cancel
Showing results for 
Search instead for 
Did you mean: 
cancel
1103
Views
0
Helpful
0
Comments
Babu Peddu
Level 1
Level 1

Audience

This white paper is intended to help the readers obtain a quick understanding on 1/10/40/100GE Ethernet port on a Line Card in general and how it has been implemented in ASR9k including the configuration detail. It also includes a ‘frequently asked questions’ (FAQ) section, which cover some of the potential field questions that might pop up while deploying this feature using ASR9k. Overall, this white paper can be a quick reference guide for anyone working on these Line Cards.

Disclaimer

  • This white paper is based on ASR9k Release 4.3.1.

  • •v If anyone thinks that this white paper needs to be updated with some more specific detail, which might benefit the overall audience, feel free to let the authors know so that we can keep the document live and effective.

Revision

Version

Date

User id

Comments

1.0

05/20/2013

rramacha@cisco.com

Initial draft

1.1

05/29/2013

rramacha@cisco.com

Updated FEC mode table (Table 6 and Table 7)

Table of Contents

1. General................................................................................................................................... 5

1.1 Ethernet Line Cards............................................................................................................................................. 5

1.2 Optics OIR.................................................................................................................................................................. 6

1.3 Third Party Optics................................................................................................................................................ 6

1.4 Transceiver permit pid all.............................................................................................................................. 6

1.5 Statistics..................................................................................................................................................................... 7

1.6 MTU............................................................................................................................................................................... 9

1.7 Link Defects........................................................................................................................................................... 10

1.8 packet-gap non-standard............................................................................................................................. 14

1.9 small-frame-padding...................................................................................................................................... 15

1.10 loopback............................................................................................................................................................... 15

1.11 carrier-delay...................................................................................................................................................... 16

1.12 Optic Pie................................................................................................................................................................ 17

1.13 Optics DOM.......................................................................................................................................................... 17

2. 1GE Interface...................................................................................................................... 18

2.1 LAN Mode................................................................................................................................................................ 18

2.2 Uni-directional link Fault............................................................................................................................. 19

2.3 Optics......................................................................................................................................................................... 19

2.3.1. 1GE Optical SFP............................................................................................................................................. 20

2.3.2. Copper/RJ45 SFP.......................................................................................................................................... 23

2.3.3. 100FX Optical SFP........................................................................................................................................ 24

2.3.4. CWDM/DWDM SFP..................................................................................................................................... 24

2.3.5. GLC-BX10-U/D SFP..................................................................................................................................... 25

3. 10GE Interface.................................................................................................................... 26

3.1 LAN Mode................................................................................................................................................................ 26

3.2 WAN PHY Mode................................................................................................................................................... 26

3.2.1. SD/SF BER....................................................................................................................................................... 28

3.3 OTN Mode............................................................................................................................................................... 29

3.3.1. Proactive Protection................................................................................................................................... 32

3.3.2. SD/SF BER....................................................................................................................................................... 33

3.4 Unidirectional Link Routing....................................................................................................................... 33

3.5 Optics......................................................................................................................................................................... 34

3.5.1. SR/LR/ER/ZR/DWDM Optics................................................................................................................. 34

3.5.2. Tunable Optics............................................................................................................................................... 34

4. 40GE Interface..................................................................................................................... 35

4.1 LAN Mode................................................................................................................................................................ 35

4.2 OTN Mode............................................................................................................................................................... 35

4.2.1. Proactive Protection................................................................................................................................... 40

4.2.2. SD/SF BER....................................................................................................................................................... 40

4.3 Optics......................................................................................................................................................................... 41

5. 100GE Interface.................................................................................................................. 41

5.1 LAN Mode................................................................................................................................................................ 41

5.2 LAN PP Mode......................................................................................................................................................... 42

5.3 Optics......................................................................................................................................................................... 43

6. FAQ....................................................................................................................................... 44

7. Glossary................................................................................................................................ 45

8. References:.......................................................................................................................... 46

List of Tables

Table 1 Supported Transport Modes and Optics Types for Line Cards.............................................. 5

Table 2 Various Link Defects.......................................................................................................... 11

Table 3 Near-end Resolved Speed for Optical SFP......................................................................... 20

Table 4 Near-end Resolved Flow-control for Optical SFP............................................................... 21

Table 5 Near-end Resolved Speed for Copper SFP........................................................................ 23

Table 6 Supported FEC modes on 10G........................................................................................... 31

Table 7 Supported FEC modes on 40G........................................................................................... 39

List of Figures

Figure 1 Data-path between MAC and Optics.................................................................................. 7

Figure 2 Loopback configuration.................................................................................................... 16

Figure 3 UDLF Notification with LOS............................................................................................ 19

Figure 4 Auto-negotiation with 1GE Optical SFP............................................................................ 20

Figure 5 Auto-negotiation with Copper SFP................................................................................... 23

Figure 6 LAN Proactive Protection................................................................................................. 42


•1. General

The Cisco ASR 9000 Series Aggregation Services Routers is the baseline for next-generation Carrier Ethernet networks, providing up to 96 terabits (Tbps) per system. Its architecture design enables capabilities for next generation Internet that includes mobile aggregation & virtualization and also reduces operational cost & complexity.

•1.1 Ethernet Line Cards

Ethernet Line Cards in ASR9000 can be called as First and Second generation based on the Network processor (NP) used. The Second generation Line Card is also referred to as Enhanced Ethernet Line Card.

Table 1 Supported Transport Modes and Optics Types for Line Cards

Line Card/Modular Port Adapter (MPA)

Generation

Supported Transport modes

Supported Optics Type

A9K-40G

First Generation

1GE LAN

SFP

A9K-4T

First Generation

10GE LAN

XFP

A9K-8T/4

First Generation

10GE LAN

XFP

A9K-2T20G

First Generation

1GE LAN;

10GE LAN/WAN PHY/OTN

SFP for 1GE Ports;

XFP for 10GE Ports

A9K-8T

First Generation

10GE LAN/WAN PHY/OTN

XFP

A9K-16T/8

First Generation

10GE LAN/WAN PHY/OTN

SFP+

A9K-24-10GE

Second Generation

10GE LAN/WAN PHY/OTN

SFP+

A9K-36-10GE

Second Generation

10GE LAN/WAN PHY/OTN

SFP+

A9K-MPA-20x1GE

Second Generation

10GE LAN/WAN PHY/OTN

SFP

A9K-MPA-2x10GE

Second Generation

10GE LAN/WAN PHY/OTN

XFP

A9K-MPA-4x10GE

Second Generation

10GE LAN/WAN PHY/OTN

XFP

A9K-MPA-8x10GE

Second Generation

10GE LAN/WAN PHY/OTN

SFP+

A9K-MPA-1x40GE

Second Generation

10GE LAN/OTN

QSFP+

A9K-MPA-2x40GE

Second Generation

10GE LAN/OTN

QSFP+

A9K-2x100GE

Second Generation

100GE LAN, LAN PP*

CFP

A9K-1x100GE

Second Generation

100GE LAN, LAN PP*

CFP

* LAN PP – LAN Proactive Protection – “Cisco Proprietary”

•1.2 Optics OIR

After removing Optics, it is recommended to wait for 10 seconds for Software cleanup to complete before inserting another Optics. Also, after Optics insertion, it is recommended to wait for 10 seconds before removing it. After Optics insertion, software waits for power to stabilize before applying configuration. If the above recommendation is not followed, then it may affect the functionality of Optics.

•1.3 Third Party Optics

ASR 9000 supports only Cisco Optics listed in the following data-sheet (Ref. 3).

http://www.cisco.com/en/US/prod/collateral/routers/ps9853/data_sheet_c78-624747.html

Third Party Optics support policy is discussed here.

https://supportforums.cisco.com/blogs/asr9k/2013/03/18/asr9000-policy-3rd-party-optics

http://www.cisco.com/en/US/prod/prod_warranty09186a00800b5594.html

•1.4 Transceiver permit pid all

ASR 9000 supported Optics has undergone extensive thermal, electrical and optical testing during qualification. Cisco policy is to support only optics mentioned in the data-sheet (Ref. 3). When a new Optics is inserted, Software reads Optics EEPROM and performs Security, Type and Product ID (PID) verification. If the inserted Optics is not a supported one, then Optics Transmit Laser will be turned off. This will cause Loss-of-signal (LOS) and Local Fault (LF) at far-end port. As an over-ride for PID check for a given port, the following CLI can be used. But, it is to be noted that there is no guarantee that an un-supported Optics will work even after configuring ‘transceiver permit pid all’ CLI. An un-supported optics may also damage the Hardware since it may violate thermal and electrical specification of the Line Card. Cisco recommends only to use ASR 9000 supported Optics.

PID Over-ride command:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#transceiver permit pid all

RP/0/RSP0/CPU0:ios(config-if)#commit

•1.5 Statistics

Optics

PHY

NP MAC


Figure 1 Data-path between MAC and Optics

MAC Ingress (packets received from Optics) and Egress Packet counts (Packets transmitted to Optics) can be displayed as given below.

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/0 stats

Statistics for interface GigabitEthernet0/5/0/0 (cached values):

Ingress:

Input total bytes = 0

Input good bytes = 0

Input total packets = 0

Input 802.1Q frames = 0

Input pause frames = 0

Input pkts 64 bytes = 0

Input pkts 65-127 bytes = 0

Input pkts 128-255 bytes = 0

Input pkts 256-511 bytes = 0

Input pkts 512-1023 bytes = 0

Input pkts 1024-1518 bytes = 0

Input pkts 1519-Max bytes = 0

Input good pkts = 0

Input unicast pkts = 0

Input multicast pkts = 0

Input broadcast pkts = 0

Input drop overrun = 0

Input drop abort = 0

Input drop invalid VLAN = 0

Input drop invalid DMAC = 0

Input drop invalid encap = 0

Input drop other = 0

Input error giant = 0

Input error runt = 0

Input error jabbers = 0

Input error fragments = 0

Input error CRC = 0

Input error collisions = 0

Input error symbol = 0

Input error other = 0

Input MIB giant = 0

Input MIB jabber = 0

Input MIB CRC = 0

Egress:

Output total bytes = 0

Output good bytes = 0

Output total packets = 0

Output 802.1Q frames = 0

Output pause frames = 0

Output pkts 64 bytes = 0

Output pkts 65-127 bytes = 0

Output pkts 128-255 bytes = 0

Output pkts 256-511 bytes = 0

Output pkts 512-1023 bytes = 0

Output pkts 1024-1518 bytes = 0

Output pkts 1519-Max bytes = 0

Output good pkts = 0

Output unicast pkts = 0

Output multicast pkts = 0

Output broadcast pkts = 0

Output drop underrun = 0

Output drop abort = 0

Output drop other = 0

Output error other = 0

RP/0/RSP0/CPU0:ios#sh int gigabitEthernet 0/5/0/0

GigabitEthernet0/5/0/0 is up, line protocol is up

Interface state transitions: 11

Hardware is GigabitEthernet, address is 0022.bde2.b179 (bia 0022.bde2.b179)

Internet address is Unknown

MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)

reliability 255/255, txload 0/255, rxload 0/255

Encapsulation ARPA,

Full-duplex, 1000Mb/s, link type is force-up

output flow control is off, input flow control is off

loopback not set,

ARP type ARPA, ARP timeout 04:00:00

Last input 2d04h, output 2d04h

Last clearing of "show interface" counters 2d01h

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

0 packets input, 0 bytes, 0 total input drops

0 drops for unrecognized upper-level protocol

Received 0 broadcast packets, 0 multicast packets

0 runts, 0 giants, 0 throttles, 0 parity

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 packets output, 0 bytes, 0 total output drops

Output 0 broadcast packets, 0 multicast packets

0 output errors, 0 underruns, 0 applique, 0 resets

0 output buffer failures, 0 output buffers swapped out

0 carrier transitions

Notes:

  • •1) Packet input and output count doesn’t include counts for Preamble (7 bytes),

SFD (1 byte), FCS (4 bytes).

  • •2) Input error giant: The total number of well-formed and valid packets that are dropped because they are larger than the configured MRU. This counter is similar to the RFC2819 definition of etherStatsOversizedPkts, but is based on MRU rather than a fixed size of 1518 octets.
  • •3) Runt: Any frame received lesser than 64 bytes is counted as ‘runt’ and dropped.
  • •4) Input MIB giant: The total number of well-formed and valid packets that are larger than1518 bytes. (Regardless of whether the packets are dropped due to MRU consideration). This counter strictly matches the RFC2819 definition of etherStatsOversizePkts.
  • •5) Input error symbol: A Symbol error means the interface detects an undefined (invalid) Symbol received. Small amounts of symbol errors can be ignored. Large amounts of symbol errors can indicate a bad fiber or Optics.
  • •6) Input error jabbers: A jabber is a frame longer than 1518 octets (which exclude framing bits, but include FCS octets), which does not end with an even number of octets (alignment error) or has a bad FCS error.

•1.6 MTU

In ASR 9000, the maximum allowed receive Ethernet frame size can’t exceed 9220 bytes which includes 4 bytes of CRC. If ‘mtu’ CLI is not configured, then default MTU of 1514 bytes is selected by software and internally 12 extra bytes are added to take care of QinQ header and CRC bytes. So, with default MTU configuration, any frame above 1526 (including CRC), will be dropped as ‘giants’. Maximum allowed user configurable MTU is 9216 bytes but in MAC hardware the maximum allowed is 9220 bytes. So, with ‘mtu 9216’ configuration, the maximum allowed receive frame size can’t exceed 9220 bytes (including 4 bytes of CRC).

MTU configuration command:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#mtu 9216

RP/0/RSP0/CPU0:ios(config-if)#commit

•1.7 Link Defects

A Port link can go down for several reasons. The following CLI may be used to find out the reason for it.

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/0 internal

Port Number : 0

Board Type : 0x00000235

Port Type : 1GE

Transport mode : LAN

BIA MAC addr : 0022.bde2.b178

Oper. MAC addr : 0022.bde2.b178

Egress MAC addr : 0022.bde2.b178

Port Available : true

Status polling is : enabled

Status events are : enabled

I/F Handle : 0x0e000240

Cfg Link Enabled : tx/rx enabled

H/W Tx Enable : no

MTU : 1526

H/W Speed : 1 Gbps

H/W Duplex : Full

H/W Loopback Type : None

H/W FlowCtrl Type : None

H/W AutoNeg Enable : Off

H/W Link Defects : (0x0000026a) RX_LOS HW_LINK LASI NO_OPTICS TX_FAULT

Table 2 Various Link Defects

Defect

Cause/Meaning

Defect Source

Effect

Recovery

NO_OPTICS

Optics is not present

Optics

Port is receiving LOS. Link Down.

Insert an Optics

TX_FAULT

Optics is reporting TX Fault. Optics TX Laser is not healthy.

Optics

Port Link is down. Far-end may be down due to LOS.

Try port ‘shut’ followed by ‘no shut’. Try Optics OIR. If it doesn’t solve the issue, replace the Optics.

MOD_NOT_RDY

Optics is reporting Module Not Ready. Optics TX laser or PHY clocking issue.

Optics

Port Link is down. Far-end may go down due to RFI.

Try port ‘shut’ followed by ‘no shut’. Try Optics OIR. If it doesn’t solve the issue, replace the Optics.

RX_LOS

Optics is receiving Loss-of-Signal. This will cause MAC Local Fault (LF) and PHY LASI.

Optics

Port Link is down. Far-end may go down due to RFI.

Check the fiber; check whether far-end port is ‘no shut’.

XCVR_SECURITY

Not a Cisco supported Optics. Security check failed.

Optics

Port Link is down.

Optics Transmit Laser is disabled. Far-end will see LOS.

Try Optics OIR. Use ASR9k supported Optics. If it is 3rd party Optics, you may try ‘service unsupported’.

SFP_HW_LINK

Copper/100FX Transceiver PHY is reporting Link Down

Optics

Port Link is down. Far-end may be down too.

Try Optics OIR. Check cable/fiber. Ensure both ends has matching autoneg, speed, flow-control commands. For 100FX, configure ‘no autoneg’ and ‘speed 100’ on both sides.

XCVR_PID_UNSUP

Optics Product ID is not supported for ASR9k.

Optics

Port Link is down. Optics TX laser is disabled. Far-end will see LOS.

Try Optics OIR. If it is a 3rd party Optics, try port ‘transceiver permit pid all’ command.

XCVR_TYPE_UNSUP

Not a correct Optics type for this port. Instead of SFP+, a SFP is inserted in a 10GE port.

Optics

Port Link is down. Optics TX laser may be disabled. Far-end may see LOS.

Check and replace the Optics. If it is a 3rd party Optics, try ‘service unsupported’

UNSUP_CFG

User has configured an unsupported command. For example, ‘autoneg’ is configured for 100FX or ‘speed’ is configured for 1GE Optical SFP

Optics

Port Link is down. Optics TX laser is disabled.

Remove the unsupported port command.

LASI

PHY TX/RX link is DOWN (because of RX_LOS/PCS/PMA layers DOWN). If it is a 10GE/40GE port, then 'sh controllers tenGigE <> xgxs' provides additional information.

PHY

Port Link is disabled. If MAC is seeing HW_LINK defect, then far-end may get RFI.

Try Optics OIR, shut/no shut.

Check health of fiber and Optics. If the Optics is DOM supported, ‘sh controller <> phy’ will provide TX/RX Power information. Also, check port configuration at both ends.

HW_LINK

MAC is seeing local fault. MAC RX link is DOWN (because of RX_LOS/PCS/PMA layers DOWN)

MAC

Port Link is down.

Far-end may be get Remote Fault.

Try Optics OIR and shut/no shut. Check health of fiber and Optics. If the Optics is DOM supported, ‘sh controller <> phy’ will provide TX/RX Power information. Also, check port configuration at both ends.

RFI

MAC is seeing Remote fault. Far-end is seeing Local Fault.

MAC

Port Link is down. Far-end may be getting Local Fault.

Try shut/no shut and Optics OIR.

Problem may be with Optics Transmit or TX fiber. Check whether near-end has enabled TX laser. Use ‘sh controller <> {internal | phy}.

AUTO_NEG

Specific to 1GE port. Auto-negotiation is not complete

MAC/PHY

Port Link is down.

Try shut/no shut and Optics OIR.

Check the health of Optics, Fiber. Check port configuration both sides.

FIA_INIT

Fabric is not ready to receive (some initialization issue).

Fabric

All ports are down.

Line Card reload may recover.

FIA_SHUTDOWN

Fabric is shutdown

Fabric

All ports are down.

Line Card reload may recover.

G709_LICENSE

No G.709 license is available

G.709 Software License

Warning message

License has expired or not available. Buy, new license.

ADV_OPT_PIE

Advanced Optics Pie is not installed.

G.709 Software License

Port transmit is disabled. Port Link is down.

Install Advanced Optic Pie

DWDM_LASER_SHUT

Port is in OTN mode but TX laser is disabled by Software

OTN

Port transmit is disabled. Port Link is down.

Configure ‘admin-state in-service’ under ‘controller dwdm <>’.

WANPHY_SD_SF_BER

Link is down because of Signal Fail (SF) alarm from WAN PHY. If the rate of B2 BIP error is above the SF configured threshold, the above defect is raised

WAN PHY

Port transmit is disabled. Port Link is down.

Use ‘sh controller wanphy <>’ to check B2 BIP error counts. If it is increasing, then check whether far-end is configured for WAN PHY mode. Check the health of Optics and Fiber.

MODE_CHANGE

Port transmit is disabled momentarily during mode change. (lan/wanphy/otn changed using 'transport-mode <>'

under 'interface tengig <>')

PHY

Port Link is down. Far-end may flap due to clock configuration change.

Internal software change and reconfig of PHY and clocking logic. Will clear after few minutes.

•1.8 packet-gap non-standard

By default, Ethernet port operates at default Inter-frame-gap (IFG) of 12 bytes.

If the Far-end system needs a non-standard IFG, then the following CLI can be used to change IFG to 16 bytes. This CLI is supported only for10GE port.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#packet-gap non-standard

RP/0/RSP0/CPU0:ios(config-if)#commit

•1.9 small-frame-padding

The following CLI allows ASR 9000 to pad Transmit/Egress Frames smaller than 68-bytes to 68 bytes (including CRC). This CLI is supported only for Second Generation Line Cards starting from 4.3.1 IOS XR Release.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#small-frame-padding

RP/0/RSP0/CPU0:ios(config-if)#commit

•1.10 loopback

ASR 9000 supports the following loopback types for debugging purpose.

For 1GE/100GE, the loopback takes place at MAC whereas for 10GE/40GE,

it is done at PHY.

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#loopback ?

external Enable external loopback (requires loopback connector)

internal Enable internal loopback

line Enable line loopback

loopback internal (10GE/40GE)

loopback internal (1GE/100GE)


MAC

Optics

PHY


loopback line

(1GE/100GE)

loopback line

(10GE/40GE)

Figure 2 Loopback configuration

Loopback external (Applicable only to RJ45 SFP):

Configure ‘loopback external’, when a port is operating at 1000 Mbps Speed using an external loopback plug. With speed 10 Mbps or 100 Mbps, external loopback plug will work fine without the below configuration.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#loopback external

RP/0/RSP0/CPU0:ios(config-if)#commit

•1.11 carrier-delay

The interface configuration command ‘carrier-delay’ is used to delay the processing of hardware link down/up notifications. By default, without any ‘carrier-delay’ configuration, the hardware allows faster link-down notification for signal failure condition such as LOS. To allow soaking time against noise causing link flap, ‘carrier-delay {up | down) <msec>’ may be used. For some Line Cards, the Link UP may take several seconds since clock stabilization occurs when the receive signal state changes from LOS to normal.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#carrier-delay ?

down Set the carrier delay down value

up Set the carrier delay up value

RP/0/RSP0/CPU0:ios(config-if)#carrier-delay down ?

<0-2147483647> Delay in milliseconds

•1.12 Optic Pie

To use the following features, ‘asr9k-optic-px.pie’ needs to be installed. Without Optic Pie, the link is brought down and also Transmit Laser is disabled.

  • OTN mode in 10G port
  • OTN mode in 40G port
  • LAN Proactive Protection in 100G port

•1.13 Optics DOM

DOM feature is supported only on Optics that provides this functionality (Ref. 5). Software periodically collects the following sensor data from supported Optics.

  • Transceiver Temperature
  • Transceiver power supply voltage
  • Transceiver Bias Current
  • Transceiver Transmit Power
  • Transceiver Receive Power

The alarms and warnings available for each of the above sensors are read from Optics EEPROM.

  • High Alarm
  • Low Alarm
  • High Warning
  • Low Warning

Line Card sends a message to RSP which in turn will raise a CISCO-ENTITY-SENSOR-MIB SNMP trap for the corresponding alarm or warning. Alarms are of major severity while warnings are of minor severity for MIB. The following CLI can be used to show DOM data.

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/1 phy

< snip>

Temperature: 40.055

Voltage: 3.265 Volt

Tx Bias: 9.464 mAmps

Tx Power: 0.344 mW (-4.64 dBm)

Rx Power: 0.260 mW (-5.85 dBm)

Oper. Status/Control: Rx Rate Select,

•2. 1GE Interface

•2.1 LAN Mode

This is the default mode for a 1GE port. The following CLIs can be used to check the status of a given port.

RP/0/RSP0/CPU0:ios#sh int gigabitEthernet 0/5/0/39

GigabitEthernet0/5/0/39 is up, line protocol is up

…. <snip>

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/39 internal

Port Number : 39

Port Type : GE

Transport mode : LAN

BIA MAC addr : 001d.e5eb.8d17

Oper. MAC addr : 001d.e5eb.8d17

Egress MAC addr : 001d.e5eb.8d17

Port Available : true

Status polling is : enabled

Status events are : enabled

I/F Handle : 0x0e000a80

Cfg Link Enabled : tx/rx enabled

H/W Tx Enable : yes <<<<<< Optics Laser is Enabled

UDLF enabled : no

SFP PWR DN Reason : 0x00000000

SFP Capability : 0x000000e7

MTU : 1526

H/W Speed : 100 Mbps

H/W Duplex : Full

H/W Loopback Type : None

H/W FlowCtrl type : None

H/W AutoNeg Enable: Off

H/W Link Defects : (0x00000000) None <<<<<< No Defects

Link Up : yes <<<< Port Link is Up

Link Led Status : Link up -- Green/Amber

Input good underflow : 0

Input ucast underflow : 0

Output ucast underflow : 0

Input unknown opcode underflow: 0

Pluggable Present : yes

Pluggable Type : 1000BASE-T <<< RJ45 SFP is present

Pluggable Compl. : Compliant <<<< Passed Security Check

Pluggable Type Supp.: Supported <<<< Passed Optics Type Check

Pluggable PID Supp. : Supported <<<< Passed PID check

Pluggable Scan Flg: false

•2.2 Uni-directional link Fault

Uni-directional Link Fault detection (UDLF) is a feature of 802.3 OAM that allows a host that detects a fault on the RX channel of a link to notify the peer via an 802.3 OAM message, so that the peer can disable the interface. In 10/40/100GE, when a Near-end port receives LOS, MAC sends Remote Fault (RF) to Far-end so that port is brought down. But, in case of 1GE, RF is not defined as a standard. So, this will cause Far-end port to stay UP even when a Near-end port is DOWN. By enabling UDLF feature at both ends, the Near-end notifies Far-end with OAM message whenever the port link is down due to LOS.

OAM

Optics

PHY

NP MAC


LOS

Fiber cut

Figure 3 UDLF Notification with LOS

Configuration to Enable UDLR:

interface GigabitEthernet0/6/0/2

ethernet oam

uni-directional link-fault detection

action

uni-directional link-fault efd

!

•2.3 Optics

Only ‘Full-duplex’ operation is supported since ‘Half-duplex’ capability is not available in MAC. It is to be noted that the default configuration is ‘no negotiation’ which means Auto-negotiation is turned off. Please enable ‘negotiation auto’ in 1GE port if auto-negotiation is enabled at Link Partner (Far-end) port.

Enable Auto-negotiation:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#negotiation auto

RP/0/RSP0/CPU0:ios(config-if)#commit

Disable Auto-negotiation:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#no negotiation auto

RP/0/RSP0/CPU0:ios(config-if)#commit

•2.3.1. 1GE Optical SFP

With 1GE fixed Speed Optical SFP, ‘negotiation auto’ and ‘no negotiation auto’ are supported, it’s mandatory that both Near and Far-ends have matching configuration.

But, it is recommended to use Auto-negotiation (AN) at both ends to ensure Speed, Flow-control (FC) and Master/Slave are negotiated and resolved.


LINE

A

N

A

N

A

N

SFP

PHY

NP MAC


Figure 4 Auto-negotiation with 1GE Optical SFP

Table 3 Near-end Resolved Speed for Optical SFP

Auto-negotiation

Near-end (Config)

Far-end (Config)

Near-end (Result)

ON

None (Advertise Speed 1000, Full-duplex)

None

1000 Mbps (Resolved)

OFF

Speed 1000

Speed 1000

1000 Mbps

Table 4 Near-end Resolved Flow-control for Optical SFP

Auto-negotiation

Near-end (Config)

Far-end (Config)

Near-end (Result)

ON

Ingress

None

None

ON

Bidirectional

None

None

ON

Bidirectional

Ingress

Bidirectional

ON

Ingress

Ingress

None

ON

Ingress

Bidirectional

Ingress

Resolved Speed and Flow-control with Autoneg:

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/8 internal

Port Number : 8

Port Type : GE

Transport mode : LAN <<<< LAN Mode

BIA MAC addr : 001d.e5eb.8cf8

Oper. MAC addr : 001d.e5eb.8cf8

Egress MAC addr : 001d.e5eb.8cf8

Port Available : true

Status polling is : enabled

Status events are : enabled

I/F Handle : 0x0e0002c0

Cfg Link Enabled : tx/rx enabled

H/W Tx Enable : yes <<<<< <<<<<<<<<Optics TX Laser Enabled

UDLF enabled : no

SFP PWR DN Reason : 0x00000000

SFP Capability : 0x00000024

MTU : 1526

H/W Speed : 1 Gbps

H/W Duplex : Full

H/W Loopback Type : None

H/W FlowCtrl type : None

H/W AutoNeg Enable: On <<<<<<<<<<< Autoneg Enabled

H/W AutoNeg Mask : None (0x0000)

H/W AutoNeg Speed : Unknown (0)

H/W AutoNeg Duplex: Invalid (0)

H/W AutoNeg FlowC : None (0)

Resolved AutoNeg Mask : None (0x0000) <<<<< Autoneg Resolved State

Resolved AutoNeg Speed : 1 Gbps (3)

Resolved AutoNeg Duplex: Full (2)

Resolved AutoNeg FlowC : None (0)

Local Autoneg RFI : None <<<<<< Autoneg Local end configuration

Local Autoneg Pause : Asym (Ingress)

Local Autoneg Speed : 1Ge Full

Local Autoneg Speed Mask : 1Gb

Local Autoneg Duplex Mask : full

Link Partner Autoneg RFI : None <<<<<< Autoneg Far-end configuration

Link Partner Autoneg Pause : None

Link Partner Autoneg Speed : 1Ge Full

Link Partner Autoneg Speed Mask : 1Gb

Link Partner Autoneg Duplex Mask : full

H/W Link Defects : (0x00000000) None <<<< No Defects

Link Up : yes <<<< Link is UP

Link Led Status : Link up -- Green/Amber <<< LED is Green

Input good underflow : 0

Input ucast underflow : 0

Output ucast underflow : 0

Input unknown opcode underflow: 0

Pluggable Present : yes

Pluggable Type : 1000BX-10-D

Pluggable Compl. : Compliant

Pluggable Type Supp.: Supported

Pluggable PID Supp. : Supported

RP/0/RSP0/CPU0:ios#sh int gigabitEthernet 0/5/0/8

GigabitEthernet0/5/0/8 is up, line protocol is up

Interface state transitions: 15

Hardware is GigabitEthernet, address is 001d.e5eb.8cf8 (bia 001d.e5eb.8cf8)

Internet address is Unknown

MTU 1514 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)

reliability 255/255, txload 0/255, rxload 0/255

Encapsulation ARPA,

Full-duplex, 1000Mb/s, link type is autonegotiation <<<< Autoneg ON, Speed 1000 Mbps

output flow control is off, input flow control is off <<< Flow-control OFF

loopback not set,

Last input 1d07h, output never

Last clearing of "show interface" counters never

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

6 packets input, 360 bytes, 2 total input drops

0 drops for unrecognized upper-level protocol

Received 6 broadcast packets, 0 multicast packets

0 runts, 0 giants, 0 throttles, 0 parity

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 packets output, 0 bytes, 0 total output drops

Output 0 broadcast packets, 0 multicast packets

0 output errors, 0 underruns, 0 applique, 0 resets

0 output buffer failures, 0 output buffers swapped out

15 carrier transitions

•2.3.2. Copper/RJ45 SFP

Copper SFP is a PHY based SFP that allows 10/100/1000 Mbps of Speed and Flow-control configuration whether Auto-negotiation is enabled are not. But, it is recommended to use Auto-negotiation (AN) at both ends to ensure Speed, Flow-control (FC) and Master/Slave are negotiated and resolved.


LINE

A

N

SFP PHY

A

N

A

N

A

N

A

N

PHY

NP MAC


Figure 5 Auto-negotiation with Copper SFP

Table 5 Near-end Resolved Speed for Copper SFP

Auto-negotiation

(Both Sides)

Near-end (Config)

Far-end (Config)

Near-end (Result)

ON

None (Advertise Speed 1000/100/10, Full-duplex)

None

1000

ON

None (Advertise Speed 1000/100/10, Full-duplex)

Speed 1000

1000

ON

None (Advertise Speed 1000/100/10, Full-duplex)

Speed 100

100

ON

None (Advertise Speed 1000/100/10, Full-duplex)

Speed 10

10

ON

Speed 1000

None

1000

ON

Speed 100

None

100

ON

Speed 10

None

10

OFF

Speed 1000

Speed 1000

1000

OFF

Speed 100

Speed 100

100

OFF

Speed 10

Speed 10

10

Resolved Speed and Flow-control with Autonegotiation:

RP/0/RSP0/CPU0:IOS#sh int gigabitEthernet 0/5/0/34

GigabitEthernet0/5/0/34 is up, line protocol is up

Interface state transitions: 5

Hardware is GigabitEthernet, address is 001d.e5eb.8d12 (bia 001d.e5eb.8d12)

Internet address is Unknown

MTU 1514 bytes, BW 100000 Kbit (Max: 100000 Kbit)

reliability 255/255, txload 0/255, rxload 0/255

Encapsulation ARPA,

Full-duplex, 100Mb/s, THD, link type is autonegotiation <<< Resolved Speed

output flow control is off, input flow control is on <<< Resolved Flow-control

loopback not set,

Last input 00:00:00, output 00:00:00

Last clearing of "show interface" counters never

5 minute input rate 0 bits/sec, 0 packets/sec

5 minute output rate 0 bits/sec, 0 packets/sec

1875 packets input, 395625 bytes, 0 total input drops

0 drops for unrecognized upper-level protocol

Received 0 broadcast packets, 1875 multicast packets

0 runts, 0 giants, 0 throttles, 0 parity

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

1875 packets output, 395625 bytes, 0 total output drops

Output 0 broadcast packets, 1875 multicast packets

0 output errors, 0 underruns, 0 applique, 0 resets

0 output buffer failures, 0 output buffers swapped out

5 carrier transitions

•2.3.3. 100FX Optical SFP

GLC-GE-100FX is a PHY based Optical SFP. Auto-negotiation is not supported but ‘speed 100’ needs to be configured.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int gigabitEthernet 0/5/0/0

RP/0/RSP0/CPU0:ios(config-if)#no negotiation auto

RP/0/RSP0/CPU0:ios(config-if)#commit

RP/0/RSP0/CPU0:ios(config-if)#speed 100

RP/0/RSP0/CPU0:ios(config-if)#commit

•2.3.4. CWDM/DWDM SFP

1GE port supports several CWDM and DWDM Optics (Ref. 3).

•2.3.5. GLC-BX10-U/D SFP

GLC-BX-D and GLC-BX-U Optics (Ref. 10) operate with single strand using Single Mode Fiber (SMF). GLC-BX-D transmits 1490-nm and receives 1310-nm wavelength, whereas GLC-BX-U receives 1490-nm and transmits 1310-nm wavelength signal. Bi-directional communication is achieved with integrated Wavelength-division multiplexing (WDM) splitter inside the optics. This optics also provides Digital optical monitoring (DOM) support. No special configuration is needed to operate this SFP.

RP/0/RSP0/CPU0:ios#sh running-config interface gigabitEthernet 0/5/0/8

interface GigabitEthernet0/5/0/8

negotiation auto

RP/0/RSP0/CPU0:ios#sh running-config interface gigabitEthernet 0/5/0/9

interface GigabitEthernet0/5/0/9

negotiation auto

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/8 internal

….

<snip>

Pluggable Type : 1000BX-10-D

Pluggable Compl. : Compliant

Pluggable Type Supp.: Supported

Pluggable PID Supp. : Supported

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/9 internal

….

<snip>

Pluggable Type : 1000BX-10-U

Pluggable Compl. : Compliant

Pluggable Type Supp.: Supported

Pluggable PID Supp. : Supported

RP/0/RSP0/CPU0:ios#sh controllers gigabitEthernet 0/5/0/8 phy

SFP EEPROM port:8

Xcvr Type: SFP

Xcvr Code: 1000BX-10-D

Encoding: 8B10B

Bit Rate: 1300 Mbps

Link Reach 9u fiber (Km): 10000 meter

Link Reach 9u fiber (100m): 10000 meter

Vendor Name: CISCO-FIBERXON

Vendor OUI: 00.1f.22

Vendor Part Number: 9912C-SL10G-CIC (rev.: 10 )

Laser wavelength: 1490 nm (fraction: 0.00 nm)

….

<snip> ** DOM Data **

Temperature: 37.719

Voltage: 3.265 Volt

Tx Bias: 17.104 mAmps

Tx Power: 0.311 mW (-5.07 dBm)

Rx Power: 0.352 mW (-4.54 dBm)

Oper. Status/Control:

…….

•3. 10GE Interface

•3.1 LAN Mode

This is default mode of operation.

•3.2 WAN PHY Mode

PHY device maps 10GE LAN streams to STS-192c SPE and this limits the data-rate to 9.584 Gbps. WAN PHY provides rich SONET OAM capabilities for link management. It is to be noted that WAN PHY line-rate is lower than 10GE LAN rate (10.3125 Gbps). When WAN PHY mode is configured, transmit Inter-frame-gap (IFG) is set to 16 bytes instead of default 12 bytes in MAC.

LAN to WAN PHY Configuration:

RP/0/RSP0/CPU0:ios#sh running-config interface tenGigE 0/6/0/0

interface TenGigE0/6/0/0

transport-mode wan

RP/0/RSP0/CPU0:IOS#sh running-config controller wanphy 0/6/0/0

controller wanphy0/6/0/0

wanmode on

WAN PHY to LAN Mode:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#no transport-mode

RP/0/RSP0/CPU0:ios(config-if)#commit

WAN PHY Alarm Status:

RP/0/RSP0/CPU0:IOS#sh controllers wanphy 0/6/0/0 alarms

Interface: wanphy0/6/0/0

Configuration Mode: WAN Mode

SECTION

LOF = 2, LOS = 2, BIP(B1) = 0

LINE

AIS = 0, RDI = 0, FEBE = 0, BIP(B2) = 0

PATH

AIS = 0, RDI = 0, FEBE = 0, BIP(B3) = 0

LOP = 0, NEWPTR = 0, PSE = 0, NSE = 0

WIS ALARMS

SER = 263414, FELCDP = 0, FEAISP = 0

WLOS = 2, PLCD = 2

LFEBIP = 0, PBEC = 0, PLMP = 0

Active Alarms[All defects]: los, lof, sef,

Active Alarms[Highest Alarms]: los

Rx(K1/K2): N/A, Tx(K1/K2): N/A

S1S0 = N/A, C2 = N/A

PATH TRACE BUFFER

Remote IP addr:

BER thresholds: SF = 10e-3 SD = 10e-6

TCA thresholds: N/A

Alarm reporting enabled for:los, lof, lop

Layered Alarm Status (Optics, PHY, MAC):

(Note: This CLI is applicable only for 10GE port in Second Generation Line Card)

RP/0/RSP0/CPU0:ios#sh controllers tenGigE 0/6/0/0 xgxs

OPTICS:

Rx LOS Fault : Yes

Tx Fault : No

PHY:

Tx Align Fault : No

PMA/PMD:

Rx LOS Fault : Yes

Rx PMA link Fault : Yes

WANPHY Mode:

SECTION:

Los: Yes, Lof: Yes

LINE:

Ais: No, Rdi: No

PATH:

Ais: No, Lop: No

Plm: No, Lcd: No

PCS:

Rx PCS link Fault : Yes

Rx PCS lock Fault : Yes

MAC:

Rx Local Fault : Yes

Rx Remote Fault : No

•3.2.1. SD/SF BER

Software sets Signal Degrade (SD) and Signal Fail (SF) thresholds to

10e-3 and 10e-6 respectively.

RP/0/RSP0/CPU0:ios#sh controllers wanphy 0/6/0/0 alarms | inc SD

BER thresholds: SF = 10e-3 SD = 10e-6

SD/SF BER threshold is configurable using ‘threshold’ command.

Software monitors B2 BIP errors and asserts SD/SF BER alarms whenever the error-rate exceeds the threshold. Port link will go down once BIP error-rate exceeds SF BER threshold.

Threshold configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller wanphy 0/6/0/0

RP/0/RSP0/CPU0:ios(config-wanphy)#threshold ?

sd-ber Set Signal Degrade BER threshold

sf-ber Set Signal Fail BER threshold

Alarm reporting configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller wanphy 0/6/0/0

RP/0/RSP0/CPU0:ios(config-wanphy)#report ?

line-ais Set Line Alarm Indication Signal reporting status

lof Set Loss of Frame reporting status

lop Set Loss Of Pointer reporting status

los Set Loss of Signal reporting status

path-ais Set Path Alarm Indication Signal reporting status

path-fe-ais Set Path Far End Alarm Indication Signal reporting status

path-fe-plm Set Path Far End Label Mismatch reporting status

path-lcd Set Loss Of Code-Group Delineation reporting status

path-plm Set Path Payload Label Mismatch reporting status

path-rdi Set Path Remote Defect Indication Signal reporting status

rdi Set Remote Defect Indicator reporting status

sd-ber Set LBIP BER in excess of SD threshold reporting status

sf-ber Set LBIP BER in excess of SF threshold reporting status

Also, link will go down if any of the following alarm is asserted.

LOS, LOF, AIS-L, AIS-P, LOP-P, UNEQ-P.

•3.3 OTN Mode

10GE LAN traffic is mapped to OPU2e or OPU1e containers. OTN provides Forward Error Correction (FEC) feature in addition to SONET like OAM capabilities.

asr9k-optic-px.pie is needed to operate in OTN mode.

Optics Transmit Laser will be disabled if Pie is not installed and activated.

LAN to OPU2e Configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#transport-mode otn bit-transparent ?

opu1e 10GBASE-R over OPU1e without fixed stuffing (11.0491Gb/s)

opu2e 10GBASE-R over OPU2e with fixed stuffing (11.0957Gb/s)

RP/0/RSP0/CPU0:ios#sh running-config interface tenGigE 0/6/0/0

interface TenGigE0/6/0/0

transport-mode otn bit-transparent opu2e

RP/0/RSP0/CPU0:ios#sh running-config controller dwdm 0/6/0/0

controller dwdm0/6/0/0

admin-state in-service

OPU2e to LAN mode:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#no transport-mode

RP/0/RSP0/CPU0:ios(config-if)#commit

OTN Alarm Status:

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/6/0/0 g709

OTU

LOS = 1 LOF = 0 LOM = 0

BDI = 0 IAE = 0 BIP = 0

BEI = 0 TIM = 0

ODU

AIS = 0 BDI = 0 OCI = 0

LCK = 0 BIP = 0 BEI = 0

PTIM = 0 TIM = 0

FEC Mode: Standard (Default)

EC(current second) = 0 EC = 0 UC = 0

pre-FEC BER < 9.34E-11 Q > 6.45 Q Margin > 6.09

Remote FEC Mode: Unknown

FECMISMATCH = 0

Detected Alarms: LOS

Asserted Alarms: LOS

Alarm Reporting Enabled for: LOS LOF LOM IAE OTU-BDI OTU-TIM OTU_SF_BER OTU_SD_BER ODU-AIS ODU-BDI OCI LCK PTIM ODU-TIM ODU_SF_BER ODU_SD_BER FECMISMATCH

BER Thresholds: OTU-SF = E-3 OTU-SD = E-6

ODU-SF = E-3 ODU-SD = E-6

Layered Alarm Status (Optics, PHY, MAC):

(Note: This CLI is applicable only to 10 port in Second Generation Line Card)

RP/0/RSP0/CPU0:ios#sh controllers tenGigE 0/6/0/0 xgxs

OPTICS:

Rx LOS Fault : Yes

Tx Fault : No

PHY:

Tx Align Fault : No

PMA/PMD:

Rx LOS Fault : Yes

Rx PMA link Fault : Yes

OTU2 Mode:

OTU:

Los: Yes, Oof: Yes, Lof: Yes

Lom: Yes, Oom: Yes

Ais: No, Iae: Yes

Bdi: Yes, Tim: No

ODU:

Bdi: Yes, Ais: No, Lck: No

Oci: No, Tim: No, Ptim: Yes

PCS:

Rx PCS link Fault : Yes

Rx PCS lock Fault : Yes

MAC:

Rx Local Fault : Yes

Rx Remote Fault : No

Supported FEC Modes:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 fec ?

disable Disable FEC

enhanced Enhanced FEC mode

high-gain High Gain FEC mode

long-haul Long Haul FEC mode

standard Standard FEC mode

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 fec enhanced ?

i.4 efec i.4

i.7 efec i.7

Table 6 Supported FEC modes on 10G

Configuration

FEC Modes (Second Generation Line Card)

FEC Mode (First Generation Line Card)

g709 fec standard

ITU G.975 (GFEC) default

ITU G.975 (GFEC) default

g709 fec enhanced i.4

ITU G.975, I.4 (EFEC)

ITU G.975, I.4 (EFEC)

g709 fec enhanced i.7

ITU G.975, I.7 (UFEC)

Not Supported

g709 disable

No FEC

No FEC

g709 fec high-gain

Not Supported

Not Supported

g709 fec long-haul

Not Supported

Not Supported

Loopback:

When a port is in OTN mode, loopback is configured under ‘controller dwdm’.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#loopback ?

internal Select internal loopback mode

line Select line loopback mode

Performance Monitoring (PM) configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#pm ?

15-min Configure pm parameters of 15 minute interval

24-hour Configure pm parameters of 24 hour interval

RP/0/RSP0/CPU0:ios(config-dwdm)#pm 15-min ?

fec Configure fec g709 performance monitoring

optics Configure optics performance monitoring

otn configure otn g709 performance monitoring

RP/0/RSP0/CPU0:ios (config-dwdm)#pm 15-min fec ?

report set fec TCA reporting status

threshold Configure fec threshold

Show Performance Monitoring Information:

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/6/0/0 pm interval ?

15-min Show pm data in 15 minute interval

24-hour show pm data in 24 hour interval

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/6/0/0 pm history ?

15-min show all pm data in 15 minute interval

24-hour show all pm data in 24 hour interval

fec show all fec data in 15 minute and 24 hour interval

optics show all optics data in 15 minute and 24 hour interval

otn show all otn data in 15 minute and 24 hour interval

| Output Modifiers

<cr>

•3.3.1. Proactive Protection

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state out-of-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#proactive

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state in-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

BER threshold

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#proactive ?

revert Configure Revert thresholds

trigger Configure trigger thresholds

<cr>

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/6/0/0 proactive

Proactive Protection Status: ON

Proactive Protection State: Normal -Interface is Up

Inputs affecting proactive protection state:

Transport admin state : In Service

Trigger threshold : 6E-5 (Default 6E-5)

Revert threshold : 1E-5 (Default 1E-5)

Trigger integration window : 30 ms

Revert integration window : 20000 ms

Received APS : 0x0f (No Request)

Transmitted APS : 0x0f (No Request)

•3.3.2. SD/SF BER

Signal Degrade (SD) and Signal Failure (SF) threshold can be configured in OTU and ODU layers. Software monitors BIP errors from OTU and ODU layers for raising Alarms. Port link will go down for if BIP error rate exceeds SF threshold.

The default BER thresholds are given below.

BER Thresholds: OTU-SF = E-3 OTU-SD = E-6

ODU-SF = E-3 ODU-SD = E-6

SD/SF BER threshold configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/6/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state out-of-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 otu ?

overhead Configure OTU overhead

report Configure OTU alarm reporting

threshold Configure OTU threshold value

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 otu threshold ?

sd-ber Set Signal Degrade BER threshold

sf-ber Set Signal Failure BER threshold

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 odu ?

overhead Configure ODU overhead

report Configure ODU alarm reporting

threshold Configure ODU threshold value

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 odu threshold ?

sd-ber Set Signal Degrade BER threshold

sf-ber Set Signal Failure BER threshold

•3.4 Unidirectional Link Routing

The Unidirectional Link Routing (UDLR) feature is currently supported only in 10GE LAN mode only. It allows a physical port to receive or transmit data with a single fiber.

‘transport-mode {rx-only | tx-only}’ CLI is used for this purpose.

RP/0/RSP0/CPU0:ios(config)#int tenGigE 0/6/0/0

RP/0/RSP0/CPU0:ios(config-if)#transport-mode ?

rx-only 10GE UDLR Mode, Receive Only

tx-only 10GE UDLR Mode, Transmit Only

•3.5 Optics

•3.5.1. SR/LR/ER/ZR/DWDM Optics

Ref. 3 for all ASR 9000 supported XFP and SFP+ Optics.

•3.5.2. Tunable Optics

Ref. 9 provides the specification for Tunable DWDM XFP. This Optics allows 80 DWDM ITU-50GHz channels for tuning.

ASR 9000 follows CRS-1 for ‘wavelength’ to Channel mapping. Please use ‘sh controller dwdm <> wavelength-map’ CLI to see the correct channel to wavelength mapping.

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/6/0/7 wavelength-map

Wavelength band: C-Band

MSA ITU channel range supported: 3~84

Wavelength map table

----------------------------------------------------

ITU Ch G.694.1 Frequency Wavelength

Num Ch Num (THz) (nm)

----------------------------------------------------

3 58 196.00 1529.553

----------------------------------------------------

4 57 195.95 1529.944

----------------------------------------------------

5 56 195.90 1530.334

----------------------------------------------------

6 55 195.85 1530.725

----------------------------------------------------

7 54 195.80 1531.116

…….

<snip>

……..

---------------------------------------

80 -19 192.15 1560.200

----------------------------------------------------

81 -20 192.10 1560.606

----------------------------------------------------

82 -21 192.05 1561.013

----------------------------------------------------

83 -22 192.00 1561.419

----------------------------------------------------

84 -23 191.95 1561.826

----------------------------------------------------

To get 1531.116 nm, ‘Wavelength 7’ will be configured.

RP/0/RSP0/CPU0:IOS#conf t

RP/0/RSP0/CPU0:IOS(config)#controller dwdm 0/6/0/7

RP/0/RSP0/CPU0:IOS(config-dwdm)#wavelength 7

RP/0/RSP0/CPU0:IOS(config-dwdm)#commit

Instead of Channel Number, desired frequency can be configured using ‘wavelength frequency <>’ command.

RP/0/RSP0/CPU0:IOS(config-dwdm)#wavelength frequency ?

<19115-19610> Enter 5-digit Frequency data; e.g. 19580 for 195.8 THz

Supported Tunable Optics Frequency is described in Ref. 9.

•4. 40GE Interface

40GE Modular Port Adapter (MPA) implements 40GE LAN and 40GE mapped onto OTU3 (43.0184 Gbps) modes. It also supports G.709 OTN OTU3 framing with triple FEC (GFEC (Reed-Solomon), EFEC (G.975.1, I.4) and UFEC (G.975.1, 1.7)).

•4.1 LAN Mode

This is the default mode for the MPA.

RP/0/RSP0/CPU0:IOS#sh int fortyGigE 0/0/0/0

FortyGigE0/0/0/0 is up, line protocol is up

Interface state transitions: 1

Hardware is FortyGigE, address is 0022.bde5.aaec (bia 0022.bde5.aaec)

Layer 1 Transport Mode is LAN

•4.2 OTN Mode

To change Transport mode from LAN to OTU3 (43.0184 Gbps), use ‘g709 enable’ CLI.

To revert back to LAN mode, ‘no g709 enable’ needs to be configured.

asr9k-optic-px.pie is needed to operate in OTN mode.

Optics Transmit Laser will be disabled if Pie is not installed and activated.

If a port is in OTU3 mode, then ‘admin-state out-of-service’ configuration is needed before moving to any other command. G.709 Optics pie and License are needed to support OTU3 mode.

Change from LAN to OTU3:

RP/0/RSP0/CPU0:IOS#conf t

RP/0/RSP0/CPU0:IOS(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:IOS(config-dwdm)#g709 enable

RP/0/RSP0/CPU0:IOS(config-dwdm)#commit

RP/0/RSP0/CPU0:IOS(config-dwdm)#admin-state in-service

RP/0/RSP0/CPU0:IOS(config-dwdm)#commit

Change from OTU3 to LAN:

RP/0/RSP0/CPU0:IOS#conf t

RP/0/RSP0/CPU0:IOS(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:IOS(config-dwdm)#admin-state out-of-service

RP/0/RSP0/CPU0:IOS(config-dwdm)#commit

RP/0/RSP0/CPU0:IOS(config-dwdm)#no g709 enable

RP/0/RSP0/CPU0:IOS(config-dwdm)#commit

RP/0/RSP0/CPU0:IOS#sh controllers fortyGigE 0/0/0/0 internal

Tue Apr 30 00:09:44.419 UTC

Port Number : 0

Board Type : 0x0000023a

Port Type : 40GE

Transport mode : OTN(opu3)

BIA MAC addr : 0022.bde5.aaec

Oper. MAC addr : 0022.bde5.aaec

Egress MAC addr : 0022.bde5.aaec

Port Available : true

Status polling is : enabled

Status events are : enabled

I/F Handle : 0x000001c0

Cfg Link Enabled : tx/rx enabled

H/W Tx Enable : no

MTU : 1526

H/W Speed : 40 Gbps

H/W Duplex : Full

H/W Loopback Type : None

H/W FlowCtrl Type : None

H/W AutoNeg Enable : Off

H/W Link Defects : (0x0000202a) RX_LOS HW_LINK LASI G709_LICENSE

H/W Raw Link Defects : (0x0000202a) RX_LOS HW_LINK LASI G709_LICENSE

……

<snip>

Alarm Status:

RP/0/RSP0/CPU0:IOS#sh controllers dwdm 0/0/0/0

Tue Apr 30 09:29:16.745 UTC

Port dwdm0/0/0/0

Controller State: Up

Transport Admin State: In Service

Loopback: None

G709 Status

OTU

LOS = 1 LOF = 0 LOM = 0

BDI = 0 IAE = 0 BIP = 0

BEI = 0 TIM = 0

ODU

AIS = 0 BDI = 0 OCI = 0

LCK = 0 BIP = 0 BEI = 0

PTIM = 0 TIM = 0

FEC Mode: Standard (Default)

EC(current second) = 0 EC = 0 UC = 0

pre-FEC BER < 2.32E-11 Q > 6.66 Q Margin > 6.37

Remote FEC Mode: Standard

FECMISMATCH = 0

Detected Alarms: None

Asserted Alarms: None

Alarm Reporting Enabled for: LOS LOF LOM IAE OTU-BDI OTU-TIM OTU_SF_BER OTU_SD_BER ODU-AIS ODU-BDI OCI LCK PTIM OD

U-TIM ODU_SF_BER ODU_SD_BER FECMISMATCH

BER Thresholds: OTU-SF = E-3 OTU-SD = E-6

ODU-SF = E-3 ODU-SD = E-6

Connectivity Info

Network Port ID: Not Configured

Network Connection ID: Not Configured

OTU TTI Sent String ASCII : Tx TTI Not Configured

OTU TTI Received String ASCII : Rx TTI Not Received

OTU TTI Expected String ASCII : Exp TTI Not Configured

ODU TTI Sent String ASCII : Tx TTI Not Configured

Layered Alarm Status (Optics, PHY, MAC):

RP/0/RSP0/CPU0:ios#sh controllers fortyGigE 0/0/0/0 xgxs

OPTICS:

Rx LOS Fault : No

Tx Fault : No

PHY:

Tx Align Fault : No

PMA/PMD:

Rx LOS Fault : No

Rx PMA link Fault : No

OTU3 Mode:

OTL:

Otl_lol: No, Otl_ola: No, Otl_ola_d: No

Otl_skew_oor: No, Otl_skew_oor_d: No

OTU:

Los: No, Oof: No, Lof: No

Lom: No, Oom: No

Ais: No, Iae: No

Bdi: No, Tim: No

ODU:

Bdi: No, Ais: No, Lck: No

Oci: No, Tim: No, Ptim: No

GMP:

Oof_1027b: No, Oof_1027_d: No

Dec_513b_e: No, Sync_fail: No

PCS:

Rx PCS link Fault : No

Rx PCS lock Fault : No

MAC:

Rx Local Fault : No

Rx Remote Fault : No

Supported FEC Modes:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 fec ?

disable Disable FEC

enhanced Enhanced FEC mode

high-gain High Gain FEC mode

long-haul Long Haul FEC mode

standard Standard FEC mode

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 fec enhanced ?

i.4 efec i.4

i.7 efec i.7

Table 7 Supported FEC modes on 40G

Configuration

FEC Mode

g709 fec standard

G.975.1 (GFEC) default

g709 fec enhanced i.4

G.975.1, I.4 (EFEC)

g709 fec enhanced i.7

G.975.1, I.7 (UFEC)

g709 fec disable

No FEC

g709 fec high-gain

Not Supported

g709 fec long-haul

Not Supported

Loopback:

When a port is in OTN mode, loopback is configured under ‘controller dwdm’.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#loopback ?

internal Select internal loopback mode

line Select line loopback mode

Performance Monitoring (PM) configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#pm ?

15-min Configure pm parameters of 15 minute interval

24-hour Configure pm parameters of 24 hour interval

RP/0/RSP0/CPU0:ios(config-dwdm)#pm 15-min ?

fec Configure fec g709 performance monitoring

optics Configure optics performance monitoring

otn configure otn g709 performance monitoring

RP/0/RSP0/CPU0:ios (config-dwdm)#pm 15-min fec ?

report set fec TCA reporting status

threshold Configure fec threshold

Show Performance Monitoring Information:

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/0/0/0 pm interval ?

15-min Show pm data in 15 minute interval

24-hour show pm data in 24 hour interval

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/0/0/0 pm history ?

15-min show all pm data in 15 minute interval

24-hour show all pm data in 24 hour interval

fec show all fec data in 15 minute and 24 hour interval

optics show all optics data in 15 minute and 24 hour interval

otn show all otn data in 15 minute and 24 hour interval

| Output Modifiers

<cr>

•4.2.1. Proactive Protection

With ‘Proactive Protection’ feature enabled, software monitors FEC errors for the configured threshold and notifies upper-layer protocols once the error-rate crosses the threshold.

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state out-of-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#proactive

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state in-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

BER threshold

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#proactive ?

revert Configure Revert thresholds

trigger Configure trigger thresholds

<cr>

RP/0/RSP0/CPU0:ios#sh controllers dwdm 0/0/0/0 proactive

Proactive Protection Status: ON

Proactive Protection State: Normal -Interface is Up

Inputs affecting proactive protection state:

Transport admin state : In Service

Trigger threshold : 6E-5 (Default 6E-5)

Revert threshold : 1E-5 (Default 1E-5)

Trigger integration window : 30 ms

Revert integration window : 20000 ms

Received APS : 0x0f (No Request)

Transmitted APS : 0x0f (No Request)

•4.2.2. SD/SF BER

Signal Degrade (SD) and Signal Failure (SF) threshold can be configured in OTU and ODU layers. Software monitors BIP errors from OTU and ODU layers for raising Alarms. Port link will go down for if BIP error rate exceeds SF threshold.

The default BER thresholds are given below.

BER Thresholds: OTU-SF = E-3 OTU-SD = E-6

ODU-SF = E-3 ODU-SD = E-6

SD/SF BER threshold configuration:

RP/0/RSP0/CPU0:ios#conf t

RP/0/RSP0/CPU0:ios(config)#controller dwdm 0/0/0/0

RP/0/RSP0/CPU0:ios(config-dwdm)#admin-state out-of-service

RP/0/RSP0/CPU0:ios(config-dwdm)#commit

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 otu ?

overhead Configure OTU overhead

report Configure OTU alarm reporting

threshold Configure OTU threshold value

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 otu threshold ?

sd-ber Set Signal Degrade BER threshold

sf-ber Set Signal Failure BER threshold

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 odu ?

overhead Configure ODU overhead

report Configure ODU alarm reporting

threshold Configure ODU threshold value

RP/0/RSP0/CPU0:ios(config-dwdm)#g709 odu threshold ?

sd-ber Set Signal Degrade BER threshold

sf-ber Set Signal Failure BER threshold

•4.3 Optics

40GE MPA supports the following Cisco QSFPs.

QSFP-40G-SR4 - LAN mode only

QSFP-40GE-LR4 - LAN mode only

QSFP-40G-LR4 - LAN/OTU3 modes

•5. 100GE Interface

•5.1 LAN Mode

LAN is the default mode for a 100GE port.

•5.2 LAN PP Mode

OTU4

ONS 15454 M6

ASR 9000

Figure 6 LAN Proactive Protection

In LAN Proactive Protection (PP) mode, ONS M6 terminates OTU4 signal and monitors Forward-error-correction (FEC) errors. Whenever the error-rate exceeds the user-configured threshold, M6 notifies ASR 9000 through a Cisco proprietary signal. This allows fast reroute (FRR) in case of signal deterioration in OTU4 link. asr9k-optic-px.pie is needed to support this feature. Optics Transmit Laser will be disabled if Pie is not installed and activated.

Proactive configuration in ASR 9000:

RP/0/RSP0/CPU0:ios#show run controller dwdm 0/3/0/0

controller dwdm0/3/0/0

proactive

admin-state in-service

Proactive Status:

RP/0/RSP0/CPU0:ios#show controllers dwdm 0/3/0/0 proactive

Proactive Protection Status: ON

Proactive Protection State: Normal -Interface is Up <<< proactive intf is up.

Inputs affecting proactive protection state:

Transport admin state : In Service

Trigger threshold : 6E-5

Revert threshold : 1E-5

Trigger integration window : 30 ms

Revert integration window : 20000 ms

Received APS : 0x0f (No Request)

Transmitted APS : 0x0f (No Request)

G.709 Optics Pie is needed for PP:

RP/0/RSP0/CPU0:RR02#show controllers hundredGigE 0/3/0/0 internal

Port Number : 0

Board Type : 0x003b0262

Port Type : 100GE

Transport mode : LAN_PP

BIA MAC addr : 0022.bde5.aaa0

Oper. MAC addr : 0022.bde5.aaa0

Egress MAC addr : 0022.bde5.aaa0

Port Available : true

Status polling is : enabled

Status events are : enabled

I/F Handle : 0x060000c0

Cfg Link Enabled : tx/rx enabled

H/W Tx Enable : no

MTU : 1526

H/W Speed : 100 Gbps

H/W Duplex : Full

H/W Loopback Type : None

H/W FlowCtrl Type : None

H/W AutoNeg Enable : Off

Link Faults : (0x00008000) G709_LICENSE <<< Active alarm when optic pie is absent

Raw Link Faults : (0x00008000) G709_LICENSE

Link Up : no

Link Led Status : Link down -- Red

Pluggable Present : yes

Pluggable Type :

Pluggable PID : CFP-100G-SR10

Pluggable Compl. : Compliant

Pluggable Type Supp.: Supported

Pluggable PID Supp. : Supported

NP->Mac Lane Sync : 0x001fffff

PHY->Mac Lane Sync : 0x000fffff

Mac Version : 0x00000022

•5.3 Optics

100GE ports support the following Cisco Supported Optics (Ref. 3).

CFP-100G-LR4

CFP-100G-SR10

•6. FAQ

Q: 1GE port: Link is not coming up. How do I debug?

  • •a) Check configuration on both sides (autoneg, speed, flow control) using ‘sh running interface giga <>’
  • •b) If the Optics are DOM supported, check Optics Power levels using ‘sh controller giga <> phy’
  • •c) Check the reason for the link failure using ‘sh controller giga <> internal’. Meaning of Link defect is discussed in Table 2.
  • •d) Also, ensure FPGA images are up-to-date using ‘sh hw-mod location all <>’

Q: 10/100 Mbps with Copper SFP: ARP and ping packets are not received by ASR9k port

SFP-GE-T PHY doesn’t handle odd number of preamble and this will cause silent drop of Ethernet Frames. The issue is not seen with 1000 Mbps. This may happen if the far-end switch is not following IEEE standard for transmission of Preamble.

Q: 10/40/100GE port: Link is not coming up. What do I check?

  • •a) Check configuration on both sides using ‘sh running interface … <>’
  • •b) If the Optics are DOM supported, check Optics Power levels using ‘sh controller … <> phy’
  • •c) Check the reason for the link failure using ‘sh controller … <> internal’

Q: 10/40G OTN mode: Link is not coming up. How do I debug?

  • •a) Check ‘admin-state in-service’ is configured under ‘controller dwdm’
  • •b) Check both ends use correct OTN modes
  • •c) Check both ends use same FEC modes
  • •d) Check the reason for the link failure using ‘sh controller <> internal’
  • •e) Check the reason for the defect in Table 2
  • •f) Ensure Optics pie is installed
  • •g) Check Optics type used

Q: After LOS cleared, the port link takes several seconds to come up.

Is it normal?

Yes, this is normal.

When Receive Loss-of-Signal (LOS) state changes to Normal, PHY and clock

Logic is reconfigured. Software waits for Clock lock before bringing link Up.

Q: During Line Card reload, link flap occurs. Is it normal?

Yes, this is normal. During Line Card reload, various hardware logics including MAC, PHY and Clocking undergo device configuration. This will cause link flap at Near and Far-ends.

Q: Link Flap occurred during traffic condition. How do I debug?

  • •a) Check Optics power status using ‘sh controller <> internal’
  • •b) Check ‘sh interface’ for input errors
  • •c) Check ‘sh controller <> stat’ for various input errors
  • •d) If the optical receive power is low, clean or replace the optics and fiber at both ends
  • •e) Monitor ‘symbol’ and ‘crc’ error count using ‘sh controller <> stat’
  • •f) If ‘OTN’ mode is used, check ‘sh controller dwdm <>’ for various BIP and other error counts
  • •g) If ‘WAN’ mode is used, check ‘sh controller wanphy all’ for various BIP and other error counts
  • •h) Get ‘sh log location <>’ output
  • •i) If it is a first generation Line Card, then get the trace log

sh ether-ctrl gigabitEthernet trace location <> (for 1GE)

sh ether-ctrl tenGigE trace location <> (for 10GE)

If it is a second generation Line Card, then get the following trace log

sh controllers vic ltrace all location <>

sh controller <> <> reg (need few snap-shots of this command with 3 minute interval)

Q: Tunable Optics: How do I check what ‘wavelength’ is configured in Optics?

RP/0/RSP0/CPU0:ios#sh controllers tenGigE 0/6/0/7 phy | inc Wavelength Control

Wavelength Control: setpoint=1556.50 nm, error=0.00 nm

Also, Configured Optics ‘Channel ID’(Ref. 9) can be obtained from Optics.

RP/0/RSP0/CPU0:SH6#sh controllers tenGigE 0/6/0/7 phy | inc Wavelength Chann

Wavelength Channel: 14

•7. Glossary

CLI – Command Line Interface

EFD – Ethernet Fault Detection

FRR – Fast-reroute to back-up link in case the main data-link fails

OTN – Optical Transport Network

MAC – Media Access Control

PHY – Physical Layer device connects MAC to Optics

Optics – SFP, SFP+, XFP, QSFP+, CFP

SPE – Synchronous Payload Envelope

•8. References:

  • •1. ASR9k Functional Description

http://www.cisco.com/en/US/docs/routers/asr9000/hardware/overview/guide/asr9kOVRGfuncdescription.html

  • •2. ASR 9000 Series Modular Line Cards

http://www.cisco.com/en/US/prod/collateral/routers/ps9853/data_sheet_c78-663866.html

  • •3. Cisco ASR 9000 Transceiver Modules: Line Card Support

http://www.cisco.com/en/US/prod/collateral/routers/ps9853/data_sheet_c78-624747.html

  • •4. Release Notes for ASR 9000 (XR Release 4.3.0)

http://www.cisco.com/en/US/docs/routers/asr9000/software/asr9k_r4.3/general/release/notes/reln_430a9k.html

  • •5. DOM Supported Optics

http://www.cisco.com/en/US/docs/interfaces_modules/transceiver_modules/compatibility/matrix/OL_8031.pdf

  • •6. 40-Gigabit Transceiver Modules Compatibility Matrix

http://www.cisco.com/en/US/docs/interfaces_modules/transceiver_modules/compatibility/matrix/OL_24900.pdf

  • •7. Configuring DWDM controller

http://www.cisco.com/en/US/partner/docs/routers/asr9000/software/asr9k_r4.2/interfaces/configuration/guide/hc42dwdm.html

  • •8. DWDM Commands

http://www.cisco.com/en/US/docs/routers/crs/software/crs_r4.1/interfaces/command/reference/interfaces_cr41crs_chapter3.html#wp555295626

  • •9. 10GBASE DWDM XFP

http://www.cisco.com/en/US/prod/collateral/modules/ps5455/data_sheet_78-458530.html

  • •10. Cisco SFP for Gigabit applications

http://www.cisco.com/en/US/prod/collateral/modules/ps5455/ps6577/product_data_sheet0900aecd8033f885.html

“Full credit to Ramki Ramachandran for authoring this document”

Getting Started

Find answers to your questions by entering keywords or phrases in the Search bar above. New here? Use these resources to familiarize yourself with the community:

Quick Links