Only one method, switch-based timers or server-based timers, can be configured at one time. This avoids any potential conflict between locally configured timers and RADIUS-based timers.

We recommend configuring the switch to use values sent by the RADIUS server to control reauthentication behavior. The RADIUS server provides a centralized repository for the reauthentication timer that will ensure consistent behavior across all switches.

When configured to use values from the RADIUS server, the switch uses two attributes to control the timing and behavior of reauthentication:

- The **Session-Timeout** RADIUS attribute (Attribute [27]) specifies the time after which reauthentication occurs.
- The **Termination-Action** RADIUS attribute (Attribute [29]) specifies the action to take during reauthentication. When the attribute value is set to Default, the IEEE 802.1X session ends, and connectivity is lost during reauthentication. When the attribute value is set to RADIUS-Request, the session is not affected during reauthentication.
Cisco recommends setting Attribute [29] to RADIUS-Request to ensure that connectivity is not lost during reauthentication.

Note

If server-based reauthentication is configured on the switch and the RADIUS server does not send Attribute [29], the switch behaves as if it were set to Default and connectivity will be lost during reauthentication. If server-based reauthentication is configured on the switch and Attribute [27] is not sent, reauthentication will be disabled on the port.

Configuring Server-based Reauthentication for Cisco IOS

The section details how to configure Server-based Reauthentication on the switch and the ACS. This is the recommended method when reauthentication is required.

Step 1
Enable reauthentication on the switch port.

```
(config-if)# dot1x reauthentication
```

Step 2
Configure the switch to use setting sent by the RADIUS server during authentication.

```
(config-if)# dot1x timeout reauth-period server
```

Step 3
Open ACS Admin from the desktop shortcut created during the installation. Click **Group Setup**. Select the **Group** you wish to configure and click **Edit Settings**.

Step 4
In the **Group Settings** window, scroll down to **IETF RADIUS Attributes**. Check the box next to [27] **Session-Timeout** and enter a value between 1 and 65535 seconds. Check the box next to [29] **Termination-Action** and select **RADIUS-Request** from the drop-down box. Click **Submit+Restart**. See Figure 3-2.

Note

The Group Setup is shown only as an example in Figure 3-2. The attributes can also be configured as part of the User Setup or as part of a RADIUS Authorization Component (RAC).
Configuring Server-based Reauthentication for Cisco IOS

The section details how to configure switch-based reauthentication on the switch and the ACS.

Step 1
Enable reauthentication on the switch port.

```
(config-if)# dot1x reauthentication
```

Step 2
Configure a reauthentication timer.

```
(config-if)# dot1x timeout reauth-period 1800
```

Note
If no timer value is specified, the switch will use a default value of 3600 seconds.

Note
When reauthentication is locally configured on the switch, the existing session is not affected during reauthentication and connectivity is maintained (until and unless the reauthentication fails). The switch behaves the same way it would if it received Attribute [29] = RADIUS-Request during a server-based reauthentication.
WoL Configuration for Cisco IOS (Optional)

If needed, the switch can be configured to support Wake-on-Lan (WoL) devices on 802.1X-enabled interfaces. Use the following interface configuration command to enable unidirectional port control for WoL devices connected to an interface configured for 802.1X:

```
(config-if)# dot1x control-direction in
```

Verify IEEE 802.1X Operation for Cisco IOS

There are several show commands that can be used in global exec mode to verify the operation of IEEE 802.1X on a Cisco Catalyst switch running Cisco IOS. See Table 3-2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot1x</td>
<td>Display the operational status of IEEE 802.1X.</td>
</tr>
<tr>
<td>show dot1x {all</td>
<td>{statistics {interface interface interface-number}</td>
</tr>
<tr>
<td>show dot1x {interface interface interface-number}</td>
<td>Display IEEE 802.1X statistics for a specific port.</td>
</tr>
<tr>
<td>show aaa servers</td>
<td>Display the status and operational information for all configured AAA servers.</td>
</tr>
</tbody>
</table>

Basic Configuration Example for Cisco IOS

The following basic configuration example highlights the minimum command set required to enable IEEE 802.1X on a Cisco Catalyst switch running Cisco IOS:

```
aaa new-model
aaa authentication dot1x default group radius
! dot1x system-auth-control
! interface Gigabit 3/0/1
switchport mode access
dot1x port-control auto
! radius-server host 10.1.1.5 auth-port 1812 acct-port 1813 key cisco
```

It is important that the user understand the ramifications of adding AAA commands to the Cisco IOS configuration because they affect device access as well. For example, by adding the AAA commands listed in the sample configuration above, all administrative access (Telnet and console) will be blocked. If an administrative session is lost while enabling AAA and no default login authentication method has been defined, the administrator will be locked out of the router and the entire saved configuration could be lost. To avoid this scenario, specify alternative methods for administrative access using the default login configuration. For example, to authenticate administrative access via RADIUS or, if the RADIUS server is not available, by the enable password, add the following command:

```
aaa authentication login default group radius enable
```
Verifying 802.1X Port Status for Cisco IOS

The output of the following command shows that a supplicant with the MAC address 0018.f809.cfc5 has successfully passed IEEE 802.1X authentication on this port. The output also shows the default values for IEEE 802.1X interface parameters that result from the minimum configuration described above.

```
Switch# show dot1x interface FastEthernet 2/5 details
Dot1x Info for FastEthernet2/5
-----------------------------------
PAE                       = AUTHENTICATOR
PortControl               = AUTO
ControlDirection          = Both
HostMode                  = SINGLE_HOST
ReAuthentication          = Disabled
QuietPeriod               = 60
ServerTimeout             = 30
SuppTimeout               = 30
ReAuthPeriod              = 3600 (Locally configured)
ReAuthMax                 = 2
MaxReq                    = 2
TxPeriod                  = 30
RateLimitPeriod           = 0

Dot1x Authenticator Client List
-----------------------------------
Domain                    = DATA
Supplicant                = 0018.f809.cfc5
Auth SM State     = AUTHENTICATED
Auth BEND SM Stat = IDLE
Port Status               = AUTHORIZED
Authentication Method     = Dot1x
Authorized By             = Authentication Server
Vlan Policy               = N/A
```

Cisco Catalyst OS

Cisco Catalyst switches running Cisco Catalyst OS (CatOS) require certain commands to enable IEEE 802.1X.

Additional commands can be configured to enable optional functionality or change default parameters. The RADIUS, global, and port commands are explained in the following sections. A basic example is also provided to highlight the minimum configuration requirement.

RADIUS Configuration for Cisco Catalyst OS

The RADIUS commands required to configure IEEE 802.1X on a Cisco Catalyst switch running Cisco Catalyst OS are provided in this section.

Step 1 Use the command below to specify the IP address of the RADIUS server. If more than one server is configured, the **primary** keyword can be used to select which server is contacted first.

```
set radius server [IP address] auth-port [port]acct-port [port] [primary]
```

Step 2 Use the command below to specify the key used to authentication communications between the switch and the RADIUS server. The key must match what is configured on the ACS.
Global IEEE 802.1X Configuration for Cisco Catalyst OS

IEEE 802.1X must be globally enabled on the switch. If 802.1X is not enabled with the following command, then the interface configurations will have no effect and the switch will not authenticate hosts connecting to its ports.

Enable IEEE 802.1X globally with the following command:

```
set dot1x system-auth-control enabled
```

Port IEEE 802.1X Configuration for Cisco Catalyst OS

Once RADIUS has been configured and 802.1X has been globally enabled, each interface must also be configured to perform 802.1X.

Select the mode for 802.1X authentication. The default is force-authorized (meaning that the port is open to all traffic). To switch to the 802.1X default security level, select `auto`.

```
set port dot1x [module/port] port-control [force-authorized | force-unauthorized | auto]
```

Note

Once `set port dot1x port-control auto` is configured, the switch will revert to the default security level for 802.1X. In other words, all traffic except for EAP will be dropped until a successful authentication has occurred. To prevent unexpected loss of network access, ensure that the rest of the solution has been properly configured before enabling this command. This includes proper PKI deployment and complete configuration of the switch, supplicants, ACS and Active Directory.

Verify IEEE 802.1X Operation for Cisco Catalyst OS

The `show` commands used to verify the operation of IEEE 802.1X on a Cisco Catalyst switch running Cisco Catalyst OS are provided in Table 3-3.

Table 3-3 IEEE 802.1X Show Commands for Cisco Catalyst OS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show radius</code></td>
<td>Displays configured RADIUS parameters.</td>
</tr>
<tr>
<td><code>show dot1x</code></td>
<td>Displays system IEEE 802.1X capabilities.</td>
</tr>
<tr>
<td>`show dot1x group [all</td>
<td>authenticated</td>
</tr>
<tr>
<td>`show dot1x user [all</td>
<td>user name]`</td>
</tr>
<tr>
<td>`show dot1x vlan [all</td>
<td>VLAN ID]`</td>
</tr>
<tr>
<td>`show dot1x vlan-group [all</td>
<td>VLAN-group-name]`</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring 802.1X

Basic Configuration Example for Cisco Catalyst OS

The following basic configuration example is provided to highlight the minimum command set required to enable IEEE 802.1X on a Cisco Catalyst switch running Catalyst OS.

```
set radius server 10.100.10.117
set radius key cisco
set dot1x system-auth-control enable
set port dot1x 1/5 port-control auto
```

Verifying 802.1X Port Status for Cisco Catalyst OS

The output of this command shows that the supplicant connected to port 1/5 has successfully passed 802.1X authentication. The output also shows 802.1X parameters configured for the port.

```
Switch> (enable) show port dot1x 1/5
Port  Auth-State          BEnd-State Port-Control        Port-Status
----- ------------------- ---------- ------------------- --------------
1/5  authenticated       idle       auto                authorized
Port  Port-Mode     Reauthentication   Shutdown-timeout   Control-Mode
admin   oper
----- ------------- -----------------   ----------------   ---------------
1/5  SingleAuth    disabled            disabled           Both    Both
Port  Posture-Token Critical-Status Termination action Session-timeout
----- ------------- --------------- ------------------ ---------------
1/5  -             no              NoReAuth           -
Port  Session-Timeout-Override Url-Redirect
----- ------------------------ ----------------------------------
1/5  disabled                 -
Port  Critical ReAuth-When
----- --------------
1/5  disabled -
```

Table 3-3 IEEE 802.1X Show Commands for Cisco Catalyst OS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show port dot1x [module/port]</td>
<td>Displays all the configurable and current state values associated with the authenticator port access entity (PAE) and backend authenticator and statistics for the different types of Extensible Authentication Protocol (EAP) packets transmitted and received by the authenticator on a specific port.</td>
</tr>
<tr>
<td>show port dot1x statistics [module/port]</td>
<td>Displays statistics for different EAP packets transmitted and received by the authenticator on a specific port.</td>
</tr>
<tr>
<td>show port dot1x [module/port] guest-vlan [VLAN ID</td>
<td>none]</td>
</tr>
<tr>
<td>show port dot1x auth-fail-vlan [VLAN ID</td>
<td>none]</td>
</tr>
</tbody>
</table>
Deploying EAP-TLS

The section describes how to configure EAP-TLS on the ACS and on the CSSC and native XP supplicants.

The username for EAP-TLS is acquired from the user when he or she logs into Windows via Single Sign-On (SSO). The supplicant uses this username to select a certificate from the local certificate stores to send to the ACS during authentication. ACS verifies the supplicant's certificate and consults Active Directory to verify that the user specified in the certificate is allowed access to the network.

EAP-TLS deployment is presented as a series descriptions in the following two primary sections:

- Authentication Server Configuration, page 3-11
- Client Configuration for EAP-TLS, page 3-56

Authentication Server Configuration

There are multiple steps to complete when configuring the Cisco ACS to act as the Authentication Server for IEEE 802.1X EAP-TLS authentications. The following steps are addressed in the sections that follow:

- Step 1: Obtain and Install the Root CA Certificate on Cisco Secure ACS, page 3-11
- Step 2: Configure Certificate Revocation, page 3-21
- Step 3: Acquire and Configure Cisco Secure ACS Server Certificate, page 3-23
- Step 4: Configure EAP-TLS Settings on the ACS, page 3-46
- Step 5: Specify and Configure the Catalyst Switch as a AAA Client, page 3-50
- Step 6: Configure the External User Databases, page 3-51

Once Step 6 is completed, you must restart the Cisco Secure ACS-based service.

Note

These instructions are for Cisco Secure ACS on Windows. There is also an appliance version of ACS called the Solution Engine (SE). SE has functional and configuration differences compared with the ACS for Windows version, especially in the area of certificate management.

Step 1: Obtain and Install the Root CA Certificate on Cisco Secure ACS

The Cisco Secure ACS must possess the root certificate of the CA that issued the supplicant’s certificate in order to validate the client certificate sent by a supplicant during the EAP-TLS exchange. In a typical Windows environment, this will happen automatically when the Cisco Secure ACS server joins the Windows domain. Thus, in many cases, this is purely a verification exercise and little or no configuration will be required.

The following procedures are discussed in this section:

1. Verify that the CA Root Certificate is in the Cisco Secure ACS’s local machine certificate store. If the certificate is not present, acquire the certificate and install it in either the local machine store or the local Cisco Secure ACS store.
2. Verify that the CA is listed in the Cisco Secure ACS’s certificate trust list.
Verify the CA Root Certificate in Local Machine Storage

When a server joins a Microsoft domain, it will automatically retrieve the Enterprise Root CA certificate from the Enterprise Root CA as a result of the Active Directory default Group Policy. Therefore, the Cisco Secure ACS server will most likely already have the Enterprise CA Root Certificate in its Windows local machine certificate storage. If the client’s certificate is issued by the same CA as per best Cisco’s practices recommendation, then this is the only CA that the Cisco Secure ACS needs to trust for EAP-TLS to succeed.

To verify that the Cisco Secure ACS server has the Enterprise CA Certificate in local machine storage, follow these steps on the Cisco Secure ACS server:

Step 1 On the Cisco Secure ACS server, enter **Start > Run**, type **mmc**, and click **OK**.
Step 2 On the **File** menu, click **Add/Remove Snap-in** and then click **Add**.
Step 3 Under **Snap-in**, double-click **Certificates**. Select **Computer Account** and click **Next**.
Step 4 Select **Local Computer** and click **Finish**.
Step 5 On the **Add Standalone Snap-in** window, click **Close**.
Step 6 On the **Add/Remove Snap-in** window, click **OK**.
Step 7 On the **Console**, select **Certificates (Local Computer) > Trusted Root Certification Authorities > Certificates**.
Step 8 Verify that the Enterprise Root CA that issued the supplicant’s certificate is in the list (**imac-mcs-14** in Figure 3-3). If it is, proceed to configuring the Cisco Secure ACS Trust list.

Figure 3-3 Trusted Root Certificate on Cisco Secure ACS

If the CA certificate is not listed, it is possible to manually download the certificate. There are two options when downloading a root certificate. First, the root CA certificate can be downloaded into the Windows machine store. Once the download is finished, the certificate will appear in the MMC Console.
above and can be used by Cisco Secure ACS or any other service on the server. The second option is to
download the certificate into the Cisco Secure ACS local store. This certificate will not be listed in the
MMC console and it will only be available to the Cisco Secure ACS.

Manually Installing Root Certificate in Cisco Secure ACS

Most often, a CA’s root certificate will be in the Windows machine certificate storage if the Cisco Secure
ACS is a Windows domain member. However, there might be some situations when it is not. The Cisco
Secure ACS might not be a member of the domain. Or there might be a scenario in which the supplicant’s
certificate was signed by a different CA than the one that signed the Cisco Secure ACS’s certificate. In
that case, the supplicant’s CA root certificate may need to be manually downloaded to the Cisco Secure
ACS.

If the root CA Certificate does not appear in the machine store list as described in the previous section,
the certificate can be manually downloaded to the local Windows machine certificate store on the Cisco
Secure ACS. Alternatively, the root Certificate can be manually downloaded to the private certificate
store maintained by the Cisco Secure ACS itself. Both methods are described below.

Note

In the recommended solution topology that is the focus of this document, the same root CA issues
certificates to the clients and the servers and the default Group Policy ensures that the Cisco Secure ACS
server automatically downloads the root CA certificate to the local machine store. In this scenario,
manually downloading the CA Certificate is not required. Therefore, this section is for reference only.

Manually Installing the Root Certificate in Cisco Secure ACS Machine Store

If the root CA Certificate does not appear in the machine store list, the certificate can be manually
downloaded to the Windows machine certificate store on the Cisco Secure ACS by the following steps:

Step 1
On the Cisco Secure ACS, point the browser at the Microsoft CA server: http://CA-srv-ip /certsrv.

Step 2
From the Select a Task option choose Download a CA certificate, certificate chain, or CRL.

Step 3
Click Download CA Certificate. See Figure 3-4.
Figure 3-4 Download CA Certificate

Step 4 A File Download Security Warning window appears. Click **Open**

Step 5 A Certificate Installation Window appears. Click **Install Certificate**. See Figure 3-5.
Figure 3-5 Install Certificate

Step 6 The Certificate Import Wizard opens. Click Next.

Step 7 Select Place all certificates in the following store and browse. See Figure 3-6.

Figure 3-6 Certificate Store
The first option, *automatically select the certificate store*, will install the root certificate in the Current User Trusted Root Certificate Authorities, not the Local Computer Trusted Root Certificate Authorities. The certificate must be in the Local Computer store for Cisco Secure ACS to access it.

Step 8
In *Select Certificate Store* window, click **Show physical stores**. Click **Trusted Root Certificate Authorities** and select the **Local Computer** folder. Click **OK**. See Figure 3-7.

![Select Certificate Store](image)

Step 9
Click **Next** and **Finish**.

Step 10
Verify that the certificate has been properly installed by repeating the steps in the “Verify the CA Root Certificate in Local Machine Storage” section on page 3-12. Proceed to configuring the Cisco Secure ACS Certificate Trust List.

Manually Installing the Root Certificate in Cisco Secure ACS Private Store

If the root CA Certificate does not appear in the machine store list, the certificate can be manually downloaded to the Cisco Secure ACS’s private certificate store by the following steps.

Note
The Cisco Secure ACS’s private store is independent of the Windows certificate store. The steps below detail how to get the root certificate into the Cisco Secure ACS private store only.

Step 1
On the Cisco Secure ACS server, point the browser at the Microsoft CA server: http://CA-srv-ip/certsrv.

Step 2
From the *Select a Task* option choose **Download a CA certificate**, certificate chain or CRL.
Step 3
Choose the Base 64 radio encoding method and click Download CA Certificate. See Figure 3-8.

Figure 3-8 Download CA Certificate for Private Store

Step 4
A File Download Security Warning window appears. Click Save. See Figure 3-9.

Figure 3-9 Save Certificate
Step 5 Enter a location to save the file and click Save. Make a note of the filename and directory since you will need this information when configuring Cisco Secure ACS to trust this CA’s certificate. See Figure 3-10.

Figure 3-10 Save Certificate for Private Storage

Because the root certificate was downloaded manually to the private Cisco Secure ACS store, it is not installed in the Microsoft local machine certificate storage. Therefore, it will not appear in the MMC Certificate snap-in nor will it be automatically added to the list of candidate CAs on the Cisco Secure ACS Certificate Trust List (CTL). The CTL defines the root CAs that the Cisco Secure ACS will trust when validating the signature on a certificate presented by a supplicant. Since the CTL is automatically updated with the root CAs in the Microsoft machine certificate store and since the Cisco Secure ACS automatically trusts the CA that issued its own certificate, there is no need to modify it in most cases. The CTL only becomes an issue when the root CA certificate is added to the Cisco Secure ACS private store (as described in this step) and when this CA is different from the CA that issued the Cisco Secure ACS’s certificate.

If a CA has been manually added to the Cisco Secure ACS private certificate store and this CA is not the one that signed the Cisco Secure ACS’s own certificate, additional steps will be required to configure the Cisco Secure ACS to add the CA to the Certificate Trust List:

Step 6 On the Cisco Secure ACS Server, open Cisco Secure ACS Admin from the desktop shortcut created during the installation.

Step 7 Click System Configuration.

Step 8 Click ACS Certificate Setup.

Step 9 Click ACS Certification Authority Setup. See Figure 3-11.

Step 10 Under the ACS Certification Authority Setup window, type the name and location of the *.cer file created earlier. In this example, the *.cer file created is EnterpriseRoot-CA-cert.cer in the root directory C:"
Step 11 Click **Submit**.

Step 12 Restart the ACS Services.

Now the CA can be configured in the Certificate Trust List as described in the following section.

Verify the CA in Cisco Secure ACS Certificate Trust List

Having the root certificate in the local store of the Cisco Secure ACS server is not enough by itself. The CA must also be trusted by the Cisco Secure ACS. To be trusted by the Cisco Secure ACS, a server must be on the Cisco Secure ACS Certificate Trust List. By default, ACS will add all the trusted root certificates in the Windows local machine storage to the list of candidates CAs on the ACS Certificate Trust List. The only configuration task is to select which candidates should be added to the list.

The Cisco Secure ACS will automatically trust the CA that signed its own personal certificate. There is no need to configure the CTL for this CA.

To configure the Cisco Secure ACS server to trust the Root CA, perform the following steps:

Step 1 On the Cisco Secure ACS for Windows server, open Cisco Secure ACS Admin from the desktop shortcut created during the installation.

Note Cisco Secure ACS SE users will browse remotely to the Cisco Secure ACS Admin interface.
Step 2 Click System Configuration.
Step 3 Click ACS Certificate Setup.
Step 4 Click Edit Certificate Trust List. See Figure 3-12.

Figure 3-12 Certificate Trust List

Step 5 Scroll down the list to find the name of the Root CA that issues the client certificates. Check the box next to the Root CA’s name. Click Submit and then Restart.

Note In many cases, this step will not be required, since Cisco Secure ACS will automatically trust the CA that issued the Cisco Secure ACS’s server certificate. If the client certificates are issued by the same CA that issued the Cisco Secure ACS server certificate, then this is the only CA that Cisco Secure ACS needs to trust and no further action is necessary. If, however, different CAs were used to issue the server certificate and the client certificates, then all the CAs that issued client certificates must be checked on the Cisco Secure ACS Certificate Trust List.

After this step is complete, the Cisco Secure ACS is ready to use the Enterprise Root CA Certificate to validate the user certificates it receives from supplicants during IEEE 802.1X EAP-TLS authentications.
Step 2: Configure Certificate Revocation

Before accepting a client certificate, the Cisco Secure ACS must verify that the certificate has not been revoked since it was issued. To do this, the Cisco Secure ACS must download the Certificate Revocation List (CRL) from every CA that signs the client certificates that the Cisco Secure ACS needs to verify. To enable CRLs on the Cisco Secure ACS, complete the following steps.

Step 1
On the Cisco Secure ACS Server, open Cisco Secure ACS Admin from the desktop shortcut created during the installation.

Step 2
Click the System Configuration button.

Step 3
Select ACS Certificate Setup.

Step 4
Select Certificate Revocation List. Every CA in the Certificate Trust List will appear in the list of CRL Issuers. See Figure 3-13.

Step 5
Select the CA from which the Cisco Secure ACS should download a CRL (imac-mcs-14 in Figure 3-14). The Certificate Revocation List Issuer window will appear. See Figure 3-14.
Step 6 The CRL Distribution URL is automatically filled in based on what was provided in the root CA certificate. If some other URL should be used to download the CRL, enter it in the CRL Distribution URL.

Note The CRL Distribution URL above was automatically filled in based on the information in the root CA certificate (as seen in MMC). See Figure 3-15.
Figure 3-15 Finding the CRL in the Root CA Certificate

![Certificate configuration page](image)

Step 7
Use the radio buttons on the *Certificate Revocation List configuration* page to select the method that Cisco Secure ACS should use for retrieving a CRL. This value should be determined in accordance with your organization’s security policy.

- **Automatically**—Uses the value contained in the Next Update field in the CRL file to retrieve a new CRL from the CA. If unsuccessful, Cisco Secure ACS tried to retrieve the CRL every 10 minutes after the first failure until it succeeds.
- **Every**—Determines the frequency between retrieval attempts. Enter the amount in units of time.

Note
In both modes, if retrieval fails for some reason, a reattempt is tried every 10 minutes.

Step 8
Select the *CRL is in use* option to enable CRL checking for this CA.

Step 9
Click *Submit*.

Step 3: Acquire and Configure Cisco Secure ACS Server Certificate

During the EAP-TLS exchange with the 802.1X supplicant, the Cisco Secure ACS must present a valid server certificate that it has previously retrieved from the Enterprise CA. There are two ways to acquire a server certificate. The end result is the same in both cases. The only differences are in how the certificates are stored and retrieved.
Strictly Cisco Confidential

Method 1 retrieves a server certificate from the CA and installs it in the Windows machine certificate store on the Cisco Secure ACS. Once in the machine store, this certificate can be imported into Cisco Secure ACS by referencing the certificate's Common Name (CN). Because the certificate must have exportable keys in order to be exported from the machine store, a new certificate template must be created for use by the CA.

Method 2 uses the Cisco Secure ACS Certificate Signing Request feature to generate a certificate request. This certificate request is used to generate a certificate on the CA. This certificate and its associated key file can be saved to the Cisco Secure ACS server and then imported by Cisco Secure ACS. Because the certificate is not in the Windows machine certificate store, it does not need to be exported and so does not need exportable keys. Therefore, no new certificate template is needed on the CA when using this method.

Cisco Secure ACS Certificate—Method 1

This method consists of the following:
2. Obtain a Server Certificate for the ACS Server, page 3-32
3. Configure ACS to Use the Server Certificate, page 3-36

Each of these steps is described in detail below.

Create Certificate Template on the Enterprise Root CA

For the Cisco Secure ACS to use a certificate in the Windows machine store, the certificate must have exportable keys. A certificate with exportable private keys can be exported from Windows storage and installed in Cisco Secure ACS. Exportable keys also allow the certificate to be exported from Windows and installed on another computer.

In earlier versions of the Microsoft CA, it was possible to use the pre-configured Web Server template when requesting an Cisco Secure ACS server certificate. However, Microsoft has changed the Web Server template with the release of the Windows 2003 Enterprise CA so that keys are no longer exportable (the option is grayed out). There are no other default certificate templates supplied with certificate services that are for server authentication and give the ability to mark keys as exportable. Therefore, you must create a new template. Once the template has been created, the Cisco Secure ACS can retrieve its server certificate. This section describes how to create the certificate template on the Enterprise CA. Subsequent sections describe how to retrieve the certificate from the Cisco Secure ACS.

Note
Microsoft Certificate Authorities running on Windows 2000 allows for exportable keys and these procedures do not need to be followed if you use Windows 2000 Certificate Authority. Skip to Obtain a Server Certificate for the ACS Server, page 3-41, if your CA is running on Windows 2000 server and use the default Web server template. Before deploying a Windows 2000 CA, however, recall that user auto-enrollment (a best practice for simplifying PKI deployment) cannot be enabled on a Windows 2000 CA.

Install the Certificate Templates Snap-in

On the Enterprise CA or the Domain Controller (both can be used to configure templates), complete these steps:

Step 1 Choose Start > Run, type certmpl.msc, and click OK to open the Certificate Templates snap-in. See Figure 3-16.
Figure 3-16 Certificate Template Snap-in

Step 2 In the Details pane of the Certificate Templates snap-in, click the Web Server template.

Step 3 From the Action pull down menu, click Duplicate Template. The Properties of New Template window appears. See Figure 3-17.

Figure 3-17 Cisco Secure ACS Certificate Template: General Tab

Step 4 In the **Template display name** field of the **General** tab, enter **Cisco Secure ACS**.

Step 5 Go to the **Request Handling** tab and check **Allow private key to be exported**. See **Figure 3-18**.
Step 6 Click the CSPs button near the bottom of the Request Handling tab. In the CSP Selection window, select Requests must use one of the following CSPs and check Microsoft Base Cryptographic Provider v1.0. Uncheck any other CSPs that are checked and then click OK. See Figure 3-19.

Step 7 Go to the Subject Name tab, choose Supply in the request and click OK. See Figure 3-20.
Step 8 Go to the Extensions tab. Highlight Application Policies and verify that description of application policies includes Server Authentication. This should happen automatically if you have duplicated the default Web Server Template. See Figure 3-21.
The Application Policy extension is used to populate the Enhanced Key Usage field on the certificate. This field is mandatory when you use the Microsoft supplicant for EAP-TLS or PEAP.

Step 9

Go to the **Security** tab, highlight the **Domain Admins Group** and ensure that the **Enroll** option is checked under **Allowed**. See **Figure 3-22**.
Step 10 Click OK to save the template and move onto issuing this template from the Certificate Authority snap-in.

Enabling the New ACS Web Server Certificate Template

Complete these steps to enable the new ACS Web Server Certificate Template:

Step 1 On the Enterprise CA server, open the Certification Authority by choosing Start > All Programs > Administrative Tools > Certification Authority.

Step 2 In the console tree, click the name of the CA (imac-mcs-14 in Figure 3-23) to expand the certificate list. Right-click Certificate Templates. Choose New > Certificate Template to Issue. See Figure 3-23.
Figure 3-23 Issuing a New Certificate from the Certification Authority

Step 3

Select the ACS Certificate Template created in the previous section and click OK. See Figure 3-24.

Figure 3-24 Issue the ACS Certificate Template
Obtain a Server Certificate for the ACS Server

Now that a suitable certificate template exists on the CA server, the ACS server can obtain a server authentication certificate that can be used for EAP-TLS authentication. Follow the steps below to download a server certificate to the ACS.

Step 1
Log into the ACS server with an account that has Enterprise Admin rights.

Step 2
On the local ACS machine, point the browser at the Microsoft certification authority server at http://IP-address-of-Root-CA/certsrv. In Figure 3-25, the IP address of the CA is 10.100.10.114. Select Request a Certificate. See Figure 3-25.

Step 3
In the Certificate Request window, click Advanced Certificate Request. See Figure 3-26.
Figure 3-26 Request a Certificate from the CA

Step 4 In the Advanced Certificate Request screen, click **Create and submit a request to this CA**. See Figure 3-27.

Note The reason for this step is that the Windows 2003 Certificate Authority does not allow for exportable keys by default and you need to generate a certificate request based on the ACS Certificate Template that you created earlier.

Figure 3-27 Creating an Advanced Certificate Request

Step 5 In the Advanced Certificate Request form, select the certificate template created earlier named ACS from the Certificate Template drop-down list. The available options in the form change after you select the template. See Figure 3-28.
Step 6 In the Certificate Template form, configure the Name to be the fully qualified domain name of the ACS server. In this case the ACS server name is IMAC-ACS-21.identity.com. Remember this name (the Common Name) as it will be used later when configuring Trusted Servers on the client side. The other identifying information in the form is optional. Ensure that the Mark Keys as Exportable and Store certificate in the local computer certificate store options are checked and click Submit.

Step 7 A pop up window may appear that warns about a potential scripting violation. Click Yes. The certificate will be issued.

Step 8 In the Certificate Issued window, click Install this certificate. See Figure 3-29.
Chapter 3 Configuring 802.1X

Deploying EAP-TLS

Figure 3-29 Issuing the ACS Server Certificate

A pop up window might appear that warns about a potential scripting violation. Click Yes. The certificate will be installed in the Local Computer store Personal certificates folder. See Figure 3-30.

Figure 3-30 Installing the ACS Server Certificate

Step 9 Verify that the certificate is installed in the Local Computer store Personal certificate folder using the Microsoft Management Console (MMC). See Figure 3-31.
Configure ACS to Use the Server Certificate

After the previous step, the ACS server has a server certificate in its local machine store. Complete the following steps to configure ACS to use the server certificate in the local machine store.

Step 1 Open ACS Admin from the desktop shortcut created during the installation.
Step 2 Click the **System Configuration** button.
Step 3 Select **ACS Certificate Setup**.
Step 4 Select **Install ACS Certificate**. See Figure 3-32.
Figure 3-32 ACS Server Certificate

Step 5 Choose *Use certificate from storage* and enter the fully qualified domain name of the ACS server (*IMAC-MCS-21.identity.com* in this example). See Figure 3-33.
Step 6 Click **Submit**. See **Figure 3-34**.
Step 7 Restart the ACS to adopt the new settings.

ACS Certificate—Method 2

This method consists of the following:

1. Generate a Certificate Signing Request, page 3-39
2. Obtain a Server Certificate for the ACS Server, page 3-41
3. Configure ACS to Use the Server Certificate, page 3-45

Each of these steps is described in the sections that follow.

Note

Method 2 is an alternative to Method 1. There is no need to perform Method 2 if Method 1 was successful and vice versa.

Generate a Certificate Signing Request

In this step, ACS is used to generate a certificate signing request that can be used to acquire a certificate from the CA.

Step 1 Open ACS Admin from the desktop shortcut created during the installation.
Step 2 Click the System Configuration button.
Step 3 Select ACS Certificate Setup.
Step 4 Select Generate Certificate Signing Request. The Certificate Signing Request window will appear. See Figure 3-35.

Figure 3-35 Generating an ACS Certificate Signing Request

Step 5 Enter a Common Name (CN) for the certificate in the Certificate subject field with the format CN=<cert-name>.

Step 6 Under Private key file, enter the full path and file name for the private key file that will be downloaded with the certificate. Make a note of this file name as it will be required when configuring ACS to use this certificate.

Step 7 Enter a Private key password. Make a note of this password as it will be required when configuring ACS to use the private key file.

Step 8 Under Key length, select 1024.

Note While you can create the server certificate with key sizes larger than 1024, any key larger than 1024 does not work with EAP-PEAP. If there is any chance you will need to support EAP-PEAP in your network, do not select a key size greater than 1024.

Step 9 Click Submit.

Step 10 The encoded certificate signing request appears. Using the mouse to select the entire request (all the characters between MIIB and Dw== in Figure 3-36) and copy it to the clipboard on the ACS. This will be used in the next step when requesting a certificate from the CA. See Figure 3-36.
Obtain a Server Certificate for the ACS Server

In this step, the certificate signing request from the previous step is used to acquire a certificate and save it on the ACS server.

Step 1
Log into the ACS server with an account that has Enterprise Admin rights.

Step 2
On the local ACS machine, open a browser and point it to the Microsoft certification authority server at http://IP-address-of-Root-CA/certsrv. In the example below, the IP address is 10.100.10.114. Click Request a certificate. See Figure 3-37.
Deploying EAP-TLS

Figure 3-37 CA Web Interface

Welcome

Use this Web site to request a certificate for your Web browser, e-mail client, or other program. By using a certificate, you can verify your identity to people you communicate with over the Web, sign and encrypt messages, and, depending upon the type of certificate you request, perform other security tasks.

You can also use this Web site to download a certificate authority (CA) certificate, certificate chain, or certificate revocation list (CRL), or to view the status of a pending request.

For more information about Certificate Services, see Certificate Services Documentation.

Select a task:
- Request a certificate
- View the status of a pending certificate request
- Download a CA certificate, certificate chain, or CRL

Step 3 In the Certificate Request window, click advanced certificate request. See Figure 3-38.

Figure 3-38 Request a Certificate from the CA

Step 4 In the Advanced Certificate Request screen, click Submit a certificate request by using a base-64-encoded CMC or PKCS #10 file, or submit a renewal request by using a base-64-encoded PKCS #7 file. See Figure 3-39.
Step 5 In the Saved Request field, paste the text of the encoded certificate request that you generated in the previous step. Under Certificate Template, select Web Server. Click Submit. See Figure 3-40.
Figure 3-40 Submitting the Encoded Certificate Request

Step 6 The certificate is issued. Click **Download Certificate.** See Figure 3-41.

Figure 3-41 ACS Server Certificate is Issued
Step 7 A File Download Security Warning box appears. Click **Save**. In the **Save As** dialogue box, enter a name for the certificate and click **Save**. See Figure 3-42.

Figure 3-42 Saving the downloaded ACS certificate

Configure ACS to Use the Server Certificate

After the previous step, the ACS server has a server certificate in the local hard drive. Complete the following steps to configure ACS to use the server certificate.

Step 1 Open ACS Admin from the desktop shortcut created during the installation.

Step 2 Click the **System Configuration** button.

Step 3 Select **ACS Certificate Setup**.

Step 4 Select **Install ACS Certificate**.

Step 5 Select **Read certificate from file** and enter the full path and file name of the certificate file that you saved in the previous step (c:\MAC-ACS-21.cer in this example).

Step 6 Under **Private key file**, enter the full path and file name of the private key file that you entered when generating the certificate request in the first step of this Method (c:\MAC-ACS-21-Key in this example).

Step 7 Under **Private key password**, enter the private key password that you entered when generating the certificate request in the first step of this Method. See Figure 3-43.
Step 4: Configure EAP-TLS Settings on the ACS

Once the ACS has acquired a server certificate and installed it using either of the methods described in the previous step, the ACS can be configured for EAP-TLS.

Step 1 Open ACS Admin from the desktop shortcut created during the installation.
Step 2 Click System Configuration.
Step 3 Click Global Authentication Setup.
Step 4 Check Allow EAP-TLS and all of the Certificate comparison options underneath it. See the “Certificate Comparison Explained” section on page 3-47 for more information on these options.
Step 5 Leave the EAP-TLS Session Timeout value at the default value. See the “EAP-TLS Session Timeout Explained” section on page 3-49 for more information about this option. See Figure 3-44.
Step 6 Click Submit and Restart.

Certificate Comparison Explained

When a client presents a valid certificate (properly signed by a trusted root CA and neither expired nor revoked), the ACS knows the identity of the user (or host) attempting to gain access. However, the ACS does not know if the user is permitted onto the network. For that, ACS must verify that the user exists in the user database (either the local ACS database or an external database). This would be straightforward except for the fact that the user’s certificate might list the user’s name in different fields in different formats in the certificate (this depends on the certificate template of the CA that issued the certificate). ACS provides three comparison options to allow any or all of these name fields to be checked against the user database:

- Certificate SAN Comparison uses the Subject Alternative Name when querying the user database. If the user certificate does not contain a SAN, then this method cannot be used. In Figure 3-44, the Subject Alternative Name in the certificate is Administrator@identity.com.
Certificate CN Comparison uses the Common Name (CN) in the Subject field of the certificate. In Figure 3-45, the Common Name is Administrator.
Certificate Binary Comparison compares the entire certificate in binary format to the user certificate in the LDAP server or Active Directory. You cannot use this comparison method to authenticate users in an ODBC external user database or the local user database.

Whichever method is selected, the information in the appropriate field (CN or SAN) must match the name that your database uses for authentication. Review these fields in your certificate templates to ensure that they match to valid usernames in your user database.

If more than one comparison method is checked, ACS will start with the first method. If that method fails, ACS will try the next method. The first method that passes will result in a successful authentication. The authentication will fail only when all enabled methods fail. Enabling all three Comparison methods maximizes the ACS’s ability to correctly locate users in the user database.

EAP-TLS Session Timeout Explained

ACS supports an EAP-TLS session resume feature that caches the TLS session created during a new EAP-TLS authentication. When an EAP-TLS client reconnects, the cached TLS session is used to restore the session without performing a certificate comparison, which improves EAP-TLS performance. ACS deletes cached TLS sessions when they time out.

Session resume is most appropriate in wireless environments where endpoints need to rapidly reauthenticate when roaming. The mechanism works the same way in wired environments, but the optimization is less important and it can be disabled without impacting the network. To disable the session resume feature, set the timeout value to 0 (zero).
Chapter 3 Configuring 802.1X

Step 5: Specify and Configure the Catalyst Switch as a AAA Client

Complete the following steps to configure the ACS to accept RADIUS requests from the authenticator.

Step 1
On the ACS server, open ACS Admin from the desktop shortcut created during the installation.

Step 2
Click **Network Configuration**. See Figure 3-47.

Figure 3-47 ACS Network Configuration

![ACS Network Configuration](image)

Network Configuration

Select:

<table>
<thead>
<tr>
<th>AAA Clients</th>
<th>AAA Client Hostname</th>
<th>AAA Client IP Address</th>
<th>Authenticate Using</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4503</td>
<td>10.100.10.4</td>
<td>RADIUS (Cisco IOS/PIX 6.0)</td>
</tr>
<tr>
<td></td>
<td>5503</td>
<td>10.100.10.2</td>
<td>RADIUS (Cisco IOS/PIX 6.0)</td>
</tr>
<tr>
<td></td>
<td>imac-3750-2</td>
<td>10.100.30.3</td>
<td>RADIUS (Cisco IOS/PIX 6.0)</td>
</tr>
</tbody>
</table>

AAA Servers

<table>
<thead>
<tr>
<th>AAA Server Name</th>
<th>AAA Server IP Address</th>
<th>AAA Server Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAC-MCS-21</td>
<td>10.100.10.121</td>
<td>CiscoSecure ACS</td>
</tr>
</tbody>
</table>

Proxy Distribution Table

<table>
<thead>
<tr>
<th>Character String</th>
<th>AAA Servers</th>
<th>Strip</th>
<th>Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Default)</td>
<td>IMAC-MCS-21</td>
<td>No</td>
<td>Local</td>
</tr>
</tbody>
</table>

Step 3
Click **Add Entry** under the **AAA Clients** table to add an authenticator.

Step 4
See Figure 3-48. For the **AAA Client Host Name**, enter the name of the Catalyst switch authenticator.

Step 5
For **AAA Client IP Address**, enter the IP address of the Catalyst switch authenticator.

Step 6
For **Key**, enter the same RADIUS key configured on the Catalyst switch.

Step 7
For the **Authenticate Using** option, select **RADIUS (Cisco IOS/PIX 6.0)**.
Step 6: Configure the External User Databases

EAP-TLS is commonly deployed in networks where user credentials are stored in an external user database such as Active Directory. That configuration is described in detail in the following section. See the ACS Configuration Guide for detailed information on configuring external user databases other than Active Directory.

Note
Although this configuration example uses Active Directory as an external user database, EAP-TLS by itself does not always require the use of an external user database. The internal ACS database can be used as long as the Certificate Binary Comparison method is not selected as the only option in the Global Authentication configuration for EAP-TLS. If Certificate Binary Comparison is the only comparison method allowed when using the internal user database, a failed authentication will result. The ACS Failed Authentication report will show Certificate name or binary comparison failed.
Note

A bug in ACS 4.1.3 Build 12 prevents CN Comparison from working with the local database: CSCsj97652.

Step 1

Click **External User Databases** on the main menu. In the **External User Databases** menu, select **Unknown User Policy**. See Figure 3-49.

Figure 3-49 External User Databases

- **Step 2**

See Figure 3-50. In the **Configure Unknown User Policy** section, select the **Check the following external user databases** radio button. Move the **Windows Database** option from the **External Databases** column to the **Selected Databases** column. Click **Submit**.
Step 3 Select the Database Configuration option from the External User Databases menu. In the External User Database Configuration section, select the Windows Database option. See Figure 3-51.
Step 4

See Figure 3-52. Click the **Configure** button in the *External User Database Configuration* section.
Step 5 See Figure 3-53. Scroll down to the Machine Authentication section and check the Enable EAP-TLS Machine Authentication box. Click Submit.

Note The Enable EAP-TLS machine authentication box is checked to enable machine authentication using machine certificates with EAP-TLS; the option is configured for this scenario because the supplicant is configured, in the next section, to use a machine account profile.
Client Configuration for EAP-TLS

This section provides the following descriptions:

- Installation of Client Certificates, page 3-56
- CSSC Configuration, page 3-82
- Windows XP Client Configuration, page 3-106

Installation of Client Certificates

In EAP-TLS, the 802.1X supplicant authenticates itself to the ACS by presenting a client certificate that is signed by a root CA that the ACS also trusts. The ACS in turn authenticates itself to the client by presenting a certificate that is signed by a root CA that the client trusts. Therefore, every host and user that wishes to authenticate via EAP-TLS must possess two certificates:

- Certificate Authority (CA) Root Certificate (to validate the ACS certificate)
- Client Certificate signed by the CA (to send to the ACS)

Deploying these certificates to the end user or host is required regardless of whether you are using the Cisco Secure Services Client (CSSC), the Windows XP native supplicant, or some other 802.1X client software. The installation of certificate is independent of the supplicant deployment process.
If the end host will be performing machine authentication and user authentication, then at least two client certificates will be required (one for the machine and one for every user who will log into that machine). The root CA certificate will must be installed in the user's Trusted Root certificate store and in the machine’s Trusted Root certificate store.

Certificates Required for Machine Authentication

The following sections describe how to verify and install the certificates needed to successfully complete machine authentication.

Note

To verify and/or manipulate machine certificate stores, you must be logged into the machine as an Administrator.

Verifying Machine Root CA Certificate

When a user logs into a computer in the Microsoft domain, the Windows operating system will automatically retrieve the Enterprise CA Root Certificate from the Enterprise Root CA as a result of the Active Directory default Group Policy. Therefore, the client will most likely already have the Enterprise CA Root Certificate in the Trusted Root folder of the machine certificate store.

To verify that the client has the Enterprise CA Certificate in machine certificate storage, follow these steps on the client PC.

Step 1
Choose Start > Run, type mmc, and click OK.

Step 2
On the File menu, click Add/Remove Snap-in and then click Add.

Step 3
On the Add Standalone Snap-in, double-click Certificates. Select Computer Account and click Next.

Note
If Computer Account is not listed, you do not have Administrative rights on this machine. Logoff and log back in using an Administrator's account credentials.

Step 4
Under Select Computer, select Local Computer and click Finish.

Step 5
On the Add Standalone Snap-in window, click Close.

Step 6
On the Add/Remove Snap-in window, click OK.

Step 7
On the Console, select Certificates (Local Computer) > Trusted Root Certification Authorities > Certificates.

Step 8
Locate the Enterprise Root CA Certificate in the list (imac-mcs-14 in Figure 3-54). If the certificate is listed, no further action is necessary. Proceed to downloading the client certificate in the “User Client Certificate” section on page 3-71. If the certificate is not listed, follow the instructions for manually downloading the CA certificate.
Manually Downloading CA Certificate in Local Machine Store

Step 1 On the client, point the browser at the Microsoft CA server: http://CA-srv-ip /certsrv.

Step 2 From the Select a Task option choose Download a CA certificate, certificate chain or CRL.

Step 3 Click Download CA Certificate. See Figure 3-55.
Step 4 A File Download Security Warning window appears. Click Open.

Step 5 A Certificate Installation window appears. Click Install Certificate. See Figure 3-56.

Step 7: Select Place all certificates in the following store and click Browse. See Figure 3-57.
Note

The first option, Automatically select the certificate store, will install the root certificate in the Current User Trusted Root Certificate Authorities, not the Local Computer Trusted Root Certificate Authorities. The certificate must be in the Local Computer store for ACS to access it.

Step 8

In Select Certificate Store window, select Show physical stores. Expand Trusted Root Certificate Authorities and select the Local Computer folder. Click OK. See Figure 3-58.

Figure 3-58 Select Certificate Store

Step 9
Click Next and Finish.

Step 10
Verify that the certificate has been properly installed by repeating the steps in “Step 1: Obtain and Install the Root CA Certificate on Cisco Secure ACS” section on page 3-11.

Machine Client Certificate

When a computer joins a Microsoft domain, the Windows operating system will automatically retrieve the machine client certificate from the Enterprise Root CA as a result of the Active Directory default Group Policy. Therefore, the computer will most likely already have a Client Certificate in the Personal Folder of the Local Computer certificate store. If this is not the case, machine certificates can also be acquired manually from the client itself either via MMC.

Verify Machine Client Certificate

Note
Only users with Administrative rights can view the machine certificate store.

Step 1
Choose Start > Run, type mmc, and click OK.
Step 2
On the File menu, click Add/Remove Snap-in and then click Add.
Step 3
Under Snap-in, double-click Certificates. Select Computer Account and click Next.
Step 4
Under Select Computer, select Local Computer and click Finish.
Step 5
On the Add Standalone Snap-in window, click Close.
Step 6
On the Add/Remove Snap-in window, click OK
Step 7
On the Console, select Certificates (Local Computer) > Personal > Certificates.
Step 8 Locate the machine client certificate in the list (IMAC-MCS-4.identity.com in Figure 3-59) and verify that it is issued by the appropriate CA (imac-mcs-14 in Figure 3-59). If the certificate is listed, no further action is necessary.

If the certificate is not listed, there are two options: Auto enrollment via Group Policy or certificate download via MMC. To determine which is appropriate, verify on the Windows Domain Controller that the default Group Policy supports machine certificate auto-enrollment. Auto-enrollment via Group Policy is the most efficient and scalable way to distribute machine client certificates. If auto-enrollment is not supported or cannot be configured, the machine client certificate can be downloaded via MMC. These procedures are described in the following sections.

Using Group Policy to Download Client Certificates for Machine Authentication (Preferred for Enterprise CAs)

The following steps outline how to configure the default Group Policy to enable auto-enrollment for machine certificates.

Step 1 On the Active Directory Domain Controller, open the Active Directory Users and Computers snap-in.

Note This can be performed on any Domain Controller in the domain.

Step 2 In the console tree, double-click Active Directory Users and Computers, right-click the domain, and then click Properties. See Figure 3-60.
Step 3 On the **Group Policy** tab, click **Default Domain Policy**, and then click **Edit**. See Figure 3-61.

Figure 3-60 Active Directory Domain Properties

Figure 3-61 Group Policy Properties
Chapter 3 Configuring 802.1X

Strictly Cisco Confidential

![Figure 3-62 Configuring an Automatic Certificate Request](image)

Step 5 The Automatic Certificate Request Setup Wizard will launch. Click *Next*. See Figure 3-63.
Step 6 On the Certificate Template page, click Computer and click Next. See Figure 3-64.

Step 7 On the Completing the Automatic Certificate Request Setup Wizard page, click Finish. The Computer certificate type now appears in the details pane of the Group Policy Object Editor snap-in. See Figure 3-65.
Deploying EAP-TLS

Chapter 3 Configuring 802.1X

Identity Baseline 802.1X Configuration Guide

Figure 3-65 Newly Created Certificate Request

Step 8 Refresh the machine group policy on the client PC. This can be accomplished by rebooting the PC or by issuing the `gpupdate` command in a DOS window as shown in Figure 3-66.

Figure 3-66 Updating the Group Policy on the Client PC

Manually Downloading the Machine Client Certificate via MMC

In a Windows domain environment, the machine client certificate will typically already be in the Windows user certificate storage as a result of the default Group Policy. However, there may be some situations when it is not. If the certificate does not appear in the machine store list, the certificate can be downloaded manually using the following steps.
Note

Using Group Policy to deploy the root CA certificate as described in the previous section is a much more scalable and manageable process and is preferable in most circumstances.

Step 1
Choose Start > Run, type mmc, and click OK.

Step 2
On the File menu, click Add/Remove Snap-in and then click Add.

Step 3
Under Snap-in, double-click Certificates. Select Computer Account and click Next.

Step 4
Under Select Computer, select Local Computer and click Finish.

Step 5
On the Add Standalone Snap-in window, click Close.

Step 6
On the Add/Remove Snap-in window, click OK.

Step 7
In the Certificates window, right click Personal. Select All Tasks > Request New Certificate.

Step 8
Click Next on the Certificate Type window.

Step 9
Enter a friendly name and description. Click Next.

Step 10
Click Finish.

Certificates Required for User Authentication

The following sections describe how to verify and install the certificates needed to successfully complete user authentication.

Verify User Root CA Certificate

When a user logs into a computer in the Microsoft domain, the Windows operating system will automatically retrieve the Enterprise CA Root Certificate from the Enterprise Root CA as a result of the Active Directory default Group Policy. Therefore, the client will most likely already have the Enterprise CA Root Certificate in the Trusted Root folder of the user certificate store.

To verify that the client has the Enterprise CA Certificate in user certificate storage, follow these steps on the client PC.

Step 1
Choose Start > Run, type mmc, and click OK.

Step 2
On the File menu, click Add/Remove Snap-in and then click Add.

Step 3
Under Snap-in, double-click Certificates. Select My User Account and click Finish.

Step 4
On the Add Standalone Snap-in window, click Close.

Step 5
On the Add/Remove Snap-in window, click OK.

Step 6
On the Console, select Certificates (Current User) > Trusted Root Certification Authorities > Certificates.

Step 7
Locate the Enterprise Root CA Certificate in the list (imac-mcs-14 in Figure 3-67). If the certificate is listed, no further action is necessary. Proceed to downloading the client certificate in “Verifying Machine Root CA Certificate” section on page 3-57.
If the certificate is not listed, follow the instructions for manually downloading the CA certificate.

Manually Downloading the Root CA Certificate

In a Windows domain environment, the CA’s root certificate will typically already be in the Windows user certificate storage. However, there may be some situations when it is not. If the root CA Certificate does not appear in the user store list, the certificate can be manually downloaded by the following steps.

Note

Using the default Group Policy to deploy the root CA certificate is a much more scalable and manageable process and is recommended in most circumstances.

Step 1
On the client, point the browser at the Microsoft CA server: http://CA-srv-ip/certsrv.

Step 2
From the *Select a Task* option choose *Download a CA certificate, certificate chain or CRL*.

Step 3
Click *Download CA Certificate*. See Figure 3-68.
Step 4 A File Download Security Warning window appears. Click **Open**.

Step 5 A Certificate Installation Window appears. Click **Install Certificate**. See Figure 3-69.
Step 6 The Certificate Import Wizard opens. Click Next.

Step 7 Select Automatically select the certificate store based on the type of certificate and click Next. See Figure 3-70.

Figure 3-70 Automatically Select Certificate Store
Step 8 Click Finish.

Step 9 The CA Root certificate should now be in the Trusted Root folder of the User certificate store.

User Client Certificate
The most efficient and scalable way to download client certificates for user authentication is to configure the Group Policy in Active Directory to automatically download the client certificates. Client certificates can also be acquired manually from the client itself, either via the MMC or via Web enrollment. All three methods are described in the following section.

Note

Method 1: Using Group Policy to Download Client Certificates for User Authentication (Preferred for Enterprise CAs)
There are two steps for automating user certificate enrollment in a Windows environment. The first step is to create a user certificate template that has auto-enrollment enabled. The second step is to modify the default Group Policy to enable user auto-enrollment on the end host. These and subordinate steps are summarized in the following procedure.

Step 1 Create User Auto-Enroll Certificate Template on the Enterprise Root CA.

Unlike the default machine certificate template, the default User certificate template in the Microsoft CA is not enabled for auto-enrollment. In order to enable user auto-enrollment, you must create a duplicate User certificate template with auto-enrollment enabled.

Install the Certificate Templates Snap-in
On the Enterprise CA or the Domain Controller (either can be used to configure templates), complete these steps:

1. Choose Start > Run, type certtmpl.msc to open the Certificate Templates snap-in.
2. In the Details pane of the Certificate Templates snap-in, right-click the User template and select Duplicate Template. See Figure 3-71.
3. In the Template display name field of the General tab, enter the text User Auto-Enrollment. This will be the name of the template. See Figure 3-72.

Figure 3-72 User Auto-Enrollment Template: General Tab

![User Auto-Enrollment Template: General Tab](image-url)
4. Go to the Subject Name tab, choose **Build from this Active Directory information**. Select Common name from the drop-down menu for **Subject name format**. Under **Include this information in alternate subject name**, check **E-mail name** and **User principal name (UPN)**. Click **OK**. See Figure 3-73.

Figure 3-73 User Auto-Enrollment Template: Subject Name Tab

5. Go to the Security tab, highlight the **Domain Users Group** and ensure that the **Auto-Enroll** option is checked under **Allowed**. See Figure 3-74.
6. Click **OK** to save the template and move onto issuing this template from the *Certificate Authority* snap-in.

Enabling the New User Auto Enrollment Certificate Template

Complete these steps:

1. On the Enterprise CA server, open the Certification Authority by choosing **Start > All Programs > Administrative Tools > Certification Authority**.

2. In the console tree, click the name of the CA *(imac-mcs-14 in Figure 3-75)* to expand the certificate list. Right-click **Certificate Templates**, Choose **New > Certificate Template to Issue**. A list of un-issued templates appears. Highlight the **User Auth-Enrollment Certificate Template** and click **OK**.
3. Verify that the User Auto-Enrollment template is listed in the Certificate Templates folder as shown in Figure 3-76.

Figure 3-75 Issuing a New Certificate from the Certification Authority

Figure 3-76 Verify that the User Auto-Enrollment Certificate Has Been Issued

Step 2 Using Group Policy to Download Client Certificates for User Authentication.

Once a User Auto-Enrollment Certificate template has been created, modify the default Group Policy to enable User Auto Enrollment as described below.

2. In the console tree, double-click Active Directory Users and Computers, right-click the domain, and then click Properties. See Figure 3-77.
3. On the **Group Policy** tab, click **Default Domain Policy**, and then click **Edit**. See Figure 3-78. This opens the **Group Policy Object Editor** snap-in. See Figure 3-79.
Figure 3-78 Default Domain Policy

4. In the console tree, expand *User Configuration > Windows Settings > Security Settings > Public Key Policies*. See Figure 3-79.

Figure 3-79 Group Policy User Configuration

5. In the details pane, double-click *Auto-enrollment Settings*.
6. See Figure 3-80. Choose Enroll certificates automatically and check Renew expired certificates, update pending certificates and remove revoked certificates and Update certificates that use certificate templates.

Figure 3-80 User Auto-Enrollment Properties

7. Click OK. A client certificate should automatically be downloaded the next time the user logs into a machine. It can also be triggered by issuing the gpupdate command in a DOS window or rebooting the PC. Proceed to the sections for configuring the XP or CSSC client.

Method 2: Using MMC to Download User Certificate

If Active Directory cannot be used to automatically distribute user certificates as described in the previous section, then the certificate can be manually downloaded using the Microsoft Management Console (MMC) on the client.

Note

The client must have sufficient network connectivity to contact the Domain Controller and the Certificate Authority in order to download a certificate.

1. Log into the client with the Windows user credentials of the user for whom a certificate is to be downloaded.
2. On the client, choose Start > Run, type mmc, and click OK.
3. On the File menu, click Add/Remove Snap-in and then click Add.
5. On the Add Standalone Snap-in window, click Close.
6. On the Add/Remove Snap-in window, click OK
7. On the Console, select Certificates (Current User) > Personal > All Tasks > Request New Certificate. See Figure 3-81.

9. Under Certificate type, select User and click Next. See Figure 3-82.

Figure 3-82 Certificate Request Wizard

If there is more than one CA chain in the Active Directory domain, select Advanced instead of User. The wizard will give you an opportunity to select from all the CAs known to the Domain Controller.

10. Enter a friendly name and description for the certificate and click Next.
Chapter 3 Configuring 802.1X

Deploying EAP-TLS

Note

The *friendly name* is a separate field from the common name and subject alternative name of the certificate. The certificate will be issued to the user who is logged into the PC making the request.

11. Click **Finish**. The user certificate will be added to the store.

Method 3: Download User Certificates via Web Enrollment

If Active Directory Group Policy cannot be used to automatically distribute user certificates, then the certificate can be manually downloaded using the Web interface on the CA. Web enrollment is equivalent to using MMC to manually download the certificate. The choice of one method over the other depends largely on end-user preference.

1. On the client, open a browser and point the browser at the Microsoft CA server: http://CA-srv-ip/certsrv.

Note

IIS must be installed on the Certificate Authority for Web Enrollment to succeed. If browsing to the CA server results in a *404 file not found* error, verify that IIS is installed on the CA.

2. A Windows login screen appears. Enter the *username*, *domain* and *password* for the user requesting a certificate. The Windows CA Web page appears.

3. From the *Select a Task* option, choose **Request a Certificate**. See **Figure 3-83**.

Figure 3-83 Windows CA Web Interface

4. Under *Select the certificate type*, click **User Certificate**. See **Figure 3-84**.
5. Click **Submit**. See Figure 3-85.

6. A **Potential Scripting Violation** window appears. Click **Yes**. The **Certificate Issued** window appears. Click **Install this Certificate**. See Figure 3-86.
7. Click Yes if the Potential Scripting Violation window appears again. A confirmation of the certificate installation will appear. See Figure 3-87.

CSSC Configuration

The steps provided in this section explain how to configure the Cisco Secure Services Client (CSSC) for EAP-TLS authentication on wired LAN networks.

Note

CSSC version 5.0.1.8 is running on Windows XP operating system with Service Pack 2.

Note

Prior to configuring CSSC, validate that the correct certificates exist in the Windows certificate stores as described in previous sections.

There are three components required to install and configure CSSC:

1.
CSSC client image (CSSC_SSC-XP2K)—802.1X client software that runs on the end host.
- Client Utilities (CiscoClientUtilities)—Troubleshooting tool that runs on the end host.
- Client Management Utility (SSCMgmtToolkit)—Management utility that configures user profiles that can be distributed to the entire organization through a single Extensible Markup Language (XML) file. This utility is typically run on a centralized server. For testing purposes, it can be run on the end client to modify and test the supplicant configuration on the fly.

Note
The CSSC Management Utility does not address client-side certificate management and distribution. Those tasks must be accomplished using Active Directory Group Policies or some other mechanism as described in previous sections. Client-side certificates are required for EAP-TLS.

This section discusses how to use the Management Utility to configure an EAP-TLS profile for the CSSC client. Once created, the user profiles can be bundled with the client image into an .msi file which can be deployed using standard deployment tools, including Microsoft Active Directory GPOs, SMS, Altiris, and Novell Zenworks.

Step 1 Create a New Configuration Profile.

1. Click sscManagementUtility.exe to access the welcome page. Select _Create New Configuration Profile_. See _Figure 3-88_.

Figure 3-88 Cisco SSC Management Utility Window

2. Select _Cisco SSC 5.0_. See _Figure 3-89_.

Figure 3-89 Cisco SSC Management Utility Window

- *Welcome to Enterprise Deployment Configuration*
 - This Enterprise Deployment Wizard for Cisco SSC enables network and desktop administrators to centrally configure, deploy, and manage the Secure Services Client in an enterprise environment.
 - *Offers end users a hassle-free networking experience.*
Figure 3-89 Select Cisco SSC Version Window

Step 2 Configure Client Policy.

In the Client Policy window, enter the license. Select Attempt connection after user logon and select Allow Wired (802.3) Media. See Figure 3-90.
Note

The *Attempt connection after user logon* setting enables the user to login to Windows before CSSC initiates 802.1X user authentication. This setting is important because of the way user certificates are stored in Windows. In the Windows operation system, the user must login to Windows before the user certificate storage can be accessed. Since the user certificate is required for user authentication with EAP-TLS, the Windows login must occur first if SSC is to be able to present a valid credential during the 802.1X authentication. If the machine authenticated previously, the user will login to the Windows domain on the VLAN that was enabled (or assigned) as a result of machine authentication. If machine authentication was not enabled or was unsuccessful, the user will login to the local machine using cached credentials.

Step 3

Configure Authentication Policy.

In the *Authentication Policy* window, select *EAP TLS* under *Allowed Authentication Modes* and click *Next*. See Figure 3-91.
Step 4 Create a New Group.

1. In the Networks window, create a new group by clicking Add Group. See Figure 3-92.
2. Enter a name for the new group and click OK. See Figure 3-93.

Figure 3-93 User Group Window

Step 5 Add a Network to the Group.

1. In the main Networks screen, use the Up arrow button on the right side of the screen to move the group that was just created (EapTlsWired) above the Default group. Select EapTlsWired and click Add Network. See Figure 3-94.
2. In the *Network Media* window, select *Wired (802.3) Network* and click **Next**. See Figure 3-95.
3. Provide a name for the profile and specify the *Authenticating Network* option. Leave the default *Connection Timeout* at 40 seconds. See Figure 3-96.
4. Leave the default Connection Settings and click **Next**. See Figure 3-97.
5. Select the type of authentication scenario. To perform machine authentication and user authentication, select the *Machine and User Connection* radio button. Clicking **Next** will initiate *Machine Authentication* configuration. See **Figure 3-98**.
Step 6 Configure Machine Authentication Parameters.

1. In the Machine Authentication window, select EAP-TLS and click the Configure button. See Figure 3-99.
2. In the EAP-TLS Settings window, select Validate Server Certificate. Deselect Enable Fast Reconnect because this feature is not required for wired scenarios. Fast Reconnect is the equivalent of session resume in Cisco Secure ACS. Click Ok. See Figure 3-100.

3. The configuration utility returns to the Machine Authentication screen. Click Next. See Figure 3-101.
Figure 3-101 Machine Authentication Window

4. [Optional] See Figure 3-102. The Machine Server Validation window can be used to restrict the ACS servers from which the client will accept a certificate authentication during machine authentication. If no Rule is added in this window, the client will accept any server certificate that has been signed by a trusted root CA.
5. [Optional] If desired, use this window to restrict which root CAs the client will trust to sign the ACS server certificate. Click **Next** to accept the default setting. See **Figure 3-103**.
6. In the *Machine Credentials* window, add `{domain}` to the *Unprotected Identity Pattern*. The Unprotected Identity Pattern refers to the identity that will be sent in the Identity field in the EAP messages. The client will replace `{username}` with the machine name and `{domain}` with the complete domain name. The *Machine Credentials* option instructs the client to use the machine certificate provided by Microsoft Active Directory. See Figure 3-104.
Chapter 3 Configuring 802.1X

Deploying EAP-TLS

Figure 3-104 Machine Credentials Window

7. Click **Next** to begin configuring User Authentication.

Step 7 Configure User Authentication.

1. In the **User Authentication Method** window, select **EAP-TLS** and click **Configure**. See Figure 3-105.
2. Check Validate Server Certificate and disable Fast Reconnect. Return to the main User Authentication window by clicking OK. See Figure 3-106.

Figure 3-106 EAP TLS Settings Window

3. In the main User Authentication Method window, click Next. See Figure 3-107.
4. [Optional] The User Server Validation window can be used to restrict the ACS servers from which the client will accept a certificate authentication during user authentication. If no Rule is added in this window, the client will accept any server certificate that has been signed by a trusted root CA. See Figure 3-108.
5. [Optional] If desired, use this window to restrict which root CAs the client will trust to sign the ACS server certificate during user authentication. Click **Next** to accept the default setting. See Figure 3-109.
6. In the *User Credentials* window, leave `[username]` as the unprotected identity. CSSC will substitute the username from the certificate during user authentication. Select *Prompt for Credentials* and click **Finish**. The Validation window will appear. See Figure 3-110.
Step 8 Validate Configuration.

1. Verify that the group *(EapTlsWired)* has been successfully created with the configured profile *(802.1X_TLS)*. Click Next. See Figure 3-111.
Figure 3-111 Verifying Group Creation in Networks Window

2. In the Validation window, click **Finish** to save the configuration files. The Processed Configuration file `configuration.xml` can be deployed to the client (this will happen automatically if the Management Utility is running on the same machine as the client software). The Unprocessed Configuration file `unprocessed_configuration_do_not_deploy.xml` should only be used to modify this profile as described in the following step. See Figure 3-112.
Step 9 Modify Configuration.

1. To modify the configuration that was just created, return to the main screen of the **Management Utility** and click **Modify Existing Configuration Profile**. See **Figure 3-113**.
2. Select the unprocessed configuration file created earlier. Click **Next**. See **Figure 3-114**.
3. The Client Policy window appears with the previously configured settings. Step through the configuration and make any modifications. At the end of the profile validation, a new configuration.xml file will be created and can be deployed to the client.

Windows XP Client Configuration

The steps provided in this section explain how to configure the Windows XP native supplicant for EAP-TLS authentication on wired LAN networks.

Note

The native client is running on Windows XP Service Pack 2.

Prior to configuring the Windows XP supplicant, validate that the correct certificates exist in the Windows certificate stores as described in “Client Configuration for EAP-TLS” section on page 3-56.

Configure IEEE 802.1X Parameters

Step 1
To configure the IEEE 802.1X parameters, click Start > Control Panel, and the select Network and Internet Connections. Next, select Network Connections, then open the correct Local Area Connection Properties menu.

Step 2
From the Local Area Connection Properties window, select the Authentication tab. See Figure 3-115.
Figure 3-115 Select Authentication Tab

If the Authentication tab is not displayed, click Start > All Programs > Administrative Tools > Services. Right-click Wireless Zero Configuration and select Start.

Step 3 Check the Enable IEEE 802.1X authentication for this network box. Select Smart Card or Other Certificate from the drop-down menu for the EAP type. See Figure 3-116.
Figure 3-116 Enable 802.1X Authentication

Step 4 Click Properties. The Certificate Properties window appears. See Figure 3-117.
Step 5 The top box on the Certificate Properties window refers to client-side certificates. Select Use a certificate on the computer and check Use simple certificate selection.

Note During EAP-TLS authentication, the user might be prompted to choose a certificate if multiple personal certificates have been issued to that user and are present in the local certificate storage. When simple certificate selection is enabled, Windows presents a simplified list of certificates when prompting the user. The certificates that are usable for EAP-TLS authentication are grouped by the user that was issued the certificate based on the Subject Alternative Name and Subject fields of the certificates. When Use a certificate on this computer is selected, simple certificate selection is enabled by default.

Step 6 The lower box on the Certificate Properties window configures how the client will process the certificate presented by the authentication server. Select Validate Server Certificate.

Tip If EAP-TLS authentication fails with Validate Server Certificate checked, but passes when this option is unchecked, this indicates that client does not have the root certificate of the CA that signed the ACS’s certificate in the proper Trusted Root Authority store.

Step 7 [Optional] By default, the supplicant will accept any valid server certificate that has been signed by a trusted root CA. To restrict the server certificates that a supplicant will accept, check the Connect to These Servers box and enter the common name (CN) of the servers that the supplicant should accept. If the authentication server presents a server certificate with a CN that is not listed, the end user will be prompted to accept the unknown CN. If the user clicks OK, then the CN will be automatically added to the trusted servers list and the user will not be prompted again.

Step 8 Click OK in the Certificate Properties window to return to the main Authentication tab window.
Step 9 Check Authenticate as computer when computer information is available to enable machine authentication.

Step 10 Leave the Authenticate as Guest option unchecked. Click OK.

Note Enabling the Authenticate as Guest option can cause unpredictable behavior with EAP-TLS and has no effect on other EAP methods. Leave the option unchecked.

Step 11 The supplicant will begin authentication.

Machine Authentication, EAP-TLS & User Certificate Auto-Enroll

It is possible for a user with valid Windows credentials to log into a machine that does not have a certificate for the user. For example, suppose Alice logs into Bob’s PC. Alice has a valid Window’s username and password which allow her to log into the PC at the Windows GINA. At this point, the supplicant begins 802.1X user authentication by sending an EAPoL-Start to the authenticator (assuming that the SupplicantMode registry setting has been set as recommended previously). The authenticator sends an Identity Request, but the supplicant cannot find a certificate for Alice in the user certificate storage. The supplicant will ignore the Identity Request and not send any more messages. The authenticator, knowing there is an 802.1X-capable supplicant on the port, retries authentication indefinitely. Since the PC cannot get access to the network to acquire a certificate for Alice, Alice is permanently denied access to the network. This may not be the desired behavior. One option in this situation is to configure `dot1x guest-vlan supplicant` on the authenticator. This command instructs the authenticator to move the port to the guest VLAN when the 802.1X supplicant becomes non-responsive in this scenario.

Another option is to leverage the network connectivity provided by machine authentication to do certificate auto-enrollment for the user. If machine authentication is enabled, a PC that has previously completed machine authentication will remain connected to the network for a brief period of time after a user without a certificate has logged into the Windows GINA. This only occurs if a user enters a valid Windows username and password, but has no certificate on the machine. Without the valid username and password, the user would not have been able to log into the machine in the first place. After the valid user logs into the Windows GINA, the supplicant will send an EAPoL-Start message and the switch will send three EAP-Request messages. During this period, the user has the same network access as the machine did after machine authentication. With the default 30-second timeout for each EAP Request message, this results in a 90-second window during which the switch allows the device to send packets to the network.

In some situations, the behavior of the Windows XP supplicant can be beneficial for user certificate auto-enrollment in a network that has 802.1X enabled. Depending on the configuration of the network, the 90 seconds of access might be enough for the user to update the group policy and auto-enroll a user certificate. If the user successfully acquires a certificate during this period, then the supplicant can subsequently authenticate using EAP-TLS and the user will continue to have access to the network. If the user cannot acquire a certificate, the switch will move the port to the default security status (deny all packets except EAPoL or deploy the Guest VLAN if configured) after 90 seconds.

Using the Guest VLAN to provide access to users without certificates and using the machine-authentication access window to auto-enroll user certificates are both valid design options. Security and guest access policies will help determine which one is best for any particular network.
Deploying PEAP-MSCHAPv2

The section describes how to configure PEAP-MSCHAPv2 on the ACS and on the supplicant. The password used for MSCHAPv2 is acquired from the user when he or she logs into Windows (Single Sign-On). ACS verifies this password with the user password stored in Active Directory. PEAP-MSCHAPv2 deployment is presented as a series descriptions in the following two primary sections:

- Authentication Server Configuration for PEAP-MSCHAPv2, page 3-111
- Client Configuration for PEAP-MSCHAPv2, page 3-113

Authentication Server Configuration for PEAP-MSCHAPv2

There are multiple steps to complete when configuring the Cisco ACS to act as the Authentication Server for IEEE 802.1X PEAP-MSCHAPv2 authentications. The following steps are addressed in the sections that follow:

- Step 1: Obtain the Root CA Certificate on ACS, page 3-111
- Step 2: Configure Certificate Revocation, page 3-111
- Step 3: Obtain and Configure a Server Certificate for the ACS Server, page 3-111
- Step 4: Configure PEAP-MSCHAPv2 Settings on the ACS, page 3-112
- Step 5: Specify and Configure the Catalyst Switch as a AAA Client, page 3-113
- Step 6: Configure the External User Databases, page 3-113

Once Step 6 is completed, you must restart the Cisco ACS-based service.

Note

These instructions are for Cisco Secure ACS on Windows. There is also an appliance version of ACS called the Solution Engine (SE). SE has functional and configuration differences compared with the ACS for Windows version, especially in the area of certificate management.

Step 1: Obtain the Root CA Certificate on ACS

The procedure is the same as described in the EAP-TLS section. See “Step 1: Obtain and Install the Root CA Certificate on Cisco Secure ACS” section on page 3-11 for details.

Step 2: Configure Certificate Revocation

The procedure is the same as described in the EAP-TLS section. See “Step 2: Configure Certificate Revocation” section on page 3-21 for details.

Step 3: Obtain and Configure a Server Certificate for the ACS Server

The procedure is the same as described in the EAP-TLS section. See “Step 3: Acquire and Configure Cisco Secure ACS Server Certificate” section on page 3-23 for details.
Step 4: Configure PEAP-MSCHAPv2 Settings on the ACS

The PEAP-MSCHAPv2 settings are configured on the Global Authentication Setup window on the ACS.

Step 1 Open ACS Admin from the desktop shortcut created during the installation.

Step 2 Click System Configuration.

Step 3 Click Global Authentication Setup. See Figure 3-118.

![System Configuration](ACS-PEAP-Config.bmp)

Step 4 Under PEAP, check Allow EAP-MSCHAPv2.

Note The Cisco client initial message is for Cisco Aironet clients only and is not applicable for CSSC or Windows XP supplicants.

Step 5 If using Fast Reconnect (see explanation that follows), select Enable Fast Reconnect and specify a timeout.

Step 6 Click Submit and Restart.

PEAP-MSCHAPv2 Fast Reconnect Explained

ACS supports an PEAP-MSCHAPv2 session resume feature that caches the session created during a new authentication. When a PEAP-MSCHAPv2 client reconnects, the cached session is used to restore the session, which improves performance. ACS deletes cached sessions when they time out.
PEAP-MSCHAPv2 fast reconnect is equivalent to EAP-TLS session resume. Fast reconnect is most appropriate in wireless environments where endpoints need to rapidly reauthenticate when roaming. The mechanism works the same way in wired environments, but the optimization is less important and it can be disabled without impacting the network. To disable the fast reconnect feature, set the timeout value to 0 (zero) or uncheck the Enable Fast Reconnect checkbox.

For fast reconnect to work, it must be supported and enabled on both the ACS and the supplicant. Not all supplicants support fast reconnect. See the “Configuring XP Supplicant for PEAP-MSCHAPv2” section on page 3-135 and/or Configuring CSSC for PEAP-MSCHAPv2, page 3-114 for more details.

Step 5: Specify and Configure the Catalyst Switch as a AAA Client

The procedure is the same as described in the EAP-TLS section. See “Step 5: Specify and Configure the Catalyst Switch as a AAA Client” section on page 3-50 for details.

Step 6: Configure the External User Databases

The procedure is the same as described in the EAP-TLS section. See “Step 6: Configure the External User Databases” section on page 3-51 for details.

Client Configuration for PEAP-MSCHAPv2

This section provides the following descriptions:
- Installation of Client Certificates, page 3-113
- Configuring CSSC for PEAP-MSCHAPv2, page 3-114
- Configuring XP Supplicant for PEAP-MSCHAPv2, page 3-135

Installation of Client Certificates

In PEAP-MSCHAPv2, ACS authenticates itself to the client by presenting a certificate that is signed by a Root CA that the client trusts. Therefore, every host and user that wishes to authenticate via PEAP-MSCHAPv2 must possess the Certificate Authority (CA) Root Certificate (to validate the ACS certificate).

Deploying this certificate to the end user or host is required regardless of whether you are using the Cisco Secure Services Client (CSSC), the XP native supplicant, or some other 802.1X client software. The installation of certificates is independent of the supplicant deployment process.

If the end host will be performing machine authentication and user authentication, then the Root CA certificate must be installed in the user’s Trusted Root certificate store and in the machine’s Trusted Root certificate store.

Root Certificate Required for Machine Authentication

The following describes how to verify and install the certificate needed to successfully complete PEAP-MSCHAPv2 machine authentication.
To verify and/or manipulate machine certificate stores, you must be logged into the machine as an Administrator.

Verifying Machine Root CA Certificate
The procedure is the same as described in the EAP-TLS section. See the “Certificates Required for User Authentication” section on page 3-67 for details.

Root Certificate Required for User Authentication
The following describes how to verify and install the certificate needed to successfully complete PEAP-MSCHAPv2 user authentication.

Verifying User Root CA Certificate
The procedure is the same as described in the EAP-TLS section. See the “Certificates Required for User Authentication” section on page 3-67 for details.

Configuring CSSC for PEAP-MSCHAPv2
The steps provided in this section explain how to configure the Cisco Secure Services Client (CSSC) for PEAP-MSCHAPv2 authentication on wired LAN networks.

CSSC version 5.0.1.8 is running on Windows XP operating system with Service Pack 2.

Prior to configuring CSSC, validate that the correct certificates exist in the Windows certificate stores as described in previous sections.

There are three components required to install and configure CSSC:
- CSSC client image (CSSC_SSC-XP2K)—802.1X client software that runs on the end host.
- Client Utilities (CiscoClientUtilities)—Troubleshooting tool that runs on the end host.
- Client Management Utility (SSCMgmtToolkit)—Management utility that configures user profiles that can be distributed to the entire organization through a single Extensible Markup Language (XML) file. This utility is typically run on a centralized server. For testing purposes, it can be run on the end client to modify and test the supplicant configuration on the fly.

The Cisco SSC Management Utility does not address client-side certificate management and distribution. Those tasks must be accomplished using Active Directory Group Policies or some other mechanism as described in previous sections. Client-side certificates are required for EAP-TLS.

This section discusses how to use the Management Utility to configure a PEAP-MSCHAPv2 profile for the CSSC client. Once created, the user profiles can be bundled with the client image into an .msi file which can be deployed using standard deployment tools—including Microsoft Active Directory GPOs, SMS, Altiris, and Novell Zenworks.

Step 1 Create a New Configuration Profile.
Step 2

Configure Client Policy.

In the Client Policy window, enter the license. Select Attempt connection before user logon and select Allow Wired (802.3) Media. See Click Next. Figure 3-119.

**Figure 3-119 ** SSC Configuration Profile

![Cisco SSC 5.0 Configuration Profile](image)

Note

The Attempt connection before user logon setting causes CSSC to delay the user login into the Windows domain until 802.1X authentication has completed. This ensures that the machine has complete network connectivity when performing Windows domain login and Group Policy download for the user.

Step 3

Configure Authentication Policy.

In the Authentication Policy window, select EAP PEAP under Allowed Authentication Modes and click Next. See Figure 3-120.
Step 4 Create a New Group.

1. In the Networks window, create a new group by clicking Add Group. See Figure 3-121.
2. Enter a name for the new group and click OK. See Figure 3-122.

Figure 3-122 Naming the User Group

Step 5 Add a Network to the Group

1. In the main Networks screen, use the Up arrow button on the right side of the screen to move the group that was just created (PeapWired) above the Default group. Select PeapWired and click Add Network. See Figure 3-123.
2. In the Network Media window, select Wired (802.3) Network and click Next. See Figure 3-124.
3. Provide a name for the profile and specify the Authenticating Network option. Leave the default Connection Timeout at 40 seconds. Click Next. See Figure 3-125.
4. Leave the default *Connection Settings* and click **Next**. See Figure 3-126.
5. Select the type of authentication scenario. To perform machine authentication and user authentication, select the **Machine and User Connection** radio button. Clicking **Next** will initiate Machine Authentication configuration. See **Figure 3-127**.
Step 6 Configure Machine Authentication Parameters.

1. In the *Machine Authentication* window, select *EAP-PEAP* and click the *Configure* button. See Figure 3-128.
2. In the EAP-PEAP Settings window, select Validate Server Certificate. Deselect Enable Fast Reconnect because this feature is not required for wired scenarios. To use MSCHAPv2 as the inner method, select Authenticate using a Password and click the checkbox next to EAP MSCHAPv2. Click Ok. See Figure 3-129.
3. The configuration utility returns to the *Machine Authentication* window. Click **Next**. See Figure 3-130.

Figure 3-130 Machine PEAP Configuration Complete
4. [Optional] The *Machine Server Validation* window can be used to restrict the ACS servers from which the client will accept a certificate authentication during machine authentication. If no *Rule* is added in this window, the client will accept any server certificate that has been signed by a trusted root CA. Click *Next*. See Figure 3-131.

Figure 3-131 Machine Server Validation

5. [Optional] If desired, use the window shown in Figure 3-132 to restrict which root CAs the client will trust to sign the ACS server certificate. Click *Next* to accept the default setting.
6. In the Machine Credentials window in Figure 3-133, leave the default for the unprotected identity and add [domain] to the protected identity. The client will replace [username] with the machine name and [domain] with the complete domain name. The Machine Credentials option instructs the client to use the machine password provided by Microsoft Active Directory.
Figure 3-133 Machine Credentials

7. Click Next to begin configuring User Authentication.

Step 7 Configure User Authentication.

1. In the User Authentication Method window, select EAP-PEAP and click Configure. See Figure 3-134.
2. See Figure 3-135. Check Validate Server Certificate and disable Fast Reconnect. Select Authenticate using a Password and EAP MSCHAPv2. Return to the main User Authentication window by clicking OK.
If authentication passes when Validate Server Identity is unchecked but fails when it is checked, then the supplicant does not have the certificate for the Root CA that signed the ACS's certificate in the appropriate certificate store.

3. See Figure 3-136. In the main User Authentication Method window, click Next.
4. [Optional] See Figure 3-137. The User Server Validation window can be used to restrict the ACS servers from which the client will accept a certificate authentication during user authentication. If no Rule is added in this window, the client will accept any server certificate that has been signed by a trusted root CA. Click Next.
5. [Optional] See Figure 3-138. If desired, use this window to restrict which root CAs the client will trust to sign the ACS server certificate during user authentication. Click **Next** to accept the default setting.
6. See Figure 3-139. In the User Credentials window, leave anonymous as the unprotected identity and [username] as the unprotected identity. Select Use Single Sign On. CSSC will automatically replace the [username] placeholder with the username that was entered during the Windows logon. Click Finish. The Validation window will appear.
Note about Protected and Unprotected Identity

The EAP Identity field in EAP Identity Response messages is sometimes referred to as the *outer* or *unprotected* identity since it is sent in the clear, outside the protected TLS tunnel. PEAP has the option of sending *anonymous* instead of the actual username in the Identity field. If the outer identity is anonymous, the user's real identity is conveyed inside the protected tunnel, ensuring that a sniffer cannot detect the true username from the EAP exchange. When the outer identity is anonymous, the inner or *protected* identity is used to validate the user's credentials against the user database.

Although an anonymous outer identity is more secure, it can make RADIUS accounting more difficult since the authenticator has no knowledge of the protected identity. To alleviate this situation, ACS can send the protected username in the RADIUS Access Accept to the authenticator. Cisco switches reply with this username in RADIUS Accounting records.

Step 8 Validate Configuration.

1. Verify that the group (*PeapWired*) has been successfully created with the configured profile (*802.1X_PEAP*). Click **Next**. See Figure 3-140.
Figure 3-140 Verify Group Configuration

2. In the Validation window (Figure 3-141), click Finish to save the configuration files. The Processed Configuration file configuration.xml can be deployed to the client (this will happen automatically if the Management Utility is running on the same machine as the client software). The Unprocessed Configuration file unprocessed_configuration_do_not_deploy.xml should only be used to modify this profile as described in the following step.
Modifying Configuration. This is the same as Step 9 in “CSSC Configuration” section on page 3-82.

Configuring XP Supplicant for PEAP-MSCHAPv2

The steps provided in this section describe how to configure the Windows XP native supplicant for PEAP-MSCHAPv2 authentication on wired LAN networks.

Note: The native client is running on Windows XP Service Pack 2.

Prior to configuring the XP supplicant, validate that the correct certificates exist in the Windows certificate stores as described in “Installation of Client Certificates” section on page 3-56.

Configure IEEE 802.1X Parameters

Step 1 To configure the IEEE 802.1X parameters, click Start > Control Panel, and then select Network and Internet Connections. Next, select Network Connections and open the correct Local Area Connection Properties menu.

Step 2 From the Local Area Connection Properties window, select the Authentication tab. See Figure 3-142.
Figure 3-142 Selection Authentication Tab

Note

If the Authentication tab is not displayed, click Start > All Programs > Administrative Tools > Services. Right-click Wireless Zero Configuration and select Start.

Step 3 See Figure 3-143. Check the Enable IEEE 802.1X authentication for this network box. Select Protected EAP from the drop-down menu for the EAP type.
Step 4 Click Properties. The Protected EAP Properties window appears. See Figure 3-144.

Figure 3-144 Configure PEAP Properties
Step 5
Select Validate Server Certificate.

Tip
If PEAP-MSCHAPv2 authentication fails with Validate Server Certificate checked—but passes when this option is unchecked, the client does not have the root certificate of the CA that signed the ACS’s certificate in the proper Trusted Root Authority store.

Step 6
[Optional] By default, the supplicant will accept any valid server certificate that has been signed by a trusted root CA. To restrict the server certificates that a supplicant will accept, check the Connect to These Servers box (Figure 3-144) and enter the CN of the servers that the supplicant should accept.

Step 7
[Optional] If your security policy requires it, prevent the supplicant from prompting the user to accept certificates from unknown servers by checking the Do not prompt user to authorize new servers or trusted certification authorities option (Figure 3-144). This command only takes effect if the Connect to These Servers checkbox has been configured in the previous step. If this box is checked, a certificate from an unknown server will always result in failed authentication even if the certificate is signed by a trusted CA. If your security policy allows users to choose which servers can be authenticated against, then leave the box unchecked. If this box is not checked and an unknown ACS presents a certificate signed by a trusted CA, the end user will be prompted to accept the unknown server’s certificate. If the user clicks OK, then the CN will be automatically added to the trusted servers list and the user will not be prompted again.

Step 8
In the Protected EAP Properties window (Figure 3-144), under Select Authentication Method, select Secured password (EAP-MSCHAPv2) from the dropdown menu and click Configure. The EAP MSCHAPv2 Properties window appears. See Figure 3-145.

Figure 3-145 Configure MSCHAPv2 Properties

Step 9
Select Automatically use my Windows logon name password and click OK to return to the Protected EAP Properties window. This enables the supplicant to use the username, password and domain entered at the Windows login screen for the MSCHAPv2 exchange without having to prompt the user for credentials a second time (Single Sign-On).

Step 10
[Optional] If you wish to enable Fast Session Reconnect and it was previously configured on the ACS (see “Step 4: Configure PEAP-MSCHAPv2 Settings on the ACS” section on page 3-112), check Enable Fast Reconnect. Click OK to return to the main Authentication tab.

Caution
A known defect with the native supplicant in the Microsoft XP SP2 operating system can cause PEAP to fail when fast-reconnect is enabled on the ACS. For a hotfix, contact Microsoft and reference KB885453. As a workaround, disable fast reconnect on both the ACS and on the supplicant.

Step 11
In the Authentication tab, check Authenticate as computer when computer information is available to enable machine authentication. Click OK.
Note

Authenticate as Guest has no effect when using PEAP-MSCHAPv2 with Windows Single Sign-On. Leave this option unchecked.

Step 12

The supplicant will begin authentication.

Deploying EAP-FAST

The section describes how to configure EAP-FAST with Automatic Anonymous PAC provisioning. As discussed in the “Deployment Recommendations (EAP-TLS)” section on page 2-4, Anonymous provisioning enables rapid deployment of EAP-FAST without the complexities of certificates and PKI. The deployment recommendations section also discussed important security considerations associated with this type of EAP-FAST deployment that should be carefully reviewed prior to deploying EAP-FAST in this way.

The following inner methods are configured in this section:

- Anonymous Phase 0 provisioning with inner method of MSCHAPv2
- Phase 2 with inner method of EAP-GTC

The password used for both phases is acquired from the user when he or she logs into Windows (Single Sign-On). ACS verifies this password with the user password stored in Active Directory during both phases.

EAP-FAST Configuration Steps

Configuring EAP-FAST consists of the following steps:

- Step 1: Configure EAP-FAST Settings on the ACS, page 3-139
- Step 2: Specify and Configure the Catalyst Switch as a AAA Client, page 3-142
- Step 3: Configure the External User Databases, page 3-142
- Step 4: CSSC Client Configuration for EAP-FAST, page 3-142

Step 1: Configure EAP-FAST Settings on the ACS

The EAP-FAST settings are configured on the Global Authentication Setup page on the ACS.

Step 1
Open ACS Admin from the desktop shortcut created during the installation.

Step 2
Click System Configuration.

Step 3
Click Global Authentication Setup. This results in the window presented in Figure 3-146.
Step 4 Under EAP-FAST, click EAP-FAST Configuration. The EAP-FAST Configuration window appears. See Figure 3-147.
Step 5 Select Allow EAP-FAST.

Step 6 Configure the PAC TTL (time to live) expiration timers in accordance with your security policy.

Step 7 Configure the Authority-ID. This is a mandatory field that can be used by the client to determine which ACS server is to be authenticated against.

Step 8 Select Allow Machine Authentication to enable EAP-FAST machine authentication.

Step 9 [Optional] Select Allow Stateless Session resume and an Authorization PAC TTL expiration time.
Note
Similar to EAP-TLS Session Resume and PEAP-MSCHAPv2 Fast Reconnect, EAP-FAST Stateless Session Resume shortcuts the reauthentication process by having the client present a special Authorization PAC in place of a full Phase 2 inner-method authentication. This Authorization PAC, which is completely separate from the Tunnel PAC which is used to create the Phase 1 tunnel, is provisioned on the client by the ACS. If a client attempts to reauthenticate with a valid Authorization PAC in the time period specified by the Authorization PAC TTL, then the Phase 2 inner method is skipped and the client is allowed access. This optimization is most useful in wireless environments where fast reauthentication is required for roaming.

Step 10
Under Allowed Inner Methods, select EAP-MSCHAPv2 and EAP-GTC. For back-compatibility reasons, ACS requires that both methods be configured when using Anonymous PAC provisioning.

Note
The list of allowed inner methods applies to both Phase 0 and Phase 2. ACS always uses the first method in the inner method list that is enabled and supported. EAP-GTC is not supported in Phase 0 when Anonymous PAC Provisioning is enabled, so EAP-MSCHAPv2 will be used for Phase 0. EAP-GTC is supported in Phase 2, so EAP-GTC will be used for Phase 2 since it comes before EAP-MSCHAPv2 on this list.

Step 11
Select EAP-FAST master server. This permits other ACS servers to utilize this server as the master PAC authority to avoid having to provision unique Master keys for each ACS in a network.

Step 12
Click Submit + Restart.

Note
All the other settings on this page are used for PKI-enabled environments that can do Authenticated PAC Provisioning and/or EAP-TLS inner methods. They are not required for Anonymous PAC Provisioning with EAP-MSCHAPv2 and EAP-GTC.

Step 2: Specify and Configure the Catalyst Switch as a AAA Client

The procedure is the same as described in the EAP-TLS section. See the “Step 5: Specify and Configure the Catalyst Switch as a AAA Client” section on page 3-50 for details.

Step 3: Configure the External User Databases

The procedure is the same as described in the EAP-TLS section. See the “Step 6: Configure the External User Databases” section on page 3-51 for details.

Step 4: CSSC Client Configuration for EAP-FAST

The steps provided in this section explain how to configure the Cisco Secure Services Client (CSSC) for EAP-FAST authentication with Anonymous provisioning on wired LAN networks.

Note
CSSC version 5.0.1.8 is running on Windows XP operating system with Service Pack 2.

There are three components required to install and configure CSSC:
CSSC client image (CSSC_SSC-XP2K)—802.1X client software that runs on the end host.

Client Utilities (CiscoClientUtilities)—Troubleshooting tool that runs on the end host.

Client Management Utility (SSCMgmtToolkit)—Management utility that configures user profiles that can be distributed to the entire organization through a single Extensible Markup Language (XML) file. This utility is typically run on a centralized server. For testing purposes, it can be run on the end client to modify and test the supplicant configuration on the fly.

This section discusses how to use the Management Utility to configure an EAP-TLS profile for the CSSC client. Once created, the user profiles can be bundled with the client image into an .msi file which can be deployed using standard deployment tools, including Microsoft Active Directory GPOs, SMS, Altiris, and Novell Zenworks.

Note

No certificates are required on the CSSC client for EAP-FAST with Anonymous PAC Provisioning.

Note

The Microsoft Windows XP native supplicant does not support EAP-FAST.

Step 1

Create a New Configuration Profile:

This is the same as Step 1 in the “Configuring CSSC for PEAP-MSCHAPv2” section on page 3-114.

Step 2

Configure Client Policy

This is the same as Step 2 in the “Configuring CSSC for PEAP-MSCHAPv2” section on page 3-114.

Step 3

Configure Authentication Policy

In the Authentication Policy window, select EAP FAST under Allowed Authentication Modes and click Next. See Figure 3-148.
Step 4 Create a New Group

1. In the *Networks* window, create a new group by clicking **Add Group**. See Figure 3-149.
2. Enter a name for the new group (EapFastWired in Figure 3-150) and click OK.

Figure 3-150 Add a New Group

Step 5 Add a Network to the Group

1. In the main Networks window, use the Up arrow button on the right side of the window to move the group that was just created (EapFastWired) above the Default group. Select EapFastWired and click Add Network. See Figure 3-151.
2. In the Network Media window, select Wired (802.3) Network and click Next. See Figure 3-152.
3. Provide a name for the profile and specify the *Authenticating Network* option. Leave the default *Connection Timeout* at 40 seconds. See Figure 3-153.
4. See Figure 3-154. Leave the default *Connection Settings* and click **Next**.
5. See Figure 3-155. Select the type of authentication scenario. To perform machine authentication and user authentication, select the Machine and User Connection radio button. Clicking Next will initiate Machine Authentication configuration.
Step 6 Configure Machine Authentication Parameters.

1. In the Machine Authentication window, select EAP-Fast and click the Configure button. See Figure 3-156.
2. In the EAP-FAST Settings window, select Validate Server Certificate. Deselect Enable Fast Reconnect because this feature is not required for wired scenarios. Deselect Allow Posture. Select Authenticate Using a Password. Select Use PACs. See Figure 3-157.
3. The configuration utility returns to the Machine Authentication window. Click Next. See Figure 3-158.
4. [Optional] The Machine Server Validation window can be used to restrict the ACS servers from which the client will accept a certificate authentication during machine authentication. If no Rule is added in this window, the client will accept any server certificate that has been signed by a trusted root CA. Click Next. See Figure 3-159.
5. [Optional] If desired, use this window to restrict which root CAs the client will trust to sign the ACS server certificate. Click Next to accept the default setting. See Figure 3-160.
6. In the **Machine Credentials** window, leave the default for the unprotected identity and the protected identity. The client will replace `[username]` with the machine name. The **Machine Credentials** option instructs the client to use the machine password provided by Microsoft Active Directory. See Figure 3-161.
7. Click **Next** to begin configuring User Authentication.

Step 7 Configure User Authentication.

1. In the *User Authentication Method* window, select *EAP-Fast* and click **Configure**. See Figure 3-162.
2. In the EAP-FAST Settings window, select Validate Server Certificate. Deselect Enable Fast Reconnect since this feature is not required for wired scenarios. Deselect Allow Posture. Select Authenticate Using a Password. Select Use PACs. Click OK. See Figure 3-163.
If authentication passes when *Validate Server Identity* is unchecked but fails when it is checked, then the supplicant does not have the certificate for the Root CA that signed the ACS’s certificate in the appropriate certificate store.

3. In the main *User Authentication Method* window, click **Next**. See Figure 3-164.
4. [Optional] The User Server Validation window can be used to restrict the ACS servers from which the client will accept a certificate authentication during user authentication. If no Rule is added in this window, the client will accept any server certificate that has been signed by a trusted root CA. Click Next. See Figure 3-165.
5. [Optional] If desired, use this window to restrict which root CAs the client will trust to sign the ACS server certificate during user authentication. Click **Next** to accept the default setting. See Figure 3-166.
6. In the User Credentials window, leave anonymous as the unprotected identity and [username] as the unprotected identity. Select Use Single Sign On. CSSC will automatically replace the [username] placeholder with the username that was entered during the Windows logon. Click Finish. The Validation window will appear. See Figure 3-167.
Note about Protected and Unprotected Identity

The EAP Identity field in EAP Identity Response messages is sometimes referred to as the outer or unprotected identity since it is sent in the clear, outside the protected TLS tunnel. PEAP has the option of sending anonymous instead of the actual username in the Identity field. If the outer identity is anonymous, the user's real identity is conveyed inside the protected tunnel, ensuring that a Sniffer cannot detect the true username from the EAP exchange. When the outer identity is anonymous, the inner or protected identity is used to validate the user's credentials against the user database.

Although an anonymous outer identity is more secure, it can make RADIUS accounting more difficult since the authenticator has no knowledge of the protected identity. To alleviate this situation, ACS can send the protected username in the RADIUS Access Accept to the authenticator. Cisco switches reply with this username in RADIUS Accounting records.

Step 8 Validate Configuration.

1. Verify that the group (EAPFastWired) has been successfully created with the configured Network (802.1X_EAPFast). Click Next. See Figure 3-168.
2. In the Validation window, click Finish to save the configuration files. The Processed Configuration file configuration.xml can be deployed to the client (this will happen automatically if the Management Utility is running on the same machine as the client software). The Unprocessed Configuration file unprocessed_configuration_do_not_deploy.xml should only be used to modify this profile as described in the following step. See Figure 3-169
Conclusion and Next Steps

Deploying IEEE 802.1X ensures secure, identity-based access control at the network edge. By authenticating users and known assets with IEEE 802.1X on wired ports, network administrators can ensure that only valid users can access the network.

This publication describes the steps necessary to deploy IEEE 802.1X, from the supplicant on the end host to the switch to the ACS RADIUS server. This paper has also discussed how to integrate commonly used components, such as Microsoft Active Directory and PKI infrastructure, to simplify the deployment and management of the solution.

After deploying IEEE 802.1X as described in this paper, further steps might be required to realize a true end-to-end solution. These steps could include:

- Authenticating users and devices that do not support an 802.1X supplicant
- Assigning granular network access through authorization techniques such as VLAN assignment
- Configuring the solution to support IP Telephony

These topics will be addressed in detail in subsequent documents.